1
|
Salles FJ, Atilola G, Frydas I, Schultz DR, Papaioannou N, Rogero MM, Sarigiannis D, Vineis P, Olympio KPK. Effects of minimal arsenic, lead, and cadmium exposure on biological pathways in Brazilian informal workers welding fashion jewelry. J Trace Elem Med Biol 2025; 89:127660. [PMID: 40300411 DOI: 10.1016/j.jtemb.2025.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION This study complements previous research about informal workers occupational exposure by investigating the whole blood transcriptome of women engaged in informal home-based jewelry production in the city of Limeira, Sao Paulo, Brazil, focusing on associations between gene expression and arsenic (As), cadmium (Cd), and lead (Pb) concentrations in blood, as well as on identifying transcriptome profiles linked to self-reported health outcomes. METHODS Participants were divided into two groups: an exposed group comprising informal workers engaged in domestic jewelry welding activities (n = 22) and a control group composed of neighbors without occupational exposures (n = 19). Linear regression modeling assessed the association between the blood concentration of toxic elements, gene expression, and reported health outcomes. Pathway analysis was performed using ConsensusPathDB. RESULTS 269 differentially expressed genes (DEGs) associated with As exposure and 43 with Cd exposure were found in this study, revealing significant health impacts on these workers. DEGs were also significantly associated with respiratory illness (bronchitis and asthma), neurological manifestations (sleep problems, migraines, or frequent headaches), shortness of breath, blood glucose, cholesterol, and triglyceride levels. Pathway analysis indicates genes related to inflammatory processes, alterations in intestinal permeability, and neurological outcomes. CONCLUSION The results shed light on the transcriptomic changes in this occupational context and contribute to a better understanding of the challenges faced by informal workers. Even with low doses of toxic elements in the blood, it was possible to observe differences in gene expression linked to self-reported outcomes. Additional studies should clarify the biological processes associated with toxic elements exposure.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, São Paulo, SP CEP 01246-904, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP 01246-000, Brazil.
| | - Glory Atilola
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, UK; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; Department of Population, Policy and Practice, Institute of Child Health Great Ormond Street, University College London, UK
| | - Ilias Frydas
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dayna R Schultz
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo 01246-904, Brazil
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Kelly Polido Kaneshiro Olympio
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, São Paulo, SP CEP 01246-904, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP 01246-000, Brazil.
| |
Collapse
|
2
|
Chen X, Zhang Z, Hsueh Y, Zhang C, Yu J, Zhu J, Niu J, Yin N, Zhang J, Cui X, Liu X, Xu K, Yuan C. Interactions between environmental pollutants and gut microbiota: A review connecting the conventional heavy metals and the emerging microplastics. ENVIRONMENTAL RESEARCH 2025; 269:120928. [PMID: 39855410 DOI: 10.1016/j.envres.2025.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Growing epidemiological evidence suggests that the diverse and functional gut microbiota plays a vital role in regulating the health and disease of organisms including human. However, organisms are inevitably exposed to widespread environmental pollutants, and the interactions between their gut microbiota and pollutants are relatively underreported. The present paper considers heavy metals (HMs) and microplastics (MPs) as representatives of traditional and emerging pollutants and systematically summarizes their effects on gut microbiota and the effects of gut microbiota on pollutants. The former refers to the alterations in the gut microbiota's abundance, diversity and composition caused by pollutants, whereas the latter focuses on the changes in the metabolism of pollutants by adjusting the dominant bacteria, specific enzymes, and key genes. In particular, some fields were found to be poorly studied, including extension of research to humans, mechanistic exploration of gut microbiota's changes, and the metabolism of pollutants by gut microbiota. Accordingly, we draw attention to the development and application of in vitro test models to more accurately explore the interactions between pollutants and gut microbiota when assessing human health risks. In addition, by combining state-of-the-art biological techniques with culturomics, more gut microbiota can be identified, isolated, and cultured, which helps to confirm the relationship between pollutants and gut microbiota and the potential function of gut microbiota in pollutant metabolism. Furthermore, the phenomenon of coexposure to HMs and MPs is becoming more frequent, and their interactions with gut microbiota and the influence on human health is expected to be one of the frontier research fields in the future. The key information presented in this review can stimulate further development of techniques and methodologies for filling the knowledge gaps in the relationships between combined pollutants (HMs and MPs), gut microbiota, and human health.
Collapse
Affiliation(s)
- Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zengdi Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yushiang Hsueh
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jianyu Zhang
- Jiangsu Longchang Chemical Co., Ltd., Rugao, 226532, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kaiqin Xu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC.
| |
Collapse
|
3
|
Anchidin-Norocel L, Iatcu OC, Lobiuc A, Covasa M. Heavy Metal-Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. BIOSENSORS 2025; 15:188. [PMID: 40136985 PMCID: PMC11940129 DOI: 10.3390/bios15030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
This study provides a comprehensive analysis of the complex interaction between heavy metals (HMs) and the gut microbiota, adopting a bidirectional approach that explores both the influence of HMs on the gut microbiota populations and the potential role of probiotics in modulating these changes. By examining these interconnected aspects, the study aims to offer a deeper understanding of how HMs disrupt microbial balance and how probiotic interventions may mitigate or reverse these effects, promoting detoxification processes and overall gut health. In addition, the review highlights innovative tools, such as biosensors, for the rapid, precise, and non-invasive detection of HMs in urine. These advanced technologies enable the real-time monitoring of the effectiveness of probiotic-based interventions, offering critical insights into their role in promoting the elimination of HMs from the body and improving detoxification.
Collapse
Affiliation(s)
| | - Oana C. Iatcu
- College of Medicine and Biological Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (L.A.-N.); (A.L.); (M.C.)
| | | | | |
Collapse
|
4
|
Wu Y, Wang Y, Lin Y, Zhong X, Liu Y, Cai Y, Xue J. Metabolomics reveals the metabolic disturbance caused by arsenic in the mouse model of inflammatory bowel disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117305. [PMID: 39515204 DOI: 10.1016/j.ecoenv.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Arsenic exposure has long been a significant global health concern due to its association with various human diseases. The adverse health effects of arsenic can be influenced by multiple factors, resulting in considerable individual variability. Individuals with inflammatory bowel disease (IBD) are particularly vulnerable to the effects of toxin exposure, yet the specific impact of arsenic in the context of IBD remains unclear. In this study, we employed a non-targeted metabolomics approach to investigate how arsenic exposure affects metabolic homeostasis in an IBD model using Helicobacter trogontum-infected interleukin-10 deficient mice. Our results demonstrated that arsenic exposure disrupted the balance of various metabolites, including tryptophan, polyunsaturated fatty acids, purine and pyrimidine metabolites, and branched-chain amino acids, in mice with colitis but not in those without colitis. Notably, several crucial metabolites involved in anti-inflammatory responses, oxidative stress, and energy metabolism were significantly altered in mice with colitis. These results indicate that arsenic exposure in an IBD context can lead to extensive metabolic disturbances, potentially exacerbating disease severity and impacting overall health. This study underscores the necessity of evaluating arsenic toxicity in relation to IBD to better understand and mitigate associated health risks.
Collapse
Affiliation(s)
- Yanmei Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yin Wang
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yiling Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiang Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Dong L, Luo P, Zhang A. Intestinal microbiota dysbiosis contributes to the liver damage in subchronic arsenic-exposed mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1774-1788. [PMID: 39394819 PMCID: PMC11693861 DOI: 10.3724/abbs.2024131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 10/14/2024] Open
Abstract
There is an extensive amount of evidence that links changes in the intestinal microbiota structure to the progression and pathophysiology of many liver diseases. However, comprehensive analysis of gut flora dysbiosis in arsenic-induced hepatotoxicity is lacking. Herein, C57BL/6 mice are exposed to arsenic (1, 2, or 4 mg/kg) for 12 weeks, after which fecal microbiota transplantation (FMT) study is conducted to confirm the roles of the intestinal microbiome in pathology. Treatment with arsenic results in pathological and histological changes in the liver, such as inflammatory cell infiltration and decreased levels of TP and CHE but increased levels of ALP, GGT, TBA, AST, and ALT. Arsenic causes an increase in the relative abundance of Escherichia-Shigella, Klebsiella and Blautia, but a decrease in the relative abundance of Muribaculum and Lactobacillus. In arsenic-exposed mice, protein expressions of Occludin, ZO-1, and MUC2 are significantly decreased, but the level of FITC in serum is increased, and FITC fluorescence is extensively dispersed in the intestinal tract. Importantly, FMT experiments show that mice gavaged with stool from arsenic-treated mice exhibit severe inflammatory cell infiltration in liver tissues. Arsenic-manipulated gut microbiota transplantation markedly facilitates gut flora dysbiosis in the recipient mice, including an up-regulation in Escherichia-Shigella and Bacteroides, and a down-regulation in Lactobacillus and Desulfovibrio. In parallel with the intestinal microbiota wreck, protein expressions of Occludin, ZO-1, and MUC2 are decreased. Our findings suggest that subchronic exposure to arsenic can affect the homeostasis of the intestinal microbiota, induce intestinal barrier dysfunction, increase intestinal permeability, and cause damage to liver tissues in mice.
Collapse
Affiliation(s)
- Ling Dong
- />The Key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationDepartment of ToxicologySchool of Public HealthCollaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and MinistryGuizhou Medical UniversityGuiyang561113China
| | - Peng Luo
- />The Key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationDepartment of ToxicologySchool of Public HealthCollaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and MinistryGuizhou Medical UniversityGuiyang561113China
| | - Aihua Zhang
- />The Key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationDepartment of ToxicologySchool of Public HealthCollaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and MinistryGuizhou Medical UniversityGuiyang561113China
| |
Collapse
|
6
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
7
|
Chen B, Zeng G, Sun L, Jiang C. When smoke meets gut: deciphering the interactions between tobacco smoking and gut microbiota in disease development. SCIENCE CHINA. LIFE SCIENCES 2024; 67:854-864. [PMID: 38265598 DOI: 10.1007/s11427-023-2446-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/09/2023] [Indexed: 01/25/2024]
Abstract
Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.
Collapse
Affiliation(s)
- Bo Chen
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangyi Zeng
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China.
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China.
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Han M, Zhu T, Zhou Z, Si Q, Zhu C, Li Y, Jiang Q. Effects of different concentrations and particle sizes of nanoplastics on gut microbiology, metabolism, and immunity in Chiromantes dehaani. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109461. [PMID: 38382689 DOI: 10.1016/j.fsi.2024.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study investigated the effects of nanoplastics (NPs) of varying particle sizes (75, 500, and 1000 nm) and concentrations (2.5 and 10 mg/L) on the gut health of Chiromantes dehaani. The experimental groups included a control (Cg0), and varying combinations of particle size and concentration. Our results showed that 75 nm NPs were more likely to enhance pathogenic bacterial growth than other sized NPs. Compared with CK, Low NPs concentrations (2.5 mg/L) raised total cholesterol (T-CHO) levels in the gut, while high concentrations significantly decreased both triglyceride (TG) and T-CHO levels (p < 0.05). The enzymatic activities of intestinal lipase and amylase were inhibited by NPs exposure, with greater inhibition at higher NPs concentrations. The 500 nm NPs exhibited a notably higher inhibitory effect than the 75 and 1000 nm NPs (P < 0.05). In terms of apoptosis, NPs exposure led to reduced mRNA expression of Bcl2 and increased expression of Caspase-3, Caspase-8, and Caspase-9, indicating an induction of apoptosis. This effect was more pronounced at higher NPs concentrations, with 75 nm NPs more likely to induce apoptosis in intestinal cells than 500 nm and 1000 nm NPs. Moreover, NPs triggered intestinal inflammatory responses, evidenced by the increased mRNA expression of TNF-β, TNF-α, IL1β, IL6, and IL8, and the decreased expression of IL10. High NPs concentrations were more likely to induce intestinal inflammation, with 500 nm NPs imparting the strongest effect. In summary, the study demonstrated that NPs, and particularly those at higher concentrations, disrupted the gut environment of C. dehaani by altering the microflora, reducing microbial diversity, inhibiting digestion and metabolism, inducing apoptosis, and triggering inflammation. Among the sizes of NPs tested, 500 nm NPs had the most significant adverse impact on digestion, metabolism, and inflammation, while 75 nm NPs most strongly induced apoptosis in C. dehaani's intestinal cells.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Tian Zhu
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Zihan Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu, 211100, China
| | - Chenxi Zhu
- Geography, School of Humanities, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
9
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
11
|
Ye J, Gong M, Zhang Y, Xu Q, Zhao J. Effects of Fermented Extracts of Wuniuzao Dark Loose Tea on Hepatic Sterol Regulatory Element-Binding Protein Pathway and Gut Microbiota Disorder in Obese Mice. J Nutr 2024; 154:626-637. [PMID: 38110182 DOI: 10.1016/j.tjnut.2023.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.
Collapse
Affiliation(s)
- Jiangcheng Ye
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingxiu Gong
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yifan Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jin Zhao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
12
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
13
|
Zhao Q, Hao Y, Yang X, Mao J, Tian F, Gao Y, Tian X, Yan X, Qiu Y. Mitigation of maternal fecal microbiota transplantation on neurobehavioral deficits of offspring rats prenatally exposed to arsenic: Role of microbiota-gut-brain axis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131816. [PMID: 37307732 DOI: 10.1016/j.jhazmat.2023.131816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
It is established that gut microbiota dysbiosis is implicated in arsenic (As)-induced neurotoxic process, however, the underlying mode of action remains largely unclear. Here, through remodeling gut microbiota on As-intoxicated pregnancy rats using fecal microbiota transplantation (FMT) from Control rats, neuronal loss and neurobehavioral deficits in offspring prenatally exposed to As were significantly alleviated after maternal FMT treatment. In prenatal As-challenged offspring after maternal FMT treatment, remarkably, suppressed expression of inflammatory cytokines in tissues (colon, serum, and striatum) were observed along with reversed mRNA and protein expression of tight junction related molecules in intestinal barrier and blood-brain barrier (BBB); Further, expression of serum lipopolysaccharide (LPS), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and nuclear transcription factor-κB (NF-κB) in colonic and striatal tissues were repressed with activation of astrocytes and microglia inhibited. In particular, tightly correlated and enriched microbiomes were identified such as higher-expressed g_Prevotella, g_UCG_005, and lower-expressed p_Desulfobacterota, g_Eubacterium_xylanophilum_group. Collectively, our results first demonstrated that reconstruction of normal gut microbiota by maternal FMT treatment alleviated prenatal As-induced overall inflammatory state and impairments of intestinal barrier and BBB integrity by impeding LPS-mediated TLR4/Myd88/NF-κB signaling pathway through microbiota-gut-brain axis, which provides a novel therapeutic avenue for developmental arsenic neurotoxicity.
Collapse
Affiliation(s)
- Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Hao
- Center for Disease Control and Prevention of Daxing District, Beijing, China
| | - Xiaoqian Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jie Mao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
14
|
Wang H, Zhang Q, Pi J. Advances in research strategies and approaches for toxicity testing of environmental exposures. Toxicol Appl Pharmacol 2023; 460:116363. [PMID: 36623737 DOI: 10.1016/j.taap.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang 110122, China.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Jingbo Pi
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China..
| |
Collapse
|
15
|
Wang HY, Chen S, Xue RY, Lin XY, Yang JL, Zhang YS, Li SW, Juhasz AL, Ma LQ, Zhou D, Li HB. Arsenic Ingested Early in Life Is More Readily Absorbed: Mechanistic Insights from Gut Microbiota, Gut Metabolites, and Intestinal Morphology and Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1017-1027. [PMID: 36580282 DOI: 10.1021/acs.est.2c04584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Early-life arsenic (As) exposure is a particular health concern. However, it is unknown if As ingested early in life is more readily absorbed from the gastrointestinal (GI) tract, i.e., higher in oral bioavailability. Here, weanling (3-week) and adult (6-week-old) female mice were exposed to arsenate in the diet (10 μg g-1) over a 3-week period with As oral bioavailability estimated using As urinary excretion as the bioavailability endpoint. The As urinary excretion factor was 1.54-fold higher in weanling mice compared to adult mice (82.2 ± 7.29 versus 53.1 ± 3.73%), while weanling mice also showed 2.28-, 1.50-, 1.48-, and 1.89-fold higher As concentration in small intestine tissue, blood, liver, and kidneys, demonstrating significantly higher As oral bioavailability of early-life exposure. Compared to adult mice, weanling mice significantly differed in gut microbiota, but the difference did not lead to remarkable differences in As biotransformation in the GI tract or tissue and in overall gut metabolite composition. Although the expression of several metabolites (e.g., atrolactic acid, hydroxyphenyllactic acid, and xanthine) was up-regulated in weanling mice, they had limited ability to elevate As solubility in the intestinal tract. Compared to adult mice, the intestinal barrier function and intestinal expression of phosphate transporters responsible for arsenate absorption were similar in weanling mice. However, the small intestine of weanling mice was characterized by more defined intestinal villi with greater length and smaller width, providing a greater surface area for As to be absorbed across the GI barrier. The results highlight that early-life As exposure can be more readily absorbed, advancing the understanding of its health risk.
Collapse
Affiliation(s)
- Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
17
|
Schiro G, Liu P, Dodson M, Zhang DD, Ghishan FK, Barberán A, Kiela PR. Interactions between arsenic exposure, high-fat diet and NRF2 shape the complex responses in the murine gut microbiome and hepatic metabolism. FRONTIERS IN MICROBIOMES 2022; 1:1041188. [PMID: 37779901 PMCID: PMC10540274 DOI: 10.3389/frmbi.2022.1041188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Inorganic arsenic (iAs) exposure has been associated to various detrimental effects such as development of metabolic syndrome and type 2 diabetes via oxidative stress and induced prolonged activation of the NRF2 transcription factor. Such effects can be aggravated by poor dietary habits. The role of gut microbiota in promoting metabolic changes in response to arsenic has yet to be precisely defined. To address the complexity of the interactions between diet, NFE2L2/NRF2, and gut microbiota, we studied the chronic effects of iAs exposure in wild-type (WT) and Nrf2-/- mice fed normal (ND) vs. high-fat diet (HFD), on the gut microbial community in the context of hepatic metabolism. We demonstrate that all treatments and interactions influenced bacteria and metabolic profiles, with dietary differences causing a strong overlap of responses between the datasets. By identifying five metabolites of known microbial origin and following their fate across treatments, we provide examples on how gut microbial products can participate in the development of iAs and HFD-induced metabolic disease. Overall, our results underline the importance of the microbial community in driving gut-liver-cross talk during iAs and HFD exposure.
Collapse
Affiliation(s)
- Gabriele Schiro
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721 USA
- Department of Pediatrics, University of Arizona, Tucson, Arizona, 85724 USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721 USA
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, and International Joint Research Center on Cell Stress and Disease, Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong, University, Xi’an, China
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721 USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721 USA
| | - Fayez K. Ghishan
- Department of Pediatrics, University of Arizona, Tucson, Arizona, 85724 USA
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721 USA
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, Arizona, 85724 USA
| |
Collapse
|