1
|
El-Said WA, Akhdhar A, Al-Bogami AS, Saleh TS. Design and green synthesis of carbon Dots/Gold nanoparticles Composites and their applications for neurotransmitters sensing based on emission Spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125402. [PMID: 39515228 DOI: 10.1016/j.saa.2024.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Changes in the neurotransmitters are indications for several diseases. Several sensors were reported for monitoring dopamine (DA), but the simple and accurate DA detection in biological samples still faces many challenges. The research proposal aims to develop an optical sensor for detecting neurotransmitters based on luminescence emission spectra in different biological samples. Carbon dots (CDs) were fabricated based on a green synthesis route. Then the prepared CDs were decorated with varying concentrations of gold nanoparticles (Au NPs). The synthesis process was optimized, and the obtained CDs/Au NPs nanocomposites were applied as neurotransmitters' optical nanosensors. The optical nanosensor approach provides easy and sensitive multiplex analysis. A wide range of neurotransmitters was monitored. The developed sensor's sensitivity, selectivity, and reproducibility were investigated. Au NPs act as CDs' stabilizers, enhancing the emission effect, and scaffolds for binding DA with CDs' surface. DA moieties bind to CDs through the interaction between the DA-NH2 groups and Au NPS. Due to electron transfer, the bonding of DA molecules leads to fluorescence quenching of AuNPs/CDs. The Au-CDs-based DA fluorescence showed high sensitivity with adetection limit, and limit quantification of 2.04 nM and 6.18 nM, respectively. Furthermore, the selectivity of the sensor was investigated in the presence of glucose, uric acid (UA), and ascorbic acid (AA), which showed no interference effect at 10 times higher concentrations. Moreover, the proposed sensor has been successfully utilized for DA detection in human serum samples with a high recovery efficiency between 98.83 % and 103.5 %.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Chen R, Han Y, Bai L, Wang M, Yan H. Enhanced detection of catecholamines in human urine using Cis-diol-microporous organic networks with PT-SPE and HPLC-MS/MS. J Chromatogr A 2024; 1736:465408. [PMID: 39388781 DOI: 10.1016/j.chroma.2024.465408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
A novel cis-diol-microporous organic networks (MONs-2OH) material was synthesized via room temperature and Sonogashira coupling reactions, which exhibits exceptional adsorption properties for catecholamines (CAs). MONs-2OH demonstrates robust hydrogen bonding and π-π stacking interactions, crucial for effective adsorption. The MONs-2OH was incorporated into pipette tip solid-phase extraction and developed a new method for detecting CAs in human urine using HPLC-MS/MS. Characterization of the adsorbent revealed its high stability, large specific surface area, abundant phenolic hydroxyl groups, rapid extraction speed, and superior adsorption efficiency. The method achieved a wide linear range (0.5-500 ng/mL), low detection limits (0.06-0.26 ng/mL), high accuracy (90.4 %-99.4 %), and excellent precision (RSD ≤ 10 %). Comparative studies showed MONs-2OH outperforms commercial adsorbents in terms of recovery and adsorption capacity. The results underscore the potential of MONs-2OH for rapid and sensitive CAs determination, offering significant advantages for the auxiliary diagnosis of depression and enhancing the application of PT-SPE in sample pretreatment.
Collapse
Affiliation(s)
- Rong Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yehong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Mingyu Wang
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Merli D, Cutaia A, Hallulli I, Bonanni A, Alberti G. Molecularly Imprinted Polypyrrole-Modified Screen-Printed Electrode for Dopamine Determination. Polymers (Basel) 2024; 16:2528. [PMID: 39274160 PMCID: PMC11397747 DOI: 10.3390/polym16172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
This paper introduces a quantitative method for dopamine determination. The method is based on a molecularly imprinted polypyrrole (e-MIP)-modified screen-printed electrode, with differential pulse voltammetry (DPV) as the chosen measurement technique. The dopamine molecules are efficiently entrapped in the polymeric film, creating recognition cavities. A comparison with bare and non-imprinted polypyrrole-modified electrodes clearly demonstrates the superior sensitivity, selectivity, and reproducibility of the e-MIP-based one; indeed, a sensitivity of 0.078 µA µM-1, a detection limit (LOD) of 0.8 µM, a linear range between 0.8 and 45 µM and a dynamic range of up to 350 µM are achieved. The method was successfully tested on fortified synthetic and human urine samples to underline its applicability as a screening method for biomedical tests.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Cutaia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ines Hallulli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Bonanni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
The influence of bismuth participation on the morphological and electrochemical characteristics of gallium oxide for the detection of adrenaline. Anal Bioanal Chem 2023:10.1007/s00216-023-04617-7. [PMID: 36884077 DOI: 10.1007/s00216-023-04617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.
Collapse
|
5
|
Ohshiro K, Sasaki Y, Minami T. An extended-gate-type organic transistor-based enzymatic sensor for dopamine detection in human urine. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
6
|
Thadathil A, Thacharakkal D, Ismail YA, Periyat P. Polyindole-Derived Nitrogen-Doped Graphene Quantum Dots-Based Electrochemical Sensor for Dopamine Detection. BIOSENSORS 2022; 12:1063. [PMID: 36551030 PMCID: PMC9775058 DOI: 10.3390/bios12121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The sensitive monitoring of dopamine levels in the human body is of utmost importance since its abnormal levels can cause a variety of medical and behavioral problems. In this regard, we report the synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from polyindole (PIN) via a facile single-step hydrothermal synthetic strategy that can act as an efficient electrochemical catalyst for the detection of dopamine (DA). The average diameter of N-GQDs was ∼5.2 nm and showed a C/N atomic ratio of ∼2.75%. These N-GQDs exhibit a cyan fluorescence color under irradiation from a 365 nm lamp, while PIN has no characteristic PL. The presence of richly N-doped graphitic lattices in the N-GQDs possibly accounts for the improved catalytic activity of N-GQDs/GCE towards electrocatalytic DA detection. Under optimum conditions, this novel N-GQDs-modified electrode exhibits superior selectivity and sensitivity. Moreover, it could detect as low as 0.15 nM of DA with a linear range of 0.001-1000 µM. In addition, the outstanding sensing attributes of the detector were extended to the real samples as well. Overall, our findings evidence that N-GQDs-based DA electrochemical sensors can be synthesized from PIN precursor and could act as promising EC sensors in medical diagnostic applications.
Collapse
Affiliation(s)
- Anjitha Thadathil
- Department of Chemistry, University of Calicut, Malappuram 673635, India
| | - Dipin Thacharakkal
- Department of Chemistry, University of Calicut, Malappuram 673635, India
| | - Yahya A. Ismail
- Department of Chemistry, University of Calicut, Malappuram 673635, India
| | - Pradeepan Periyat
- Department of Environmental Studies, Kannur University, Kannur 670567, India
| |
Collapse
|
7
|
Zeng H, Zhang X, Zhen Q, He Y, Wang H, Zhu Y, Sun Q, Ding M. Dual-Template Magnetic Molecularly Imprinted Polymer for Simultaneous Determination of Spot Urine Metanephrines and 3-Methoxytyramine for the Diagnosis of Pheochromocytomas and Paragangliomas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113520. [PMID: 35684457 PMCID: PMC9182035 DOI: 10.3390/molecules27113520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
A novel dual-template magnetic molecularly imprinted polymer (MMIP) was synthesized to extract normetanephrine (NMN), metanephrine (MN) and 3-methoxytyramine (3-MT) from spot urine samples. As the adsorbent of dispersive solid-phase extraction (d-SPE), the MMIP was prepared using dopamine and MN as dual templates, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the crosslinking reagent and magnetic nanoparticles as the magnetic core. NMN, MN, 3-MT and creatinine (Cr) in spot urine samples were selectively enriched by d-SPE and detected by HPLC-fluorescence detection/ultraviolet detection. The peak area (A) ratios of NMN, MN and 3-MT to Cr were used for the diagnosis of pheochromocytomas and paragangliomas (PPGLs). The results showed that the adsorption efficiencies of MMIP for target analytes were all higher than 89.0%, and the coefficient variation precisions of intra-assay and inter-assay for the analytes were within 4.9% and 6.3%, respectively. The recoveries of the analytes were from 93.2% to 112.8%. The MMIP was still functional within 14 days and could be reused at least seven times. The d-SPE and recommended solid-phase extraction (SPE) were both used to pretreat spot urine samples from 18 PPGLs patients and 22 healthy controls. The correlation coefficients of ANMN/ACr and AMN/ACr between d-SPE and SPE were both higher than 0.95. In addition, the areas under the receiver operator curves for spot urine ANMN/ACr, AMN/ACr and plasma free NMN and MN were 0.975, 0.773 and 0.990, 0.821, respectively, indicating the two methods had the similar performances. The d-SPE method took only 20 min, which was effective in clinical application.
Collapse
Affiliation(s)
- Hongyu Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.Z.); (X.Z.); (H.W.); (Y.Z.); (Q.S.)
| | - Xiaoqing Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.Z.); (X.Z.); (H.W.); (Y.Z.); (Q.S.)
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (Q.Z.); (Y.H.)
| | - Yifan He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (Q.Z.); (Y.H.)
| | - Haoran Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.Z.); (X.Z.); (H.W.); (Y.Z.); (Q.S.)
| | - Yang Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.Z.); (X.Z.); (H.W.); (Y.Z.); (Q.S.)
| | - Qi Sun
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.Z.); (X.Z.); (H.W.); (Y.Z.); (Q.S.)
| | - Min Ding
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.Z.); (X.Z.); (H.W.); (Y.Z.); (Q.S.)
- Correspondence:
| |
Collapse
|
8
|
Li D, Tang N, Wang Y, Zhang Z, Ding Y, Tian X. Efficient synthesis of boronate affinity-based catecholamine-imprinted magnetic nanomaterials for trace analysis of catecholamine in human urine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02552c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catecholamines, a class of cis-diol-containing compounds, play a major role in the central nervous system.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| |
Collapse
|
9
|
Efficient Sub-1 Minute Analysis of Selected Biomarker Catecholamines by Core-Shell Hydrophilic Interaction Liquid Chromatography (HILIC) with Nanomolar Detection at a Boron-Doped Diamond (BDD) Electrode. SEPARATIONS 2021. [DOI: 10.3390/separations8080124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A rapid, sensitive method for the separation of catecholamine biomarkers (CAs), of importance in traumatic brain injury (TBI) and in Parkinson’s disease (PD), has been successfully developed using hydrophilic interaction liquid chromatography (HILIC). Dopamine (DA), epinephrine (EPI), and norepinephrine (NE) are known to be three to fivefold elevated above normal in traumatic brain injury (TBI) patients. HILIC facilitates the rapid and efficient separation of these polar biomarkers, which can be poorly retained by reversed-phase liquid chromatography (RPLC), while electrochemical detection (ECD) at the boron-doped diamond (BDD) electrode provides enhanced nanomolar detection. Three HILIC columns were compared, namely the superficially porous (core-shell) Z-HILIC column and the Z-cHILIC and Z-HILIC fully porous columns. The core-shell Z-HILIC showed the highest efficiency with a rapid separation within 60 s. The HILIC method utilizing the core-shell Z-HILIC column was initially optimized for the simultaneous analysis of DA, EPI, and NE using UV detection. The advantages of using the BDD electrode over UV detection were explored, and the improved limits of detection (LODs, S/N = 3) measured were 40, 50, and 50 nM for DA, EPI, and NE, respectively. Method validation is reported in terms of the linearity, repeatability, reproducibility, and LODs. Furthermore, the proposed method was successfully applied to the real sample analysis of urinary CAs following phenylboronic acid (PBA) solid phase extraction (SPE) pretreatment.
Collapse
|
10
|
Butt AS, Baig N, Khan M, Ul‐Hamid A, Sher M, Altaf M, Sohail M. HfO
2
‐CoO nanoparticles for electrochemical dopamine sensing. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Abdul Samad Butt
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad Pakistan
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Munezza Khan
- School of Materials Sciences & Engineering Nanyang Technological University Singapore Singapore
| | - Anwar Ul‐Hamid
- Core Research Facilities King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Muhammad Sher
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Muhammad Altaf
- Department of Chemistry Government College University Lahore Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad Pakistan
| |
Collapse
|
11
|
Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples. Molecules 2021; 26:molecules26092670. [PMID: 34063259 PMCID: PMC8124413 DOI: 10.3390/molecules26092670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we combine magnetic solid phase extraction (MSPE), with the screen-printed carbon electrode (SPCE) modified by a molecular imprinted polymer (MIP) for sensitive and selective extraction and electrochemical determination of Rhodamine B in food samples. A magnetic solid phase extraction (MSPE) was carried out using magnetic poly(styrene-co-divinylbenzene) (PS-DVB) and magnetic nanoparticles (MNPs) synthetized on the surface of multiwalled carbon nanotubes (MWCNTs). An MIP was prepared on the surface of MWCNTs in the presence of titanium oxide nanoparticles (TiO2NPs) modifying the SPCE for the rapid electrochemical detection of Rhodamine B. The MIPs synthesis was optimized by varying the activated titanium oxide (TiO2) and multiwalled carbon nanotubes (MWCNTs) amounts. The MSPE and electrochemical detection conditions were optimized as well. The present method exhibited good selectivity, high sensitivity, and good reproducibility towards the determination of Rhodamine B, making it a suitable method for the determination of Rhodamine B in food samples.
Collapse
|
12
|
Zhao Z, Kong Y, Huang G, Chen C, Chen W, Mei Y. Nickel-based metal-organic frameworks-modified flexible fiber: Preparation and its dopamine sensing application. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
14
|
Podjava A, Šilaks A. Synthesis and sorptive properties of molecularly imprinted polymer for simultaneous isolation of catecholamines and their metabolites from biological fluids. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1874980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anton Podjava
- Laboratory of Chromatography and Mass Spectrometry, Department of Chemistry, Academic Center of Natural Sciences, University of Latvia, Riga, Latvia
| | - Artūrs Šilaks
- Laboratory of Chromatography and Mass Spectrometry, Department of Chemistry, Academic Center of Natural Sciences, University of Latvia, Riga, Latvia
| |
Collapse
|
15
|
Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination. Talanta 2021; 221:121546. [DOI: 10.1016/j.talanta.2020.121546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|
16
|
Ramu P, Vimal SP, Suresh P, Saravanakumar U, Sethuraman V, Anandhavelu S. Electrochemically Deposited Porous Graphene−Polypyrrole−Polyphenol Oxidase for Dopamine Biosensor. ELECTROANAL 2020. [DOI: 10.1002/elan.202060400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- P. Ramu
- Electronics and Communication Engineering Jaya Institute of Technology Tamilnadu India
| | - S. P. Vimal
- Elctronics and Communication Engineering Sri Ramakrishna Engineering College Coimbatore India
| | - P. Suresh
- Dept of ECE Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Chennai Tamilnadu India
| | - U. Saravanakumar
- Dept of ECE Muthayammal Engineering College Rasipuram Tamilnadu India
| | - V. Sethuraman
- Dept. Of Chemistry Vel Tech Multi Tech Engineering College Chennai India
| | - S. Anandhavelu
- Dept. Of Chemistry Vel Tech Multi Tech Engineering College Chennai India
| |
Collapse
|
17
|
Adelantado C, Ríos Á, Zougagh M. A new nanometrological strategy for titanium dioxide nanoparticles screening and confirmation in personal care products by CE-spICP-MS. Talanta 2020; 219:121385. [PMID: 32887088 DOI: 10.1016/j.talanta.2020.121385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
A new nanometrological approach was developed for screening of titania nanoparticles by capillary electrophoresis after adsorption of a target analyte namely l-cysteine onto the nanoparticles in a sodium phosphate buffer, followed by titanium elemental analysis by means of inductively-coupled plasma-mass spectrometry and size distribution measurements by single-particle mode. This analytical strategy involved a first screening of nanotitania in actual samples by electrophoresis, sensitivity being enhanced by cysteine which acts as a nanoparticles stabiliser. Detection and quantitation limits were 0.31 ng μL-1 and 1.03 ng μL-1 respectively for anatase nanoparticles in capillary electrophoresis, and a high amount of titanium was found in the samples subject to study (lip balm and two types of toothpaste) by total elemental analysis. Besides, the potential of single-particle modality for inductively-coupled plasma-mass spectrometry was exploited for a verification of particle size distribution, then confirming the presence of titanium dioxide nanoparticles as an ingredient in the composition of the real samples and validating the overall strategy herein presented.
Collapse
Affiliation(s)
- Carlos Adelantado
- Analytical Chemistry and Food Technology Department, University of Castilla-La Mancha, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain
| | - Ángel Ríos
- Analytical Chemistry and Food Technology Department, University of Castilla-La Mancha, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Analytical Chemistry and Food Technology Department, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
18
|
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi China
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| |
Collapse
|
19
|
Huang H, Bai J, Li J, Lei L, Zhang W, Yan S, Li Y. Fluorescence detection of dopamine based on the polyphenol oxidase–mimicking enzyme. Anal Bioanal Chem 2020; 412:5291-5297. [DOI: 10.1007/s00216-020-02742-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
|
20
|
LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1136:121878. [PMID: 31812837 DOI: 10.1016/j.jchromb.2019.121878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
A novel analytical methodology for the extraction and determination of catecholamines (dopamine, epinephrine and norepinephrine) and their metabolites DL-3,4-dihydroxyphenyl glycol and DL-3,4-dihydroxymandelic acid by LC-MS is developed and validated for its application to human and animal urine and hair samples. The method is based on the preliminary extraction of the analytes by a magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. This is followed by a <9 min chromatographic separation of the target compounds in an Onyx Monolithic C18 column using a mixture of 0.01% (v/v) heptafluorobutyric acid in water and methanol at 500 µL min-1 flow rate. Detection limits within range from 0.055 to 0.093 µg mL-1, and precision values of the response and retention times of analytes were >90%. Accuracy values comprised the range 79.5-109.5% when the analytes were extracted from deer urine samples using the selected MMWCNT-poly(STY-DVB) sorbent. This methodology was applied to real red deer urine and hair samples, and concentrations within range from 0.05 to 0.5 µg mL-1 for norepinephrine and from 1.0 to 44.5 µg mL-1 for its metabolite 3,4-dihydroxyphenyl glycol were calculated. Analyses of red deer hair resulted in high amounts of 3,4-dihydroxyphenyl glycol (0.9-266.9 µg mL-1).
Collapse
|
21
|
Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Mikrochim Acta 2019; 186:686. [DOI: 10.1007/s00604-019-3801-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/07/2019] [Indexed: 12/26/2022]
|
22
|
Wu J, Li Z, Jia L. Solid phase extraction and capillary electrophoretic separation of racemic catecholamines by using magnetic particles coated with a copolymer prepared from poly(3,4-dihydroxyphenylalanine) and polyethyleneimine. Mikrochim Acta 2019; 186:627. [DOI: 10.1007/s00604-019-3731-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/01/2019] [Indexed: 11/29/2022]
|
23
|
Au nanoparticles attached Ag@C core-shell nanocomposites for highly selective electrochemical detection of dopamine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Avan AA, Filik H. Electrochemical Determination of Dopamine Using a Graphene–Screen-Printed Carbon Electrode with Magnetic Solid-Phase Microextraction. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1437624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Asiye Aslıhan Avan
- Department of Chemistry, Istanbul University, Faculty of Engineering, Istanbul, Turkey
| | - Hayati Filik
- Department of Chemistry, Istanbul University, Faculty of Engineering, Istanbul, Turkey
| |
Collapse
|
25
|
Kunsa-Ngiem S, Sutthivaiyakit P, Lowmunkhong P, Harir M, Schmitt-Kopplin P, Sutthivaiyakit S. Magnetic molecularly imprinted polymer prepared by microwave heating for confirmatory determination of chloramphenicol in chicken feed using high-performance liquid chromatography-tandem mass spectrometry. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:738-745. [PMID: 30015566 DOI: 10.1080/03601234.2018.1480161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
A magnetic molecularly imprinted polymer (MMIP) for chloramphenicol was prepared using a surface-imprinted and microwave-heating-induced polymerization method. The surfaces of the magnetic particles were first double-bond functionalized with 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), followed by the copolymerization of 4-vinyl pyridine (4-VP) and trimethylolpropane trimethacrylate (TRIM) in the presence of chloramphenicol as a template and 1,1-azobis(cyclohexane-carbonitrile) (ABCN) as an initiator in a mixture of dimethyl sulfoxide and water with microwave heating at 80°C. The magnetic polymer possesses supraparamagnetic properties and was used to concentrate and cleanup chicken feed extract, followed by chromatographic separation using a Lichrospher®100 RP C8 column and detection with two multi-reaction monitoring transitions at m/z 321→ 152 and m/z 321→ 257. The mean recoveries obtained at two spiking levels were in the range of 94.6-100% The relative intra- and inter-day standard deviations were in the range of 1.4-2.6% and 5.1-5.7%, respectively. The detection limit of the method was 0.12 µg kg-1. This confirmatory method was successfully applied to determine chloramphenicol in chicken feed samples.
Collapse
Affiliation(s)
- Sumate Kunsa-Ngiem
- a Department of Chemistry and Center for Innovation in Chemistry , Faculty of Science, Kasetsart University , Bangkok , Thailand
| | - Pakawadee Sutthivaiyakit
- a Department of Chemistry and Center for Innovation in Chemistry , Faculty of Science, Kasetsart University , Bangkok , Thailand
| | - Pongsak Lowmunkhong
- a Department of Chemistry and Center for Innovation in Chemistry , Faculty of Science, Kasetsart University , Bangkok , Thailand
| | - Mourad Harir
- b Helmholtz Zentrum München, German Research Center for Environmental Health , Research Unit Analytical BioGeoChemistry , Neuherberg , Germany
- c Chair of Analytical Food Chemistry , Technische Universität München , Freising-Weihenstephan , Germany
| | - Philippe Schmitt-Kopplin
- b Helmholtz Zentrum München, German Research Center for Environmental Health , Research Unit Analytical BioGeoChemistry , Neuherberg , Germany
- c Chair of Analytical Food Chemistry , Technische Universität München , Freising-Weihenstephan , Germany
| | - Somyote Sutthivaiyakit
- d Department of Chemistry and Center of Excellence for Innovation in Chemistry , Faculty of Science, Ramkhamhaeng University , Bangkok , Thailand
| |
Collapse
|
26
|
Huang D, Qin Z, Liu Y, Di D, Wang H, Liu Y, Yang W. Synthesis of porous materials of high mechanical strength with graphene quantum dots. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Boronate affinity solid-phase extraction of cis-diol compounds by a one-step electrochemically synthesized selective polymer sorbent. Anal Bioanal Chem 2017; 410:501-508. [DOI: 10.1007/s00216-017-0740-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
|
28
|
Ben Aoun S. Nanostructured carbon electrode modified with N-doped graphene quantum dots-chitosan nanocomposite: a sensitive electrochemical dopamine sensor. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171199. [PMID: 29291105 PMCID: PMC5717679 DOI: 10.1098/rsos.171199] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
A highly selective and sensitive dopamine electrochemical sensor based on nitrogen-doped graphene quantum dots-chitosan nanocomposite-modified nanostructured screen printed carbon electrode is presented, for the first time. Graphene quantum dots were prepared via microwave-assisted hydrothermal reaction of glucose, and nitrogen doping was realized by introducing ammonia in the reaction mixture. Chitosan incorporation played a significant role towards the selectivity of the prepared sensor by hindering the ascorbic acid interference and enlarging the peak potential separation between dopamine and uric acid. The proposed sensor's performance was shown to be superior to several recently reported investigations. The as-prepared CS/N,GQDs@SPCE exhibited a high sensitivity (i.e. ca. 418 µA mM cm-2), a wide linear range i.e. (1-100 µM) and (100-200 µM) with excellent correlations (i.e. R2 = 0.999 and R2 = 1.000, respectively) and very low limit of detection (LOD = 0.145 µM) and limit of quantification (LOQ = 0.482 µM) based on S/N = 3 and 10, respectively. The applicability of the prepared sensor for real sample analysis was tested by the determination of dopamine in human urine in pH 7.0 PBS showing an approximately 100% recovery with RSD < 2% inferring both the practicability and reliability of CS/N,GQDs@SPCE. The proposed sensor is endowed with high reproducibility (i.e. RSD = ca. 3.61%), excellent repeatability (i.e. ca. 0.91% current change) and a long-term stability (i.e. ca. 94.5% retained activity).
Collapse
|
29
|
Ansari S. Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: Recent applications and challenges. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Shen J, Sun C, Wu X. Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Talanta 2017; 165:369-376. [DOI: 10.1016/j.talanta.2016.12.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
|
31
|
Romano EF, Quirino JP, Holdsworth JL, So RC, Holdsworth CI. Assessment of the binding performance of histamine-imprinted microspheres by frontal analysis capillary electrophoresis. Electrophoresis 2017; 38:1251-1259. [PMID: 28258613 DOI: 10.1002/elps.201600448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 11/09/2022]
Abstract
Frontal analysis capillary electrophoresis was used to evaluate the binding performance of molecularly imprinted microspheres (MIM) toward its template histamine and analogs at pH 7, and compared to the high performance liquid chromatographic method. In both methods, batch binding was employed and the binding parameters were calculated from the measured concentration of unbound amine analytes and afforded comparable histamine equilibrium dissociation constants (Kd ∼ 0.4 mM). FACE was easily carried out at shorter binding equilibration time (i.e. 30 min) and without the need to separate the microspheres, circumventing laborious and, in the case of the system under study, inefficient sample filtration. It also allowed for competitive binding studies by virtue of its ability to distinctly separate intact microspheres and all tested amines which could not be resolved in HPLC. Kd 's for nonimprinted (control) microspheres (NIM) from FACE and HPLC were also comparable (∼ 0.6 mM) but at higher histamine concentrations, HPLC gave lower histamine binding. This discrepancy was attributed to inefficient filtration of the batch binding samples prior to HPLC analysis resulting in an over-estimation of the concentration of free histamine brought about by the presence of unfiltered histamine-bound microspheres.
Collapse
Affiliation(s)
- Edwin F Romano
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines.,Department of Chemistry, College of Arts and Sciences, Negros Oriental State University, Dumaguete City, Philippines
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - John L Holdsworth
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Regina C So
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Clovia I Holdsworth
- Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
32
|
Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M. Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal Chim Acta 2017; 958:1-21. [PMID: 28110680 DOI: 10.1016/j.aca.2016.11.062] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/02/2023]
|
33
|
Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis. Talanta 2017; 167:470-485. [PMID: 28340747 DOI: 10.1016/j.talanta.2017.02.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
Since the introduction of the molecularly imprinting technology (MIT) in the 1970s, it becomes an emerging technology with the potential for wide-ranging applications in drug determination. With the rise of green chemistry, many researchers began to focus on the application and development of green materials which led to the breakthrough of molecularly imprinted polymers (MIPs) in the green chemistry. Because of the low concentration levels in the human matrices, almost adequate analytical methods should be used for quantification of drugs at the trace levels. In recent years there have been reported benefits of combining MIPs with additional features, e.g. magnetic properties, through the build-up of this type of material on magnetite particles. Magnetic molecularly imprinted polymer (MMIP) is a new material which is composed of magnetic material and non-magnetic polymer material and shares the characteristics of high adsorption capacity to template molecule, special selective recognition ability, and the magnetic adsorption property. These materials have been widely used in the different fields such as chemical, biological and medical science. This review describes the novel configurations and progressive applications of magnetic molecularly imprinted polymers to the drug analysis. Also, the advantages and drawbacks of each methodology, as well as the future expected trends, are evaluated.
Collapse
|
34
|
Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization. Anal Bioanal Chem 2017; 409:2931-2939. [PMID: 28204887 DOI: 10.1007/s00216-017-0239-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022]
Abstract
A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r 2 > 0.9976) in the range of 1-100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5-9.3% for intra-day and 4.8-12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4-0.8 and 1.2-2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development. Graphical abstract ᅟ.
Collapse
|
35
|
Simultaneous extraction and determination of monoamine neurotransmitters in human urine for clinical routine testing based on a dual functional solid phase extraction assisted by phenylboronic acid coupled with liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2017; 409:2859-2871. [DOI: 10.1007/s00216-017-0231-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 01/06/2023]
|
36
|
Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine. Anal Chim Acta 2016; 944:1-13. [DOI: 10.1016/j.aca.2016.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 12/30/2022]
|
37
|
Ríos Á, Zougagh M. Recent advances in magnetic nanomaterials for improving analytical processes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Miękus N, Bączek T. Non-invasive screening for neuroendocrine tumors—Biogenic amines as neoplasm biomarkers and the potential improvement of “gold standards”. J Pharm Biomed Anal 2016; 130:194-201. [DOI: 10.1016/j.jpba.2016.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
|
39
|
Denoroy L, Parrot S. Analysis of Amino Acids and Related Compounds by Capillary Electrophoresis. SEPARATION AND PURIFICATION REVIEWS 2016. [DOI: 10.1080/15422119.2016.1212378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Luliński P, Bamburowicz-Klimkowska M, Dana M, Szutowski M, Maciejewska D. Efficient strategy for the selective determination of dopamine in human urine by molecularly imprinted solid-phase extraction. J Sep Sci 2016; 39:895-903. [DOI: 10.1002/jssc.201501159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Warsaw Poland
| | | | - Mariusz Dana
- Department of Organic Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Warsaw Poland
| | - Mirosław Szutowski
- Department of Toxicology, Faculty of Pharmacy; Medical University of Warsaw; Warsaw Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
41
|
Su LQ, Gao Y, Qin SL, Li JJ. Determination of Atrazine in Vegetables with Extraction by a Magnetite–Chitosan Molecularly Imprinted Polymer and Gas Chromatography. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1140771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Konieczna L, Roszkowska A, Niedźwiecki M, Bączek T. Hydrophilic interaction chromatography combined with dispersive liquid–liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J Chromatogr A 2016; 1431:111-121. [DOI: 10.1016/j.chroma.2015.12.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 01/01/2023]
|
43
|
Masoumi A, Hemmati K, Ghaemy M. Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres. RSC Adv 2016. [DOI: 10.1039/c6ra05873f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective adsorption of pesticides phosalone, diazinon, and chlorpyrifos from aqueous solution by superparamagnetic molecularly imprinted polymer nanosphere.
Collapse
Affiliation(s)
- Arameh Masoumi
- Polymer Research Laboratory
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Khadijeh Hemmati
- Polymer Research Laboratory
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Mousa Ghaemy
- Polymer Research Laboratory
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| |
Collapse
|
44
|
Selective extraction and analysis of catecholamines in rat blood microdialysate by polymeric ionic liquid-diphenylboric acid-packed capillary column and fast separation in high-performance liquid chromatography-electrochemical detector. J Chromatogr A 2015. [DOI: 10.1016/j.chroma.2015.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Abstract
The term composite refers to a class of synthetic materials made from different constituents which exhibit final properties which are different from those of the individual components. Composites have been extensively used in the sample treatment context as sorbents since the resulting solid presents better extraction efficiency. In this realm, polymeric nanocomposites are raised as a powerful alternative. They can be tailored-synthesized for selectivity enhancement or include a magnetic core to simplify the extraction/elution process. This review article points out the relevance of such nanomaterials in bioanalysis. Several synergic combinations of nanoparticles (magnetic, carbon-based) as well as polymeric coatings (conventional, conductive or molecularly imprinted) are commented on. Finally, the potential of biopolymers in the microextraction field is briefly highlighted.
Collapse
|
46
|
|
47
|
Ma RT, Shi YP. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract. Talanta 2015; 134:650-656. [DOI: 10.1016/j.talanta.2014.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 01/16/2023]
|
48
|
Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM. Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A 2015; 1385:77-84. [DOI: 10.1016/j.chroma.2015.01.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
49
|
Jiang L, Chen Y, Luo Y, Tan Y, Ma M, Chen B, Xie Q, Luo X. Determination of catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high-performance liquid chromatography and electrochemical detection. J Sep Sci 2015; 38:460-7. [DOI: 10.1002/jssc.201400920] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/08/2014] [Accepted: 11/18/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Liwei Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Yibang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Yanmei Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University; Nanchang PR China
| |
Collapse
|
50
|
Jin H, Gui R, Wang Z, Zhang F, Xia J, Yang M, Bi S, Xia Y. Two-photon excited quantum dots with compact surface coatings of polymer ligands used as an upconversion luminescent probe for dopamine detection in biological fluids. Analyst 2015; 140:2037-43. [DOI: 10.1039/c4an02303j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-photon excited CdTe quantum dots were developed as a novel upconversion luminescent probe for dopamine detection in biological fluids.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Rijun Gui
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Zonghua Wang
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Feifei Zhang
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Jianfei Xia
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Min Yang
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Sai Bi
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| | - Yanzhi Xia
- College of Chemical Science and Engineering
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles of Shandong Province
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
| |
Collapse
|