1
|
Gładkowski W, Ortlieb S, Niezgoda N, Chojnacka A, Fortuna P, Wiercik P. Novel Lipid-Based Carriers of Provitamin D 3: Synthesis and Spectroscopic Characterization of Acylglycerol Conjugated with 7-Dehydrocholesterol Residue and Its Glycerophospholipid Analogue. Molecules 2024; 29:5805. [PMID: 39683962 DOI: 10.3390/molecules29235805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D3, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of vitamin D3 even during periods of sunlight deficiency. Acylglycerol and glycerophospholipid containing succinate-linked provitamin D3 at the sn-2 position of the glycerol backbone were synthesized from dihydroxyacetone (DHA) and sn-glycerophosphocholine (GPC), respectively. The three-step synthesis of 1,3-dipalmitoyl-2-(7-dehydrocholesterylsuccinoyl)glycerol involved the esterification of DHA with palmitic acid, reduction of the carbonyl group, and conjugation of the resulting 1,3-dipalmitoylglycerol with 7-dehydrocholesterol hemisuccinate (7-DHC HS). The use of NaBH3CN as a reducing agent was crucial to avoid acyl migration and achieve the final product with 100% regioisomeric purity. For the preparation of 1-palmitoyl-2-(7-dehydrocholesterylsuccinoyl)-sn-glycero-3-phosphocholine, a two-step process was applied, involving the esterification of GPC at the sn-1 position with palmitic acid, followed by the conjugation of 1-palmitoyl-sn-glycero-3-phosphocholine with 7-DHC HS. Alongside the main product, a small amount of its regioisomer with provitamin D3 linked at the sn-1 position and palmitic acid at the sn-2 position was detected, indicating acyl migration from the sn-1 to the sn-2 position in the intermediate 1-palmitoyl-sn-glycerophosphocholine. The synthesized novel lipids were fully characterized using spectroscopic methods. They can find applications as novel lipid-based prodrugs as additives to sunscreen creams.
Collapse
Affiliation(s)
- Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Susanna Ortlieb
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstraße 73, 6850 Dornbirn, Austria
| | - Natalia Niezgoda
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Paulina Fortuna
- Omics Research Center, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Paweł Wiercik
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wrocław, Poland
| |
Collapse
|
2
|
Tao H, Zhou L, Yu D, Chen Y, Luo Y, Lin T. Effects of polystyrene microplastics on the metabolic level of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171335. [PMID: 38423332 DOI: 10.1016/j.scitotenv.2024.171335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Given the widespread presence of Pseudomonas aeruginosa in water and its threat to human health, the metabolic changes in Pseudomonas aeruginosa when exposed to polystyrene microplastics (PS-MPs) exposure were studied, focusing on molecular level. Through non-targeted metabolomics, a total of 64 differential metabolites were screened out under positive ion mode and 44 under negative ion mode. The content of bacterial metabolites changed significantly, primarily involving lipids, nucleotides, amino acids, and organic acids. Heightened intracellular oxidative damage led to a decrease in lipid molecules and nucleotide-related metabolites. The down-regulation of amino acid metabolites, such as L-Glutamic and L-Proline, highlighted disruptions in cellular energy metabolism and the impaired ability to synthesize proteins as a defense against oxidation. The impact of PS-MPs on organic acid metabolism was evident in the inhibition of pyruvate and citrate, thereby disrupting the cells' normal participation in energy cycles. The integration of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that PS-MPs mainly caused changes in metabolic pathways, including ABC transporters, Aminoacyl-tRNA biosynthesis, Purine metabolism, Glycerophospholipid metabolism and TCA cycle in Pseudomonas aeruginosa. Most of the differential metabolites enriched in these pathways were down-regulated, demonstrating that PS-MPs hindered the expression of metabolic pathways, ultimately impairing the ability of cells to synthesize proteins, DNA, and RNA. This disruption affected cell proliferation and information transduction, thus hampering energy circulation and inhibiting cell growth. Findings of this study supplemented the toxic effects of microplastics and the defense mechanisms of microorganisms, in turn safeguarding drinking water safety and human health.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Duo Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yunxin Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Willdigg JR, Patel Y, Arquilevich BE, Subramanian C, Frank MW, Rock CO, Helmann JD. The Bacillus subtilis cell envelope stress-inducible ytpAB operon modulates membrane properties and contributes to bacitracin resistance. J Bacteriol 2024; 206:e0001524. [PMID: 38323910 PMCID: PMC10955860 DOI: 10.1128/jb.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and general protective responses. σM responds to diverse antibiotics that inhibit cell wall synthesis. Here, we demonstrate that cell wall-inhibiting drugs, such as bacitracin and cefuroxime, induce the σM-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted lipidomics, we reveal that YtpA is not required for the production of lysophosphatidylglycerol. Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin resistance. These epistatic interactions support a model in which σM-dependent induction of the ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the undecaprenyl phosphate carrier lipid or by impacting the assembly or function of membrane-associated complexes involved in cell wall homeostasis.IMPORTANCEPeptidoglycan synthesis inhibitors include some of our most important antibiotics. In Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM regulon, which is critical for intrinsic antibiotic resistance. The σM-dependent ytpAB operon encodes a predicted hydrolase (YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest that YtpA is critical in cells defective in homeoviscous adaptation. Furthermore, we find that YtpA functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to bacitracin, a peptide antibiotic that binds tightly to the undecaprenyl-pyrophosphate lipid carrier that sustains peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | | | - Chitra Subramanian
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew W. Frank
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Charles O. Rock
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Subramanian C, Yun MK, Frank MM, Rock CO. Lysophosphatidylglycerol (LPG) phospholipase D maintains membrane homeostasis in Staphylococcus aureus by converting LPG to lysophosphatidic acid. J Biol Chem 2023; 299:104863. [PMID: 37236358 PMCID: PMC10404611 DOI: 10.1016/j.jbc.2023.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Lysophospholipids are deacylated derivatives of their bilayer forming phospholipid counterparts that are present at low concentrations in cells. Phosphatidylglycerol (PG) is the principal membrane phospholipid in Staphylococcus aureus and lysophosphatidylglycerol (LPG) is detected in low abundance. Here, we used a mass spectrometry screen to identify locus SAUSA300_1020 as the gene responsible for maintaining low concentrations of 1-acyl-LPG in S. aureus. The SAUSA300_1020 gene encodes a protein with a predicted amino terminal transmembrane α-helix attached to a globular glycerophosphodiester phosphodiesterase (GDPD) domain. We determined that the purified protein lacking the hydrophobic helix (LpgDΔN) possesses cation-dependent lysophosphatidylglycerol phospholipase D activity that generates both lysophosphatidic acid (LPA) and cyclic-LPA products and hydrolyzes cyclic-LPA to LPA. Mn2+ was the highest affinity cation and stabilized LpgDΔN to thermal denaturation. LpgDΔN was not specific for the phospholipid headgroup and degraded 1-acyl-LPG, but not 2-acyl-LPG. Furthermore, a 2.1 Å crystal structure shows that LpgDΔN adopts the GDPD variation of the TIM barrel architecture except for the length and positioning of helix α6 and sheet β7. These alterations create a hydrophobic diffusion path for LPG to access the active site. The LpgD active site has the canonical GDPD metal binding and catalytic residues, and our biochemical characterization of site-directed mutants support a two-step mechanism involving a cyclic-LPA intermediate. Thus, the physiological function of LpgD in S. aureus is to convert LPG to LPA, which is re-cycled into the PG biosynthetic pathway at the LPA acyltransferase step to maintain membrane PG molecular species homeostasis.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mi-Kyung Yun
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew M Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
5
|
Subramanian C, Frank MW, Yun MK, Rock CO. The Phospholipase A1 Activity of Glycerol Ester Hydrolase (Geh) Is Responsible for Extracellular 2-12( S)-Methyltetradecanoyl-Lysophosphatidylglycerol Production in Staphylococcus aureus. mSphere 2023; 8:e0003123. [PMID: 36976028 PMCID: PMC10117073 DOI: 10.1128/msphere.00031-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Phosphatidylglycerol (PG) is the major membrane phospholipid of Staphylococcus aureus and predominately consists of molecular species with ≥16-carbon acyl chains in the 1-position and anteiso 12(S)-methyltetradecaonate (a15) esterified at the 2-position. The analysis of the growth media for PG-derived products shows S. aureus releases essentially pure 2-12(S)-methyltetradecanoyl-sn-glycero-3-phospho-1'-sn-glycerol (a15:0-LPG) derived from the hydrolysis of the 1-position of PG into the environment. The cellular lysophosphatidylglycerol (LPG) pool is dominated by a15-LPG but also consists of ≥16-LPG species arising from the removal of the 2-position. Mass tracing experiments confirmed a15-LPG was derived from isoleucine metabolism. A screen of candidate secreted lipase knockout strains pinpointed glycerol ester hydrolase (geh) as the gene required for generating extracellular a15-LPG, and complementation of a Δgeh strain with a Geh expression plasmid restored extracellular a15-LPG formation. Orlistat, a covalent inhibitor of Geh, also attenuated extracellular a15-LPG accumulation. Purified Geh hydrolyzed the 1-position acyl chain of PG and generated only a15-LPG from a S. aureus lipid mixture. The Geh product was 2-a15-LPG, which spontaneously isomerizes with time to a mixture of 1- and 2-a15-LPG. Docking PG in the Geh active site provides a structural rationale for the positional specificity of Geh. These data demonstrate a physiological role for Geh phospholipase A1 activity in S. aureus membrane phospholipid turnover. IMPORTANCE Glycerol ester hydrolase, Geh, is an abundant secreted lipase whose expression is controlled by the accessory gene regulator (Agr) quorum-sensing signal transduction pathway. Geh is thought to have a role in virulence based on its ability to hydrolyze host lipids at the infection site to provide fatty acids for membrane biogenesis and substrates for oleate hydratase, and Geh inhibits immune cell activation by hydrolyzing lipoprotein glycerol esters. The discovery that Geh is the major contributor to the formation and release of a15-LPG reveals an unappreciated physiological role for Geh acting as a phospholipase A1 in the degradation of S. aureus membrane phosphatidylglycerol. The role(s) for extracellular a15-LPG in S. aureus biology remain to be elucidated.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew W. Frank
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - My-Kyung Yun
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Wang C, Li Y, Lin Y, Wang Y, Chen Z, Zhu L, Wang J. In situ enzymatic hydrolysis characterisation of phospholipid using 1H NMR in a heterogeneous environment. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Alshaer W, Nsairat H, Lafi Z, Hourani OM, Al-Kadash A, Esawi E, Alkilany AM. Quality by Design Approach in Liposomal Formulations: Robust Product Development. Molecules 2022; 28:10. [PMID: 36615205 PMCID: PMC9822211 DOI: 10.3390/molecules28010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Nanomedicine is an emerging field with continuous growth and differentiation. Liposomal formulations are a major platform in nanomedicine, with more than fifteen FDA-approved liposomal products in the market. However, as is the case for other types of nanoparticle-based delivery systems, liposomal formulations and manufacturing is intrinsically complex and associated with a set of dependent and independent variables, rendering experiential optimization a tedious process in general. Quality by design (QbD) is a powerful approach that can be applied in such complex systems to facilitate product development and ensure reproducible manufacturing processes, which are an essential pre-requisite for efficient and safe therapeutics. Input variables (related to materials, processes and experiment design) and the quality attributes for the final liposomal product should follow a systematic and planned experimental design to identify critical variables and optimal formulations/processes, where these elements are subjected to risk assessment. This review discusses the current practices that employ QbD in developing liposomal-based nano-pharmaceuticals.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Omar M. Hourani
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | - Ezaldeen Esawi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
8
|
Moir M, Yepuri N, Marshall D, Blanksby S, Darwish T. Synthesis of Perdeuterated Linoleic Acid‐d31 and Chain Deuterated 1‐Palmitoyl‐2‐linoleoyl‐sn‐glycero‐3‐phosphocholine‐d62. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Moir
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | - Nageshwar Yepuri
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | | | | | - Tamim Darwish
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| |
Collapse
|
9
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Recent applications of the Charged Aerosol Detector for liquid chromatography in drug quality control. J Chromatogr A 2020; 1619:460911. [DOI: 10.1016/j.chroma.2020.460911] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023]
|
11
|
Siriwardane DA, Wang C, Jiang W, Mudalige T. Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Int J Pharm 2020; 578:119077. [DOI: 10.1016/j.ijpharm.2020.119077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023]
|
12
|
Sugasini D, Yalagala PCR, Goggin A, Tai LM, Subbaiah PV. Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol. J Nutr Biochem 2019; 74:108231. [PMID: 31665653 PMCID: PMC6885117 DOI: 10.1016/j.jnutbio.2019.108231] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA) is highly concentrated in the brain, and its deficiency is associated with several neurological disorders including Alzheimer's disease. However, the currently used supplements do not appreciably enrich brain DHA, although they enrich most other tissues. We tested the hypothesis that the ability of the dietary carrier to augment brain DHA depends upon the generation of DHA-lysophosphatidylcholine (LPC), the preferred carrier of DHA across the blood brain barrier. We compared the efficacy of DHA-triacylglycerol (TAG), di-DHA phosphatidylcholine (PC) and DHA-LPC to enrich brain DHA following their gavage to normal rats for 30 days, all at a dose of 10 mg DHA/day. The results show that DHA from TAG, which is released as free DHA or monoacylglycerol during digestion and is absorbed as TAG in chylomicrons, was incorporated preferentially into adipose tissue and heart but not into brain. In contrast, LPC-DHA increased brain DHA by up to 100% but had no effect on adipose tissue. Di-DHA PC, which generates both free DHA and LPC-DHA during the digestion, enriched DHA in brain, as well as in heart and liver. Brain-derived neurotrophic factor was increased by di-DHA PC and DHA-LPC, but not by TAG-DHA, showing that enrichment of brain DHA correlated with its functional effect. We conclude that dietary DHA from TAG or from natural PC (sn-2 position) is not suitable for brain enrichment, whereas DHA from LPC (at either sn-1 or sn-2 position) or from sn-1 position of PC efficiently enriches the brain and is functionally effective.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Poorna C R Yalagala
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Alexis Goggin
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago
| | - Papasani V Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, IL 60612.
| |
Collapse
|
13
|
Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine. Catalysts 2019. [DOI: 10.3390/catal9030237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microenvironment modification within nanoconfinement can maximize the catalytic activity of enzymes. Phospholipase A1 (PLA1) has been used as the biocatalyst to produce high value L-α-glycerylphosphorylcholine (L-α-GPC) through hydrolysis of phosphatidylcholine (PC). We successfully developed a simple co-precipitation method to encapsulate PLA1 in a metal–surfactant nanocomposite (MSNC), then modified it using alkalescent 2-Methylimidazole (2-Melm) to promote catalytic efficiency in biphasic systems. The generated 2-Melm@PLA1/MSNC showed higher catalytic activity than PLA1/MSNC and free PLA1. Scanning electron microscopy and transmission electron microscopy showed a typical spherical structure of 2-Melm@PLA1/MSNC at about 50 nm, which was smaller than that of 2-Melm@MSNC. Energy disperse spectroscopy, N2 adsorption isotherms, Fourier transform infrared spectrum, and high-resolution X-ray photoelectron spectroscopy proved that 2-Melm successfully modified PLA1/MSNC. The generated 2-Melm@PLA1/MSNC showed a high catalytic rate per unit enzyme mass of 1.58 μmol mg-1 min-1 for the formation of L-α-GPC. The 2-Melm@PLA1/MSNC also showed high thermal stability, pH stability, and reusability in a water–hexane biphasic system. The integration of alkaline and amphiphilic properties of a nanocomposite encapsulating PLA1 resulted in highly efficient sequenced reactions of acyl migration and enzymatic hydrolysis at the interface of a biphasic system, which cannot be achieved by free enzyme.
Collapse
|
14
|
Yalagala PCR, Sugasini D, Dasarathi S, Pahan K, Subbaiah PV. Dietary lysophosphatidylcholine-EPA enriches both EPA and DHA in the brain: potential treatment for depression. J Lipid Res 2019; 60:566-578. [PMID: 30530735 PMCID: PMC6399499 DOI: 10.1194/jlr.m090464] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
EPA and DHA protect against multiple metabolic and neurologic disorders. Although DHA appears more effective for neuroinflammatory conditions, EPA is more beneficial for depression. However, the brain contains negligible amounts of EPA, and dietary supplements fail to increase it appreciably. We tested the hypothesis that this failure is due to absorption of EPA as triacylglycerol, whereas the transporter at the blood-brain barrier requires EPA as lysophosphatidylcholine (LPC). We compared tissue uptake in normal mice gavaged with equal amounts (3.3 μmol/day) of either LPC-EPA or free EPA (surrogate for current supplements) for 15 days and also measured target gene expression. Compared with the no-EPA control, LPC-EPA increased brain EPA >100-fold (from 0.03 to 4 μmol/g); free EPA had little effect. Furthermore, LPC-EPA, but not free EPA, increased brain DHA 2-fold. Free EPA increased EPA in adipose tissue, and both supplements increased EPA and DHA in the liver and heart. Only LPC-EPA increased EPA and DHA in the retina, and expression of brain-derived neurotrophic factor, cyclic AMP response element binding protein, and 5-hydroxy tryptamine (serotonin) receptor 1A in the brain. These novel results show that brain EPA can be increased through diet. Because LPC-EPA increased both EPA and DHA in the brain, it may help in the treatment of depression as well as neuroinflammatory diseases, such as Alzheimer's disease.
Collapse
|
15
|
A four parameter optimization and troubleshooting of a RPLC – charged aerosol detection stability indicating method for determination of S-lysophosphatidylcholines in a phospholipid formulation. J Pharm Biomed Anal 2018; 155:288-297. [DOI: 10.1016/j.jpba.2018.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 11/21/2022]
|
16
|
Sugasini D, Subbaiah PV. Rate of acyl migration in lysophosphatidylcholine (LPC) is dependent upon the nature of the acyl group. Greater stability of sn-2 docosahexaenoyl LPC compared to the more saturated LPC species. PLoS One 2017; 12:e0187826. [PMID: 29117232 PMCID: PMC5678866 DOI: 10.1371/journal.pone.0187826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/26/2017] [Indexed: 11/23/2022] Open
Abstract
Several previous studies reported that sn-2 acyl lysophosphatidylcholines (LPCs) undergo rapid isomerization due to acyl migration, especially at physiological pH and temperature. However, these studies have been carried out using mostly sn-2 palmitoyl LPC, whereas the naturally occurring sn-2 LPCs are predominantly unsaturated. In this study, we investigated the acyl migration in four naturally occurring sn-2 acyl LPCs (sn-2 16:0, sn-2 18:1, sn-2 20:4, and sn-2 22:6) stored at various temperatures in aqueous or organic solvents, employing LC/MS to analyze the isomer composition. At 37°C and pH 7.4, the order of acyl migration rates (from sn-2 to sn-1) in aqueous buffer was 16:0 LPC> 18:1 LPC> 20:4 LPC> 22:6 LPC. The rate of isomerization of sn-2 16:0 LPC was 2–5 times greater than that of sn-2 22:6 under these conditions. Complexing the LPCs to serum albumin accelerated the acyl migration of all species, but sn-2 22:6 LPC was least affected by the presence of albumin. The migration rates were lower at lower temperatures (22°C, 4°C, and -20°C), but the differences between the LPC species persisted. All the sn-2 acyl LPCs were more stable in organic solvent (chloroform: methanol, 2:1 v/v), but the effect of the acyl groups on acyl migration was evident in the solvent also, at all temperatures. Storage of sn-2 22:6 LPC at -20°C for 4 weeks in the organic solvent resulted in about 10% isomerization, compared to 55% isomerization for sn-2 16:0. These results show that the sn-2 polyunsaturated LPCs can be stored at -20°C or below for several days without appreciable isomerization. Furthermore, they demonstrate that the sn-2 polyunsaturated LPCs generated in vivo are much more stable under physiological conditions than previously assumed.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, and Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Illinois, United States of America
| | - Papasani V. Subbaiah
- Section of Endocrinology, Department of Medicine, and Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Subbaiah PV, Dammanahalli KJ, Yang P, Bi J, O'Donnell JM. Enhanced incorporation of dietary DHA into lymph phospholipids by altering its molecular carrier. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:723-9. [PMID: 27178174 DOI: 10.1016/j.bbalip.2016.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/27/2016] [Accepted: 05/07/2016] [Indexed: 12/11/2022]
Abstract
Several previous studies indicated that for optimal uptake by the brain, docosahexaenoic acid (DHA) should be present as phospholipid in the plasma. However most of dietary DHA is absorbed as triacylglycerol (TAG) because it is released as free fatty acid during digestion of either TAG-DHA (fish oil) or sn-2-DHA phospholipid (krill oil), and subsequently incorporated into TAG of chylomicrons. We tested the hypothesis that the absorption of DHA as phospholipid can be increased if it is present in the sn-1 position of dietary phospholipid or in lysophosphatidylcholine (LPC), because it would escape the hydrolysis by pancreatic phospholipase A2. We infused micelle containing the DHA either as LPC or as free acid, into the duodenum of lymph cannulated rats, and analyzed the chylomicrons and HDL of the lymph for the DHA-containing lipids. The results show that while the total amount of DHA absorbed was comparable from the two types of micelle, the percentage of DHA recovered in lymph phospholipids was 5 times greater with LPC-DHA, compared to free DHA. Furthermore, the amount of DHA recovered in lymph HDL was increased by 2-fold when LPC-DHA micelle was infused. These results could potentially lead to a novel strategy to increase brain DHA levels through the diet.
Collapse
Affiliation(s)
- Papasani V Subbaiah
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States; Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612, United States; Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| | | | - Peng Yang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jian Bi
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - J Michael O'Donnell
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
19
|
Lipase-catalyzed enrichment of egg yolk phosphatidylcholine with conjugated linoleic acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Schröter J, Süß R, Schiller J. MALDI-TOF MS to monitor the kinetics of phospholipase A2-digestion of oxidized phospholipids. Methods 2015; 104:41-7. [PMID: 26721598 DOI: 10.1016/j.ymeth.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
Free fatty acids (FFA) are released through phospholipase A2 (PLA2), which cleaves the fatty acyl residue at the sn-2 position of phospholipids (PL). During inflammatory diseases, reactive oxygen species (such as HOCl) lead to the formation of oxidatively modified PL (e.g., chlorohydrin generation). It is still widely unknown to which extent the oxidation of PL influences their digestibility by PLA2. Additionally, investigations on the impact of the position of the unsaturated fatty acyl residue (sn-1 versus sn-2 position) and modifications of the headgroup (for instance phosphatidylcholine (PC) versus phosphatidylethanolamine (PE)) are also lacking. Therefore, the aim of this study is the investigation of these aspects using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to elucidate the PL/lysophospholipid (LPL) ratios as measures of the PLA2 digestibility. We will show that oxidative modifications of PL by HOCl have a considerable impact on the PLA2 digestibility, i.e., oxidation of the unsaturated fatty acyl residues leads to a reduced digestibility of both PC and PE. Besides, it will be shown that MALDI MS is a convenient and reliable tool to investigate the related changes.
Collapse
Affiliation(s)
- Jenny Schröter
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Rosmarie Süß
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Jürgen Schiller
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
21
|
Kiełbowicz G, Chojnacka A, Gliszczyńska A, Gładkowski W, Kłobucki M, Niezgoda N, Wawrzeńczyk C. Positional analysis of phosphatidylcholine and phosphatidylethanolamine via LC with a charged aerosol detector. Talanta 2015; 141:137-42. [DOI: 10.1016/j.talanta.2015.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
|
22
|
Niezgoda N, Gliszczyńska A, Gładkowski W, Kempińska K, Wietrzyk J, Wawrzeńczyk C. Phosphatidylcholine with cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid Isomers: Synthesis and Cytotoxic Studies. Aust J Chem 2015. [DOI: 10.1071/ch14606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Novel phosphatidylcholines and lysophosphatidylcholines with cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid (CLA) were synthesized in high yields (75–99 %). The in vitro cytotoxic activities of these compounds against three human cancer cell lines (HL-60, MCF-7, and HT-29) were evaluated. The results revealed that there are differences in the activity between phosphatidylcholine with cis-9,trans-11 and trans-10,cis-12 CLA acyl groups. 1,2-Di(9Z,11E)-octadecadienoyl-sn-glycero-3-phosphocholine was the most potent cytotoxic agent among all tested CLA derivatives and its IC50 (concentration of a compound that inhibits the proliferation of 50 % of the cancer cell population) was 29.4 µM against HL-60. Moreover, phosphatidylcholines with CLA acyls exhibited much lower cytotoxicity against non-cancer cells (Balb/3T3) than free CLA isomers.
Collapse
|
23
|
Godoy-Ramos R, Novoa-Gundel P, Jara-Vasquez P, Lamperti-Fernandez L, Gomez-Gaete C. NP/HILIC-ELSD Separation of Phospholipid Classes and Application to Preliminary Analysis of Plasma Low Density Lipoproteins. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.903849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ricardo Godoy-Ramos
- a Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Faculty of Pharmacy , University of Concepcion , Concepcion , Chile
| | - Pedro Novoa-Gundel
- a Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Faculty of Pharmacy , University of Concepcion , Concepcion , Chile
| | - Pablo Jara-Vasquez
- a Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Faculty of Pharmacy , University of Concepcion , Concepcion , Chile
| | - Liliana Lamperti-Fernandez
- c Laboratory of Lipoproteins and Atherogenesis in Endothelial Function, Department of Biochemistry and Clinical Immunology, Faculty of Pharmacy , University of Concepcion , Concepcion , Chile
| | - Carolina Gomez-Gaete
- b Department of Pharmacy, Faculty of Pharmacy , University of Concepcion , Concepcion , Chile
| |
Collapse
|
24
|
|
25
|
Kiełbowicz G, Micek P, Wawrzeńczyk C. A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids. Talanta 2013; 105:28-33. [DOI: 10.1016/j.talanta.2012.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/30/2022]
|
26
|
Niezgoda N, Mituła P, Kempińska K, Wietrzyk J, Wawrzeńczyk C. Synthesis of Phosphatidylcholine with Conjugated Linoleic Acid and Studies on Its Cytotoxic Activity. Aust J Chem 2013. [DOI: 10.1071/ch12404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipids with conjugated linoleic acid (CLA), which are potential lipid prodrugs, were synthesised. CLA was obtained by the alkali-isomerisation of linoleic acid and was subsequently used in the synthesis of 1,2-di(conjugated)linoleoyl-sn-glycero-3-phosphocholine in good (82 %) yield. 1-Palmitoyl-2-(conjugated)linoleoyl-sn-glycero-3-phosphocholine was obtained by a two-step synthesis in 87 % yield. All the compounds were tested in an in vitro cytotoxicity assay against two human cancer cell lines, HL-60 and MCF-7, and a mouse fibroblast cell line, Balb/3T3. The free form of CLA exhibited the highest activity against all cancer cell lines. Results obtained for the Balb/3T3 line proved that phosphatidylcholine derivatives decreased the cytotoxic effect of CLA against healthy cell lines.
Collapse
|
27
|
A simple method for positional analysis of phosphatidylcholine. Food Chem 2012; 135:2542-8. [PMID: 22980840 DOI: 10.1016/j.foodchem.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 11/20/2022]
Abstract
Simple and fast method of positional analysis of fatty acid composition of phosphatidylcholine (PC) from egg-yolk and soy has been elaborated. The key step of the procedure was complete ethanolysis of PC catalyzed by sn-1,3 specific lipase from Mucor miehei (Lipozyme). 2-Acyl-lysophosphatidylcholine (2-acyl LPC), fatty acids ethyl esters (FAEEs) and free fatty acids (FAs) were formed in this process. No acyl migration was observed during the reaction. The products were entirely separated from the products mixture by simple extraction in water:hexane (2:3 v/v) system. The hexane fraction containing free FAs and FAEEs was treated with BF(3)/Et(2)O in ethanol to obtain only FAEEs. The analysis of FAEEs by GC gave the composition of the FAs in the sn-1 position of the PC. 2-Acyl LPC from water fraction after precipitation in cold (-20°C) acetone was converted into FAEEs and analyzed by gas chromatography (GC) to determine FAs composition in the sn-2 position of the PC.
Collapse
|