1
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
2
|
Brzoska K, Szczygiel M, Drzał A, Sniegocka M, Michalczyk-Wetula D, Biela E, Elas M, Kapka-Skrzypczak L, Lewandowska-Siwkiewicz H, Urbańska K, Kruszewski M. Transient Vasodilation in Mouse 4T1 Tumors after Intragastric and Intravenous Administration of Gold Nanoparticles. Int J Mol Sci 2021; 22:ijms22052361. [PMID: 33653008 PMCID: PMC7956783 DOI: 10.3390/ijms22052361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (AuNPs) are foreseen as a promising tool in nanomedicine, both as drug carriers and radiosensitizers. They have been also proposed as a potential anticancer drug due to the anti-angiogenic effect in tumor tissue. In this work we investigated the effect of citrate-coated AuNPs of nominal diameter 20 nm on the growth and metastatic potential of 4T1 cells originated from a mouse mammary gland tumor inoculated into the mammary fat pad of Balb/ccmdb mice. To evaluate whether AuNPs can prevent the tumor growth, one group of inoculated mice was intragastrically (i.g.) administered with 1 mg/kg of AuNPs daily from day 1 to day 14 after cancer cell implantation. To evaluate whether AuNPs can attenuate the tumor growth, the second group was intravenously (i.v.) administered with 1 or 5 mg/kg of AuNPs, twice on day 5 and day 14 after inoculation. We did not observe any anticancer activity of i.v. nor i.g. administered AuNPs, as they did not affect neither the primary tumor growth rate nor the number of lung metastases. Unexpectedly, both AuNP treatment regimens caused a marked vasodilating effect in the tumor tissue. As no change of potential angiogenic genes (Fgf2, Vegfa) nor inducible nitric oxygenase (Nos2) was observed, we proposed that the vasodilation was caused by AuNP-dependent decomposition of nitrosothiols and direct release of nitric oxide in the tumor tissue.
Collapse
Affiliation(s)
- Kamil Brzoska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (K.B.); (H.L.-S.)
| | - Małgorzata Szczygiel
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Sniegocka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Dominika Michalczyk-Wetula
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Eva Biela
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Hanna Lewandowska-Siwkiewicz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (K.B.); (H.L.-S.)
| | - Krystyna Urbańska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (K.B.); (H.L.-S.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-22-5051118
| |
Collapse
|
3
|
Lee IJ, Kao PT, Hung SA, Wang ZW, Lin HJ, Chang WT, Yeh CS, Liau I. Light triggering goldsomes enable local NO-generation and alleviate pathological vasoconstriction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102282. [PMID: 32771420 DOI: 10.1016/j.nano.2020.102282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/17/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022]
Abstract
While nitric oxide (NO) can remedy vasoconstriction, inhalation of NO may cause systematic toxicity. We report a goldsome, which comprises a hollowed poly(lactic-co-glycolic acid) (PLGA) polymersome with S-nitrosoglutathione (GSNO, a NO donor) molecules and gold nanoparticles (Au NPs) incorporated in its hydrophilic core and hydrophobic membrane, respectively. Photothermal heating caused breakdown of polymersomes and enabled NO generation through reaction between GSNO and Au NPs. Photo-illumination at the zebrafish head led to local NO generation and selective cerebral vasodilation while it had little effects in regions away from the illumination site, and effectively mitigated hypoxia induced cerebral vasoconstriction. We demonstrate a translational potential by showing photo-stimulated NO generation with a clinical intravascular optical catheter. In conclusion, the goldsome, which enables light stimulated local NO generation and can be delivered with clinical intravascular optical catheters, should extend applications of NO therapies while surmounting limitations associated with systemic administration.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Tsung Kao
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Shao-An Hung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Zih-Wun Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Jen Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine and Cardiovascular Center, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Ian Liau
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan; Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Lutzke A, Melvin AC, Neufeld MJ, Allison CL, Reynolds MM. Nitric oxide generation from S-nitrosoglutathione: New activity of indium and a survey of metal ion effects. Nitric Oxide 2019; 84:16-21. [DOI: 10.1016/j.niox.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/28/2022]
|
5
|
Baldim V, Ismail A, Taladriz-Blanco P, Griveau S, de Oliveira MG, Bedioui F. Amperometric Quantification of S-Nitrosoglutathione Using Gold Nanoparticles: A Step toward Determination of S-Nitrosothiols in Plasma. Anal Chem 2016; 88:3115-20. [PMID: 26892256 DOI: 10.1021/acs.analchem.5b04035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Victor Baldim
- Institute
of Chemistry, University of Campinas, UNICAMP, Campinas, São
Paulo, 13083-970, Brazil
- Chimie ParisTech,
PSL Research University, Unité de Technologies Chimiques et
Biologiques pour la Santé (UTCBS), 75005 Paris, France
- INSERM, UTCBS, 75005, Paris, France
- CNRS, UTCBS UMR
8258, 75005 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UTCBS, 75006 Paris, France
| | - Abdulghani Ismail
- Chimie ParisTech,
PSL Research University, Unité de Technologies Chimiques et
Biologiques pour la Santé (UTCBS), 75005 Paris, France
- INSERM, UTCBS, 75005, Paris, France
- CNRS, UTCBS UMR
8258, 75005 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UTCBS, 75006 Paris, France
| | | | - Sophie Griveau
- Chimie ParisTech,
PSL Research University, Unité de Technologies Chimiques et
Biologiques pour la Santé (UTCBS), 75005 Paris, France
- INSERM, UTCBS, 75005, Paris, France
- CNRS, UTCBS UMR
8258, 75005 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UTCBS, 75006 Paris, France
| | | | - Fethi Bedioui
- Chimie ParisTech,
PSL Research University, Unité de Technologies Chimiques et
Biologiques pour la Santé (UTCBS), 75005 Paris, France
- INSERM, UTCBS, 75005, Paris, France
- CNRS, UTCBS UMR
8258, 75005 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UTCBS, 75006 Paris, France
| |
Collapse
|
6
|
Tournebize J, Sapin-Minet A, Bartosz G, Leroy P, Boudier A. Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles. Talanta 2013; 116:753-63. [PMID: 24148470 DOI: 10.1016/j.talanta.2013.07.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/27/2022]
Abstract
During the last years, there has been a remarkable increase in the use of inorganic nanoparticles (NP) in different applications, including consumer and medical products. Despite these promising applications, the extremely small size of NP allows them to penetrate cells, in which they can interact with intracellular structures causing serious side effects. A number of studies showed that NP cause adverse effects predominantly via induction of an oxidative stress - an imbalance between damaging oxidants and protective antioxidants - resulting in inflammation, immune response, cell damages, genotoxicity, etc … Most of the in vitro methods used for measurement of oxidative stress biomarkers were designed and standardized for conventional organic, inorganic and biochemical compounds. More recently, these methods have been adapted to studies related to various nanomaterials. Thus, this review is an attempt to highlight some current methods employed in and to provide a critical analysis of the major challenges and issues faced in this emerging field.
Collapse
Key Words
- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
- 1,1′-diphenyl-2-picrylhydrazyl radical
- 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) radical
- 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide
- 2-(4-iodo-phenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium monosodium salt
- 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride
- 2′7′-dichlorodihydrofluorescein diacetate
- 2′7′-dichlorofluorescein
- 5,5-dimethyl-1-pyrroline-N-oxide
- 5,5′-dithio-bis-2-nitrobenzoic acid
- 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester
- 8-OH-dG
- 8-hydroxy-2-deoxyguanosine
- ABTS(+)
- Abiotic and cellular assays
- CM-H(2)DCF-DA
- CNT
- DCF
- DMPO
- DPPH()
- DTNB
- ELISA
- EMSA
- ESR
- Eh
- FISH
- FPG
- GM-CSF
- GSH
- H(2)DCF-DA
- IL
- INT
- Inorganic nanoparticles
- LDH
- LSPR
- MDA
- MTT
- MWCNT
- NADPH oxidase
- NDA
- NF-κB
- NOX
- NP
- Nanoparticle interference
- Nanoparticle physicochemical properties
- OPA
- Oxidative stress assays
- Pitfalls
- QD
- RNS
- ROS
- RT-PCR
- TBA
- TGF-ß
- TNF-α
- WST-1
- XTT
- carbon nanotube
- electron spin resonance
- electrophoretic mobility shift assay
- enzyme-linked immunosorbent assay
- fluorescence in situ hybridization
- formamidopyrimidine DNA glycosylase
- granulocyte-macrophage colony-stimulating factor
- interleukin
- lactate dehydrogenase
- localized surface plasmon resonance
- malonyldialdehyde
- multi-walled CNT
- nanoparticle
- naphthalene-2,3-dicarboxyaldehyde
- nuclear factor kappa B
- ortho-phthaldialdehyde
- quantum dot
- reactive nitrogen species
- reactive oxygen species
- reduced glutathione
- reverse transcriptase-polymerase chain reaction
- standard redox potential
- thiobarbituric assay
- transforming growth factor beta
- tumor necrosis factor-alpha
Collapse
|
7
|
Griveau S, Bedioui F. Electroanalytical methodologies for the detection of S-nitrosothiols in biological fluids. Analyst 2013; 138:5173-81. [DOI: 10.1039/c3an00488k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Detection of nitric oxide in macrophage cells for the assessment of the cytotoxicity of gold nanoparticles. Talanta 2012; 101:11-6. [DOI: 10.1016/j.talanta.2012.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
|