1
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
2
|
Ji H, Bi Z, Pawar AS, Seno A, Almutairy BS, Fu Y, Qiu Y, Zhang W, Wang Z, Thakur C, Cui H, Yang L, Chen F. Genomic and epigenetic characterization of the arsenic-induced oncogenic microRNA-21. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123396. [PMID: 38295932 DOI: 10.1016/j.envpol.2024.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
As one of the first identified oncogenic microRNAs, the precise details concerning the transcriptional regulation and function of microRNA-21 (miR-21) are still not completely established. The miR-21 gene is situated on chromosome 17q23.2, positioned at the 3'-UTR of the gene that encodes vacuole membrane protein-1 (VMP1). In this current study, we presented evidence indicating that miR-21 possesses its own gene promoter, which can be found in the intron 10 of the VMP1 gene. Chromatin immunoprecipitation followed by global DNA sequencing (ChIP-seq) revealed the presence of a broad H3K4me3 peak spanning the entire gene body of the primary miR-21 and the existence of super-enhancer clusters in the close proximity to both the miR-21 gene promoter and the transcription termination site in arsenic (As3+)-induced cancer stem-like cells (CSCs) and human induced pluripotent stem cells (hiPSCs). In non-transformed human bronchial epithelial cells (BEAS-2B), As3+ treatment enhanced Nrf2 binding to both the host gene VMP1 of miR-21 and the miR-21 gene. Knockout of Nrf2 inhibited both the basal and As3+-induced expressions of miR-21. Furthermore, the As3+-enhanced Nrf2 peaks in ChIP-seq fully overlap with these super-enhancers enriched with H3K4me1 and H3K27ac in the miR-21 gene, suggesting that Nrf2 may coordinate with other transcription factors through the super-enhancers to regulate the expression of miR-21 in cellular response to As3+. These findings demonstrate the unique genetic and epigenetic characteristics of miR-21 and may provide insights into understanding the novel mechanisms linking environmental As3+ exposure and human cancers.
Collapse
Affiliation(s)
- Haoyan Ji
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Aashna S Pawar
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Akimasa Seno
- R&D Center, Katayama Chemicals Ind., Co. Ltd, Ina, Minoh, Osaka, 562-0015, Japan
| | - Bandar Saeed Almutairy
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yao Fu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Chitra Thakur
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Fei Chen
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Xu W, Cui J, Busayli AM, Zhang T, Chen G. Arsenic up-regulates PD-L1 and enhances lung tumorigenesis through activation of STAT3 in alveolar epithelial type 2 cells. Toxicol Appl Pharmacol 2024; 482:116787. [PMID: 38101582 PMCID: PMC10843590 DOI: 10.1016/j.taap.2023.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Arsenic is a carcinogen and chronic exposure to arsenic increases the risk of many cancers, including lung cancer. However, the underlying mechanism is not clear. Using A/J mice as a model, our previous animal study has shown that chronic arsenic exposure up-regulates PD-L1 on lung tumor cells which interacts with PD-1 on T cells and inhibits T cell anti-tumor function resulting in increased lung tumorigenesis. In a subsequent in vitro study, we further found that arsenic up-regulated PD-L1 by activating STAT3 at tyrosine 705 in lung epithelial cells, and inhibition of STAT3 mitigated arsenic-induced PD-L1 up-regulation. The present study aims to determine whether STAT3 regulates PD-L1 in the lung of A/J mice and the type of cells from which lung tumor develops upon arsenic exposure. For that purpose, a mouse line with STAT3 conditional knockout in alveolar type 2 (AT2) cells was developed. Our results indicate that arsenic exposure up-regulates PD-L1 in AT2 cells through activating STAT3 in A/J mice. Conditional knockout of STAT3 in AT2 cells inhibited arsenic-induced PD-L1 up-regulation and lung tumor formation. Thus, our findings reveal that STAT3 is the upstream regulator of arsenic-induced PD-L1 up-regulation in AT2 cells and the inhibition of T cell anti-tumor function in the lung, and that AT2 cells are sensitive to arsenic exposure and from which arsenic-enhanced lung tumor formation in A/J mice.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neurology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Abdulrahman M Busayli
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Tong Zhang
- Department of General Medicine, The First People's Hospital of Yunnan Province Kunming, Yunnan 650032, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Wang Y, Cheng W, Wang X, He T, Liu J, Chen S, Zhang J. Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice. Food Chem Toxicol 2023:113913. [PMID: 37348806 DOI: 10.1016/j.fct.2023.113913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Endemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice. A network pharmacology approach was applied to predict the potential target of As-induced hepatotoxicity. The predicted targets of differential metabolites were subjected to a deep matching for elucidating the integration mechanisms. The results demonstrate that the levels of ALT and AST in plasma significantly increased in mice after As exposure. In addition, the liver tissue showed disorganized liver lobules, lax cytoplasm and inflammatory cell infiltration. Metabolomic analysis revealed that As exposure caused disturbance to 40 and 75 potential differential metabolites in plasma and liver, respectively. Further investigation led to discovering five vital metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis and nicotinate and nicotinamide metabolism pathways. These pathways may responded to As-induced hepatotoxicity primarily through lipid metabolism, apoptosis, and deoxyribonucleic acid damage. The network pharmacology suggested that As could induce hepatotoxicity in mice by acting on targets including Hsp90aa1, Akt2, Egfr, and Tnf, which regulate PI3K Akt, HIF-1, MAPK, and TNF signaling pathways. Finally, the integrated metabolomics and network pharmacology revealed eight key targets associated with As-induced hepatoxicity, namely DNMT1, MAOB, PARP1, MAOA, EPHX2, ANPEP, XDH, and ADA. The results also suggest that nicotinic acid and nicotinamide metabolisms may be involved in As-induced hepatotoxicity. This research identified the metabolites, targets, and mechanisms of As-induced hepatotoxicity, offering meaningful insights and establishing the groundwork for developing antidotes for widespread As poisoning.
Collapse
Affiliation(s)
- Yazhi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoning Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Shuangshuang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Yasui M, Cui L, Miyamoto H. Recent advances in the understanding of urothelial tumorigenesis. Expert Rev Anticancer Ther 2023; 23:485-493. [PMID: 37052619 DOI: 10.1080/14737140.2023.2203388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Patients with non-muscle-invasive bladder tumor suffer from disease recurrence following transurethral surgery even with intravesical pharmacotherapy, while muscle-invasive disease is often deadly. It is therefore critical to elucidate the underlying molecular mechanisms responsible for not only bladder tumor progression but also its tumorigenesis. Indeed, various molecules and/or signaling pathways have been suggested to contribute to the pathogenesis of bladder cancer. AREAS COVERED We summarize the progress during the last few years on the initiation or development, but not progression, of urothelial cancer. The clinical implications of these available data, including prognostic significance and possible application for the prevention of the recurrence of non-muscle-invasive bladder tumors, are also discussed. EXPERT OPINION Bladder cancer is a heterogeneous group of neoplasms. The establishment of personalized therapeutic options based on the molecular profile in each case should thus be considered. On that account, further accumulation of data on urothelial tumorigenesis is warranted to identify promising targets for the prevention of postoperative tumor recurrence or tumor development in otherwise high-risk patients.
Collapse
Affiliation(s)
- Masato Yasui
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
- James P. Wilmot Cancer Institute, Rochester, NY, USA
| | - Liam Cui
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
- James P. Wilmot Cancer Institute, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Nail AN, Ferragut Cardoso AP, Montero LK, States JC. miRNAs and arsenic-induced carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:203-240. [PMID: 36858773 PMCID: PMC10184182 DOI: 10.1016/bs.apha.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Lakyn K Montero
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States.
| |
Collapse
|