1
|
Wan X, Fang Y, Du J, Cai S, Dong H. GW4869 Can Inhibit Epithelial-Mesenchymal Transition and Extracellular HSP90α in Gefitinib-Sensitive NSCLC Cells. Onco Targets Ther 2023; 16:913-922. [PMID: 38021444 PMCID: PMC10640835 DOI: 10.2147/ott.s428707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Objective GW4869 is an exosomal inhibitor. It is necessary to delay the occurrence of gefitinib resistance during non-small-cell lung cancer (NSCLC) treatment. This study aimed to investigate the anti-tumor effects of GW4869 on epithelial-mesenchymal transition (EMT) and expression of extracellular heat shock protein 90α (eHSP90α) that contributes to acquired resisitance. Our study provides a new sight into the treatment of EGFR-mutated NSCLC. Materials and Methods We performed western blotting to detect levels of EMT and eHSP90α. Wound healing and transwell assays were performed to evaluate the behavioral dynamics of EMT. A nude mouse model of HCC827 was established in vivo. Results GW4869 inhibited the expression of eHSP90α, EMT, invasion and migration abilities of HCC827 and PC9. GW4869 enhanced sensitivity to gefitinib in BALB/c nude mice bearing tumors of HCC827. Conclusion These studies suggest that GW4869 can inhibit EMT and extracellular HSP90α, providing new strategies for enhancing gefitinib sensitivity in NSCLC.
Collapse
Affiliation(s)
- Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Yuting Fang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| |
Collapse
|
2
|
Liu CM, Shao Z, Chen X, Chen H, Su M, Zhang Z, Wu Z, Zhang P, An L, Jiang Y, Ouyang AJ. Neferine attenuates development of testosterone-induced benign prostatic hyperplasia in mice by regulating androgen and TGF-β/Smad signaling pathways. Saudi Pharm J 2023; 31:1219-1228. [PMID: 37293563 PMCID: PMC10244910 DOI: 10.1016/j.jsps.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common urinary disease among the elderly, characterized by abnormal prostatic cell proliferation. Neferine is a dibenzyl isoquinoline alkaloid extracted from Nelumbo nucifera and has antioxidant, anti-inflammatory and anti-prostate cancer effects. The beneficial therapeutic effects and mechanism of action of neferine in BPH remain unclear. A mouse model of BPH was generated by subcutaneous injection of 7.5 mg/kg testosterone propionate (TP) and 2 or 5 mg/kg neferine was given orally for 14 or 28 days. Pathological and morphological characteristics were evaluated. Prostate weight, prostate index (prostate/body weight ratio), expression of type Ⅱ 5α-reductase, androgen receptor (AR) and prostate specific antigen were all decreased in prostate tissue of BPH mice after administration of neferine. Neferine also downregulated the expression of pro-caspase-3, uncleaved PARP, TGF-β1, TGF-β receptor Ⅱ (TGFBR2), p-Smad2/3, N-cadherin and vimentin. Expression of E-cadherin, cleaved PARP and cleaved caspase-3 was increased by neferine treatment. 1-100 μM neferine with 1 μM testosterone or 10 nM TGF-β1 were added to the culture medium of the normal human prostate stroma cell line, WPMY-1, for 24 h or 48 h. Neferine inhibited cell growth and production of reactive oxygen species (ROS) in testosterone-treated WPMY-1 cells and regulated the expression of androgen signaling pathway proteins and those related to epithelial-mesenchymal transition (EMT). Moreover, TGF-β1, TGFBR2 and p-Smad2/3, N-cadherin and vimentin expression were increased but E-cadherin was decreased after 24 h TGF-β1 treatment in WPMY-1 cells. Neferine reversed the effects of TGF-β1 treatment in WPMY-1 cells. Neferine appeared to suppress prostate growth by regulating the EMT, AR and TGF-β/Smad signaling pathways in the prostate and is suggested as a potential agent for BPH treatment.
Collapse
Affiliation(s)
- Chi-Ming Liu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - ZiChen Shao
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
- College of Chemistry and Bio-engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - XuZhou Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - HanWu Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - MengQiao Su
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
- College of Chemistry and Bio-engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - ZiWen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - ZhengPing Wu
- School of Aesthetic Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - Peng Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - LiJie An
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
- College of Chemistry and Bio-engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - YinJie Jiang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - Ai-Jun Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Cao Y, Tian Y, Zhang H, Luo GH, Sun ZL, Xia SJ. Imbalance in the estrogen/androgen ratio may affect prostate fibrosis through the TGF-β/Smad signaling pathway. Int Urol Nephrol 2022; 54:499-508. [DOI: 10.1007/s11255-021-03079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
|
4
|
Chen J, Rong N, Liu M, Xu C, Guo J. The exosome-circ_0001359 derived from cigarette smoke exposed-prostate stromal cells promotes epithelial cells collagen deposition and primary ciliogenesis. Toxicol Appl Pharmacol 2021; 435:115850. [PMID: 34968637 DOI: 10.1016/j.taap.2021.115850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cigarettes consumption is continued to be popular. We found that cigarette smoke (CS) exposure promoted prostatic fibrosis. In this study, human prostate epithelial RWPE-1 cells were co-cultured with exosomes derived from CS exposed-WPMY-1 cells (CS-WPMY-1-exo). The collagen deposition, primary ciliogenesis, epithelial-mesenchymal transition (EMT) and transforming growth factor (TGF)-β1 level of RWPE-1 were evaluated. The circRNAs profiles of WPMY-1-exo were explored by high-throughput RNA sequencing. It was found that CS-WPMY-1-exo significantly promoted RWPE-1 collagen deposition, EMT and primary ciliogenesis. There were 17 differentially expressed (DE) circRNAs (including circ_0001359) between CS-WPMY-1-exo and the negative control. Functional enrichment analyses showed that the DE circRNAs played important roles in ciliary basal body, spindle microtubule and TGF-β signaling pathway. Circ_0001359 siRNA attenuated CS-WPMY-1 induced RWPE-1 cells collagen deposition, EMT and primary ciliogenesis, as well as inhibited the level of TGF-β1. The whole results showed that circ_0001359 derived from CS-WPMY-1-exo contributed to prostatic fibrosis via stimulating epithelial cells phenotypes changes and collagen deposition.
Collapse
Affiliation(s)
- Jinglou Chen
- School of Medical, Jianghan University, Wuhan, China; The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China.
| | - Nan Rong
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China
| | - Min Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China
| | - Congyue Xu
- School of Medical, Jianghan University, Wuhan, China
| | - Jing Guo
- School of Medical, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Gao HL, Yu XJ, Hu HB, Yang QW, Liu KL, Chen YM, Zhang Y, Zhang DD, Tian H, Zhu GQ, Qi J, Kang YM. Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus. Cardiovasc Toxicol 2021; 21:721-736. [PMID: 34076830 DOI: 10.1007/s12012-021-09662-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Apigenin, identified as 4', 5, 7-trihydroxyflavone, is a natural flavonoid compound that has many interesting pharmacological activities and nutraceutical potential including anti-inflammatory and antioxidant functions. Chronic, low-grade inflammation and oxidative stress are involved in both the initiation and progression of hypertension and hypertension-induced cardiac hypertrophy. However, whether or not apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent reactive oxygen species (ROS) generation and inflammation in hypothalamic paraventricular nucleus (PVN) has not been reported. This study aimed to investigate the effects of apigenin on hypertension in spontaneously hypertensive rats (SHRs) and its possible central mechanism of action. SHRs and Wistar-Kyoto (WKY) rats were randomly assigned and treated with bilateral PVN infusion of apigenin or vehicle (artificial cerebrospinal fluid) via osmotic minipumps (20 μg/h) for 4 weeks. The results showed that after PVN infusion of apigenin, the mean arterial pressure (MAP), heart rate, plasma norepinephrine (NE), Beta 1 receptor in kidneys, level of phosphorylation of PKA in the ventricular tissue and cardiac hypertrophy, perivascular fibrosis, heart level of oxidative stress, PVN levels of oxidative stress, interleukin 1β (IL-1β), interleukin 6 (IL-6), iNOS, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), NOX2 and NOX4 were attenuated and PVN levels of interleukin 10 (IL-10), superoxide dismutase 1 (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67) were increased. These results revealed that apigenin improves hypertension and cardiac hypertrophy in SHRs which are associated with the down-regulation of NADPH oxidase-dependent ROS generation and inflammation in the PVN.
Collapse
Affiliation(s)
- Hong-Li Gao
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Han-Bo Hu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Qian-Wen Yang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Yan-Mei Chen
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Yan Zhang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Dong-Dong Zhang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Hua Tian
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jie Qi
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China.
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China.
| |
Collapse
|
6
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|