1
|
Ebede GR, Okoro EE, Ngo Mbing J, Diboue Betote PH, Pegnyemb DE, Choudhary MI, Siwe-Noundou X, Ndongo JT. Potential anti-HIV and antitrypanosomal components revealed in Sorindeia nitidula via LC-ESI-QTOF-MS/MS. Sci Rep 2024; 14:18211. [PMID: 39107384 PMCID: PMC11303703 DOI: 10.1038/s41598-024-68364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Sorindeia nitidula (Anacardiaceae) is used by traditional practitioners to treat influenza illnesses with cephalgia and febrile aches. However, the potential active ingredients for its remarkable antioxidant, anti-HIV and antitrypanosomal activities remain unexplored. The present study aims to evaluate the antioxidant, anti-HIV and antitrypanosomal activities of the ethyl acetate extract of S. nitidula (SN) in order to screen out the bioactive compounds and to analyze their possible mechanisms of action. Overall, 21 phenolic compounds were annotated, by using the MS and MS/MS information provided by the QTOF-MS. In vitro assays on the extract revealed potent antioxidant (IC50 = 0.0129 ± 0.0001 mg/mL), anti-HIV (IC50 = 1.736 ± 0.036 µM), antitrypanosomal (IC50 = 1.040 ± 0.010 µM) activities. Furthermore, SN did not present cytotoxic effect on HeLa cancer cell lines. The integrated strategy based on LC-ESI-QTOF-MS/MS provided a powerful tool and a multidimensional perspective for further exploration of active ingredients in S. nitidula responsible for the antioxidant, anti-HIV and antitrypanosomal activities.
Collapse
Affiliation(s)
- Guy Roland Ebede
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Chemistry, Higher Teacher Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Emeka Emea Okoro
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, England
| | - Josephine Ngo Mbing
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Patrick Herve Diboue Betote
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O Box 13033, Yaounde, Cameroon
| | - Dieudonne Emmanuel Pegnyemb
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria, 0204, South Africa.
| | - Joseph Thierry Ndongo
- Department of Chemistry, Higher Teacher Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon.
| |
Collapse
|
2
|
Acar T, Arayici PP, Ucar B, Coksu I, Tasdurmazli S, Ozbek T, Acar S. Host-Guest Interactions of Caffeic Acid Phenethyl Ester with β-Cyclodextrins: Preparation, Characterization, and In Vitro Antioxidant and Antibacterial Activity. ACS OMEGA 2024; 9:3625-3634. [PMID: 38284065 PMCID: PMC10809231 DOI: 10.1021/acsomega.3c07643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The aim of this study is to improve the solubility, chemical stability, and in vitro biological activity of caffeic acid phenethyl ester (CAPE) by forming inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (Hβ-CD) using the solvent evaporation method. The CAPE contents of the produced complexes were determined, and the complexes with the highest CAPE contents were selected for further characterization. Detailed characterization of inclusion complexes was performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrospray ionization-mass spectrometry (ESI-MS). pH and thermal stability studies showed that both selected inclusion complexes exhibited better stability compared to free CAPE. Moreover, their antimicrobial activities were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for the first time. According to the broth dilution assay, complexes with the highest CAPE content (10C/β-CD and 10C/Hβ-CD) exhibited considerable growth inhibition effects against both bacteria, 31.25 μg/mL and 62.5 μg/mL, respectively; contrarily, this value for free CAPE was 500 μg/mL. Furthermore, it was determined that the in vitro antioxidant activity of the complexes increased by about two times compared to free CAPE.
Collapse
Affiliation(s)
- Tayfun Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Pelin Pelit Arayici
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Burcu Ucar
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Irem Coksu
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Semra Tasdurmazli
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tulin Ozbek
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
3
|
Bakar K, Nilofar, Mohamed A, Świątek Ł, Hryć B, Sieniawska E, Rajtar B, Ferrante C, Menghini L, Zengin G, Polz-Dacewicz M. Evaluating Phytochemical Profiles, Cytotoxicity, Antiviral Activity, Antioxidant Potential, and Enzyme Inhibition of Vepris boiviniana Extracts. Molecules 2023; 28:7531. [PMID: 38005252 PMCID: PMC10673197 DOI: 10.3390/molecules28227531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
In the present study, we performed comprehensive LC-MS chemical profiling and biological tests of Vepris boiviniana leaves and stem bark extracts of different polarities. In total, 60 bioactive compounds were tentatively identified in all extracts. The 80% ethanolic stem bark extract exhibited the highest activity in the ABTS assay, equal to 551.82 mg TE/g. The infusion extract of stem bark consistently demonstrated elevated antioxidant activity in all assays, with values ranging from 137.39 mg TE/g to 218.46 mg TE/g. Regarding the enzyme inhibitory assay, aqueous extracts from both bark and leaves exhibited substantial inhibition of AChE, with EC50 values of 2.41 mg GALAE/g and 2.25 mg GALAE/g, respectively. The 80% ethanolic leaf extract exhibited the lowest cytotoxicity in VERO cells (CC50: 613.27 µg/mL) and demonstrated selective cytotoxicity against cancer cells, particularly against H1HeLa cells, indicating potential therapeutic specificity. The 80% ethanolic bark extract exhibited elevated toxicity in VERO cells but had reduced anticancer selectivity. The n-hexane extracts, notably the leaves' n-hexane extract, displayed the highest toxicity towards non-cancerous cells with selectivity towards H1HeLa and RKO cells. In viral load assessment, all extracts reduced HHV-1 load by 0.14-0.54 log and HRV-14 viral load by 0.13-0.72 log, indicating limited antiviral activity. In conclusion, our research underscores the diverse bioactive properties of Vepris boiviniana extracts, exhibiting potent antioxidant, enzyme inhibitory, and cytotoxicity potential against cancer cells.
Collapse
Affiliation(s)
- Kassim Bakar
- Laboratoire Aliments, Réactivité et Synthèse des Substances Naturelles, Faculté des Sciences et Techniques, Université des Comores, Moroni 167, Comoros;
| | - Nilofar
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via Dei Vestini 31, 66100 Chieti, Italy; (N.); (C.F.); (L.M.)
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Andilyat Mohamed
- Herbier National des Comores, Faculté des Sciences et Techniques, Université des Comores, Moroni 167, Comoros;
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostic Laboratory, Medical University of Lublin, Chodźki 1, 20-850 Lublin, Poland; (B.R.); (M.P.-D.)
| | - Benita Hryć
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (B.H.); (E.S.)
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (B.H.); (E.S.)
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostic Laboratory, Medical University of Lublin, Chodźki 1, 20-850 Lublin, Poland; (B.R.); (M.P.-D.)
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via Dei Vestini 31, 66100 Chieti, Italy; (N.); (C.F.); (L.M.)
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via Dei Vestini 31, 66100 Chieti, Italy; (N.); (C.F.); (L.M.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostic Laboratory, Medical University of Lublin, Chodźki 1, 20-850 Lublin, Poland; (B.R.); (M.P.-D.)
| |
Collapse
|
4
|
Han B, Wen X, Wang J, Sun Y. A Novel Nanocomposite of Zn(II)-Protoporphyrin-Chitosan-Multi Walled Carbon Nanotubes and the Application to Caffeic Acid Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3412. [PMID: 36234540 PMCID: PMC9565613 DOI: 10.3390/nano12193412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Caffeic acid is an antioxidant that has been widely been related to the health benefits of people in recent years. In this paper, the amino side chains of chitosan (CS) were modified with protoporphyrin IX by amide cross-linking, and then Zn ions were chelated. The properties of metalloporphyrin-preparing functionalized multi-walled carbon nanotubes (MWCNTs) and Zn ions chelated by protoporphyrin IX composites were used as sensitive-selective electrochemical biosensors for the determination of caffeic acid. The morphology and structure of nanocomposite Zn-PPIX-CS-MWCNTs were observed by X-ray spectroscopy mapping (EDX mapping), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). The electrochemical behaviors of Zn-PPIX-CS-MWCNT-modified glassy carbon (GC) electrodes were evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results show that the modified electrode had good electrocatalytic activity towards caffeic acid with a wide linear range of 0.0008-1.6 mM, an excellent sensitivity of 886.90 µAmM-1cm-1, and a detection limit of 0.022 µM. In addition, the caffeic acid sensor had excellent reproducibility, stability, and selectivity to various interfering substances. Therefore, the modified electrode prepared by this experiment can also be applied to electrochemical sensors of other substances.
Collapse
Affiliation(s)
- Bingkai Han
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, College of Exercise Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Weijin Road No. 94, Tianjin 300071, China
| | - Xin Wen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, College of Exercise Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Jinneng Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, College of Exercise Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yingrui Sun
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, College of Exercise Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
5
|
Huang CW, Lee SY, Wei TT, Kuo YH, Wu ST, Ku HC. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed Pharmacother 2021; 142:112028. [PMID: 34399201 DOI: 10.1016/j.biopha.2021.112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Acute kidney disease due to renal ischemia/reperfusion (I/R) is a major clinical problem without effective therapies. The injured tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT). It will loss epithelial phenotypes and express the mesenchymal characteristics. The formation of scar tissue in the interstitial space during renal remodeling is caused by the excessive accumulation of extracellular matrix components and induced fibrosis. This study investigated the effect of caffeic acid ethanolamide (CAEA), a novel caffeic acid derivative, on renal remodeling after injury. The inhibitory role of CAEA on EMT was determined by western blotting, real-time PCR, and immunohistochemistry staining. Treating renal epithelial cells with CAEA in TGF-β exposed cell culture successfully maintained the content of E-cadherin and inhibited the expression of mesenchymal marker, indicating that CAEA prevented renal epithelial cells undergo EMT after TGF-β exposure. Unilateral renal I/R were performed in mice to induce renal remodeling models. CAEA can protect against I/R-induced renal remodeling by inhibiting inflammatory reactions and consecutively inhibiting TGF-β-induced EMT, characterized by the preserved E-cadherin expression and alleviated α-SMA and collagen expression, as well as the alleviated of renal fibrosis. We also revealed that CAEA may exhibits biological activity by targeting TGFBRI. CAEA may antagonize TGF-β signaling by interacting with TGFBR1, thereby blocking binding between TGF-β and TGFBR1 and reducing downstream signaling, such as Smad3 phosphorylation. Our data support the administration of CAEA after I/R as a viable method for preventing the progression of acute renal injury to renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taiwan
| | - Tzu-Tang Wei
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Silva H, Lopes NMF. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front Physiol 2020; 11:595516. [PMID: 33343392 PMCID: PMC7739266 DOI: 10.3389/fphys.2020.595516] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeic acid (CA) and its phenethyl ester (CAPE) are naturally occurring hydroxycinnamic acids with an interesting array of biological activities; e.g., antioxidant, anti-inflammatory, antimicrobial and cytostatic. More recently, several synthetic analogs have also shown similar properties, and some with the advantage of added stability. The actions of these compounds on the cardiovascular system have not been thoroughly explored despite presenting an interesting potential. Indeed the mechanisms underlying the vascular effects of these compounds particularly need clarifying. The aim of this paper is to provide a comprehensive and up-to-date review on current knowledge about CA and its derivatives in the cardiovascular system. Caffeic acid, CAPE and the synthetic caffeic acid phenethyl amide (CAPA) exhibit vasorelaxant activity by acting on the endothelial and vascular smooth muscle cells. Vasorelaxant mechanisms include the increased endothelial NO secretion, modulation of calcium and potassium channels, and modulation of adrenergic receptors. Together with a negative chronotropic effect, vasorelaxant activity contributes to lower blood pressure, as several preclinical studies show. Their antioxidant, anti-inflammatory and anti-angiogenic properties contribute to an important anti-atherosclerotic effect, and protect tissues against ischemia/reperfusion injuries and the cellular dysfunction caused by different physico-chemical agents. There is an obvious shortage of in vivo studies to further explore these compounds' potential in vascular physiology. Nevertheless, their favorable pharmacokinetic profile and overall lack of toxicity make these compounds suitable for clinical studies.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS – Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Miguel F. Lopes
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Shi B, Yang L, Gao T, Ma C, Li Q, Nan Y, Wang S, Xiao C, Jia P, Zheng X. Pharmacokinetic profile and metabolite identification of bornyl caffeate and caffeic acid in rats by high performance liquid chromatography coupled with mass spectrometry. RSC Adv 2019; 9:4015-4027. [PMID: 35518073 PMCID: PMC9060532 DOI: 10.1039/c8ra07972b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
Bornyl caffeate was initially discovered as a bioactive compound in medicinal plants. Despite the promising pharmacological activities including anti-tumor and antibacterial activities, the pharmacokinetics of the compound remain open. This work developed a high performance liquid chromatography-tandem mass spectrometric method for the determination of bornyl caffeate and caffeic acid (major metabolite and a main unit of bornyl caffeate) in vivo. Successful application of the method included identification of its metabolites and investigation on the drug pharmacokinetics. A total of 30 compounds were identified as the metabolites of bornyl caffeate in rats. We attributed these metabolites to phase I metabolic routes of reduction, oxidation, hydrolysis and phase II metabolic reactions of glucuronidation, sulfation, O-methylation and glycine. Glucuronidation, sulfation, O-methylation and reduction were the main metabolic pathways of bornyl caffeate. The method presented a linear range of 1-4000 ng mL-1. The pharmacokinetic profile of bornyl caffeate was found to be a three compartment open model, while caffeic acid fitted to a two compartment open model when it was administered alone or served as the main metabolite of bornyl caffeate. The time to peak concentration (T max) and the maximum plasma concentration (C max) of bornyl caffeate were 0.53 h and 409.33 ng mL-1. Compared with original caffeic acid, the compound displayed an increased half-life of elimination (T 1/2β), area under the concentration time curve from 0 to t (AUC0-t ) and area under the concentration time curve from 0 to ∞ (AUC0-∞), a decreased half-life of absorption (T 1/2α) and an identical C max. Taking together, we concluded that bornyl caffeate is able to rapidly initiate therapeutic effect and last for a relatively long time in rats; metabolic pathways of O-methylation and reduction is key to interpret the mechanism and toxicity of bornyl caffeate.
Collapse
Affiliation(s)
- Baimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Lingjian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Tian Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Cuicui Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Qiannan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Yefei Nan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University 195# Mail Box, No. 229 Northern Taibai Road Xi'an 710069 P. R. China +86-29-88302686 +86-29-88302686
| |
Collapse
|
8
|
Kheyar-Kraouche N, da Silva AB, Serra AT, Bedjou F, Bronze MR. Characterization by liquid chromatography-mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J Pharm Biomed Anal 2018; 156:297-306. [PMID: 29730339 DOI: 10.1016/j.jpba.2018.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
Abstract
Inula viscosa (I. viscosa) is a common Mediterranean plant, well known for its content on bioactive molecules. The chemical composition of an ethanolic extract from I. viscosa leaves, growing in Algeria, was analysed by liquid chromatography coupled to photodiode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS/MS) operating in negative and positive mode. The methodology used revealed the presence of 51 compounds from which 47 were putatively identified, including 11 phenolic acids, 23flavonoids, one lignan and 12 terpenoids. Twenty-six of these compounds are described for the first time in I. viscosa. Antioxidant activity was measured using three different and complementary chemical assays: DPPH radical scavenging activity, oxygen radical absorbance capacity (ORAC) and hydroxyl radical scavenging capacity (HOSC). Results demonstrate that ethanolic leaf extract exhibit a high scavenging ability against DPPH (157.72 ± 6.45 μM TE/g DW), peroxyl (4471.42 ± 113.16 μM TE/g DW) and hydroxyl (630.10 ± 17.81 μM TE/g DW) radicals, indicating that I. viscosa can be a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Naoual Kheyar-Kraouche
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Andreia Bento da Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Fatiha Bedjou
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Maria R Bronze
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| |
Collapse
|
9
|
Wang J, Mahajani M, Jackson SL, Yang Y, Chen M, Ferreira EM, Lin Y, Yan Y. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Metab Eng 2017; 44:89-99. [PMID: 28943460 DOI: 10.1016/j.ymben.2017.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caffeic acid derived phenethyl esters or amides remain enigmatic, limiting their bio-based production. Herein, product-directed design of biosynthetic schemes allowed the development of thermodynamically favorable pathways for these compounds via acyltransferase (ATF) mediated trans-esterification. Production based screening identified a microbial O-ATF from Saccharomyces cerevisiae and a plant N-ATF from Capsicum annuum capable of forming caffeic acid derived esters and amides, respectively. Subsequent combinatorial incorporation of caffeic acid with various aromatic alcohol or amine biosynthetic pathways permitted the de novo bacterial production of a panel of caffeic acid derived phenethyl esters or amides in Escherichia coli for the first time. Particularly, host strain engineering via systematic knocking out endogenous caffeoyl-CoA degrading thioesterase and pathway optimization via titrating co-substrates enabled production enhancement of five caffeic acid derived phenethyl esters and amides, with titers ranging from 9.2 to 369.1mg/L. This platform expanded the capabilities of bacterial production of high-value natural aromatic esters and amides from renewable carbon source via tailoring non-natural biosynthetic pathways.
Collapse
Affiliation(s)
- Jian Wang
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | | | - Sheneika L Jackson
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Yaping Yang
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Mengyin Chen
- BiotecEra Inc., 220 Riverbend Rd., Athens, GA 30602, USA
| | - Eric M Ferreira
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Yuheng Lin
- BiotecEra Inc., 220 Riverbend Rd., Athens, GA 30602, USA.
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Tang C, Tan J, Fan R, Zhao B, Tang C, Ou W, Jin J, Peng X. Quasi-targeted analysis of hydroxylation-related metabolites of polycyclic aromatic hydrocarbons in human urine by liquid chromatography–mass spectrometry. J Chromatogr A 2016; 1461:59-69. [DOI: 10.1016/j.chroma.2016.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
|
11
|
Electrochemical Determination of Phenolic Acids at a Zn/Al Layered Double Hydroxide Film Modified Glassy Carbon Electrode. ELECTROANAL 2014. [DOI: 10.1002/elan.201400156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Shi H, Xie D, Yang R, Cheng Y. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5046-5053. [PMID: 24840770 DOI: 10.1021/jf500464k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Twenty-one caffeic acid phenethyl ester (CAPE) derivatives were synthesized, and characterized by IR, HR-MS, (1)H and (13)C NMR analyses. All compounds were evaluated for their cytoprotective effects against H2O2-induced cytotoxicity and neuritogenic activities in the neurite outgrowth in PC12 cells. Compounds 1 and 20 exhibited stronger cytoprotective activities than their parent compound CAPE at 4 nM. Compounds 1, 4, 12 and 13 showed potential neuritogenic activities at 0.5 nM, while compounds 19 and 20 induced neurite outgrowth at 10 nM. The results from this study suggested that CAPE and its derivatives may be potential functional food ingredients for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiming Shi
- Institute of Food and Nutraceutical Science, SJTU-Rich Research Institute of Nutrition and Skin Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | |
Collapse
|
13
|
An industry perspective on tiered approach to the investigation of metabolites in drug development. Bioanalysis 2014; 6:617-28. [DOI: 10.4155/bio.14.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: A tiered approach to drug metabolite measurement and identification is often used industry wide to fulfill regulatory requirements specified in recent US FDA and European Medicines Agency guidance. Although this strategy is structured in its intent it can be customized to address unique challenges which may arise during early and late drug development activities. These unconventional methods can be applied at any stage to facilitate metabolite characterization. Results: Two case studies are described NVS 1 and 2. NVS 1: plasma concentrations, measured using a radiolabeled MS-response factor exploratory method, were comparable to those from a validated bioanalytical method. The NVS 2 example showed how in vitro analysis helped to characterize an unexpectedly abundant circulating plasma metabolite M3. Conclusion: A tiered approach incorporating many aspects of conventional and flexible analytical methodologies can be pulled together to address regulatory questions surrounding drug metabolite characterization.
Collapse
|
14
|
Tang C, Tang C, Zhan W, Du J, Wang Z, Peng X. Strategies for ascertaining the interference of phase II metabolites co-eluting with parent compounds using LC-MS/MS. J Sep Sci 2013; 36:2584-92. [PMID: 23868670 DOI: 10.1002/jssc.201300235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/05/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022]
Abstract
LC-MS/MS is currently the most selective and efficient tool for the quantitative analysis of drugs and metabolites in the pharmaceutical industry and in clinical assays. However, phase II metabolites sometimes negatively affect the selectivity and efficiency of the LC-MS/MS method, especially for the metabolites that possess similar physicochemical characteristics and generate the same precursor ions as their parent compounds due to the in-source collision-induced dissociation during the ionization process. This paper proposes some strategies for examining co-eluting metabolites existing in real samples, and further assuring whether these metabolites could affect the selectivity and accuracy of the analytical methods. Strategies using precursor-ion scans and product-ion scans were applied in this study. An example drug, namely, caffeic acid phenethyl ester, which can generate many endogenous phase II metabolites, was selected to conduct this work. These metabolites, generated during the in vivo metabolic processes, can be in-source-dissociated to the precursor ions of their parent compounds. If these metabolites are not separated from their parent compounds, the quantification of the target analytes (parent compounds) would be influenced. Some metabolites were eluted closely to caffeic acid phenethyl ester on LC columns, although long columns and relatively long elution programs were used. The strategies can be utilized in quantitative methodologies that apply LC-MS/MS to assure the performance of selectivity, thus enhancing the reliability of the experimental data.
Collapse
Affiliation(s)
- Caiming Tang
- State key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
15
|
Karabiberoğlu ŞU, Ayan EM, Dursun Z. Electroanalysis of Caffeic Acid in Red Wine and Investigation of Thermodynamic Parameters Using an Ag Nanoparticles Modified Poly(Thiophene) Film Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|