1
|
Tang L, Huang Y, Wang Y, Zhao J, Lian H, Dong Y, Zhang Z, Hasebe Y. Highly stretchable, adhesive and conductive hydrogel for flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. Bioelectrochemistry 2025; 163:108882. [PMID: 39671904 DOI: 10.1016/j.bioelechem.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Highly stretchable, adhesive and conductive triblock hydrogel was synthesized and utilized as a flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. The hydrogel was prepared through one-pot polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, methacrylamide, and hydroxyethyl methacrylate. The physical and chemical properties of the hydrogel were characterized with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Glucose oxidase (GOx) and chitosan (CTS) embedded hydrogel was drop-coated on glassy carbon electrode (GCE) and screen printed graphite electrode (SPGE). The resulting GOx/CTS/hydrogel-GCE and GOx/CTS/hydrogel-SPGE exhibited excellent mediated bioelectrocatalytic oxidation current for glucose. The calibration curve of glucose by the GOx/CTS/hydrogel-GCE showed the linear range from 0.25 to 15 mM with the sensitivity of 27.0 µA mM-1 cm-2. This GOx/CTS/hydrogel-based sensing layer coated on the SPGE was stable against bending, and the response to glucose was almost same irrespective of the bending angles (0, 30, 60, and 90 degree). In addition, the response to glucose was not interfered by various organic and inorganic interfering species, allowed to detect glucose in goat serum. Furthermore, the GOx/CTS/hydrogel-GCE kept its original activity of 99.64 % during 30 days' storage under dry state in refrigerator.
Collapse
Affiliation(s)
- Linghui Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yufeng Huang
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Jifan Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Huiyong Lian
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yan Dong
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan.
| |
Collapse
|
2
|
Micro- and nano-devices for electrochemical sensing. Mikrochim Acta 2022; 189:459. [DOI: 10.1007/s00604-022-05548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
AbstractElectrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Collapse
|
3
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
4
|
|
5
|
Aggas JR, Walther BK, Abasi S, Kotanen CN, Karunwi O, Wilson AM, Guiseppi-Elie A. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B. Biosens Bioelectron 2020; 176:112889. [PMID: 33358581 DOI: 10.1016/j.bios.2020.112889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose. The present review takes a critical look of these contributions over the past 20 years and offers some perspective on the future of bioelectronics-based biosensors and systems. Particular attention is given to multiplexed biosensor systems and data fusion for rapid decision making.
Collapse
Affiliation(s)
- John R Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Brandon K Walther
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20814, USA.
| | - Olukayode Karunwi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics, Anderson University, 316 Boulevard, Anderson, SC, 29621, USA.
| | - Ann M Wilson
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| |
Collapse
|
6
|
|
7
|
Hydrogels Obtained via γ-Irradiation Based on Poly(Acrylic Acid) and Its Copolymers with 2-Hydroxyethyl Methacrylate. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogels containing both carboxyl and hydroxyl functional groups have been prepared by γ-irradiation of either aqueous solutions of acrylic acid (AA) and mixtures of AA and 2-hydroxyethyl methacrylate (HEMA) in different ratios, or aqueous solutions of poly(AA), PAA, and poly(AA-co-HEMA) obtained via solution polymerization. A higher absorbed dose is required in order to prepare hydrogels from monomer solutions, compared with those from polymer solutions. The range for the absorbed doses was chosen so that the probability of crosslinking reactions is higher than that of degradation ones. As the radiation energy deposited in a sample increases, the equilibrium swelling degree and the average molar mass between crosslinks diminishes. Chemical transformations induced by radiation were investigated by means of FTIR spectroscopy and thermal analysis of polymers before and after irradiation. For all these systems, the formation of a three-dimensional network enhances the glass transition temperature and thermal stability, but a further increase in the crosslinking degree may have the reverse effect on the glass transition temperature. Depending on the preparation protocol and/or hydrogel composition, superabsorbent materials that can bind different compounds throughout side functional groups may be obtained.
Collapse
|
8
|
Mobed A, Mehri P, Hasanzadeh M, Mokhtarzadeh A. Binding of Leishmania spp with gold nanoparticles supported polyethylene glycol and its application for the sensitive detection of infectious photogenes in human plasma samples: A novel biosensor. J Mol Recognit 2020; 33:e2839. [PMID: 32266744 DOI: 10.1002/jmr.2839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 02/02/2023]
Abstract
The management of pathogen detection using a rapid and cost-effective method presents a major challenge to the biological safety of the world. The field of pathogen detection is nascent and therefore, faces a dynamic set of challenges as the field evolves. Visceral leishmaniasis (VL), or kala-azar is the most severe form of leishmaniasis. Delay to the accurate diagnosis and treatment is likely to lead to fatality. The reliable, fast and sensitive detection is closely linked to safe and effective treatment of Leishmania spp. Despite several routine and old method for sensitive and specificity detection of Leishmania spp, there is highly demand for developing modern and powerfully system. In this study a novel ultra-sensitive DNA-based biosensor was prepared for detection of Leishmania spp. For the first time, the specific and thiolated sequences of the Leishmania spp genome (5'-SH-[CH2 ]6 ATCTCGTAAGCAGATCGCTGTGTCAC-3') were recognized by electrochemical methods. Also, selectivity of the proposed bioassay was examined by three sequences that were mismatched in 1, 2, and 3 nucleotides. The linear range (10-6 to 10-21 M) and limit of detection (LLOQ = 1 ZM) obtained are remarkable in this study. Also, simple and cost-effective construction of genosensors was another advantage of the proposal DNA-based assay. The experimental results promise a fast and simple method in detection of kala-azar patients with huge potential of the nanocomposite-based probe for development of ideal biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Mehri
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
A review of advances in the preparation and application of polyaniline based thermoset blends and composites. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02052-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractFor several decades, forming blend and composite of polyaniline (PANI) with insulating polymers has been a widely studied research area because of the potential applications of such blends, which have a unique combination of mechanical properties, the processability of conventional polymers and the electrical property of conducting polymers. The current review paper will emphasize PANI composites or blends with thermosetting polymer matrices. The enhanced electro-mechanical properties of the blends and composites depend on the uniform dispersion of the PANI particle in polymer matrix. Therefore, considerable studies have focused on improving the distribution of PANI particles within the thermoset matrices. In this review paper, all the parameters and conditions that influence the surface morphology and application of PANI thermoset blends and composites will be described systematically. Recent progress on PANI based thermoset system with multifunctional ternary composites research will be highlighted in this paper. Furthermore, encouraging applications of different PANI thermoset composites and blends are discussed, such as flame-retardant materials, lightning damage suppression, metal ion removal, anticorrosive coating, electromagnetic shielding, conductive adhesives, and sensing materials.
Collapse
|
10
|
Wei H, Liu Z, Zhu H, He J, Li J. Preparation and Characterization of Thermal and pH Dual Sensitive Hydrogel Based on 1,3‐Dipole Cycloaddition Reaction. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongliang Wei
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Zijun Liu
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Hongzheng Zhu
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Juan He
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Jingjing Li
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| |
Collapse
|
11
|
Hasanzadeh M, Shadjou N, de la Guardia M. Nanosized hydrophobic gels: Advanced supramolecules for use in electrochemical bio- and immunosensing. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
|
13
|
Wannapob R, Vagin MY, Liu Y, Thavarungkul P, Kanatharana P, Turner APF, Mak WC. Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33368-33376. [PMID: 28846378 DOI: 10.1021/acsami.7b12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable organic bioelectronics provide a fast and cost-effective approach for the fabrication of novel biodevices, while the general challenge is to achieve optimized reaction kinetics at multiphase boundaries between biomolecules and electrodes. Here, we present an entirely new concept based on a modular approach for the construction of heterostructured bioelectronic interfaces by using tailored functional "biological microparticles" combined with "transducer microparticles" as modular building blocks. This approach offers high versatility for the design and fabrication of bioelectrodes with a variety of forms of interparticle spatial organization, from layered-structures to more advance bulk heterostructured architectures. The heterostructured biocatalytic electrodes delivered twice the reaction rate and a six-fold increase in the effective diffusion kinetics in response to a catalytic model using glucose as the substrate, together with the advantage of shortened diffusion paths for reactants between multiple interparticle junctions and large active particle surface. The consequent benefits of this improved performance combined with the simple means of mass production are of major significance for the emerging printed electronics industry.
Collapse
Affiliation(s)
- Rodtichoti Wannapob
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Mikhail Yu Vagin
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 602 21 Norrköping, Sweden
| | - Yu Liu
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- College of Life and Science, Sichuan Agricultural University , Yaan 625014, People's Republic of China
| | | | | | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| |
Collapse
|
14
|
|
15
|
Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A. Biosens Bioelectron 2016; 79:835-42. [DOI: 10.1016/j.bios.2016.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 11/23/2022]
|
16
|
Pérez-Martínez C, Morales Chávez SD, del Castillo-Castro T, Lara Ceniceros TE, Castillo-Ortega M, Rodríguez-Félix D, Gálvez Ruiz JC. Electroconductive nanocomposite hydrogel for pulsatile drug release. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Taktak F, Bütün V. Novel zwitterionic ABA-type triblock copolymer for pH- and salt-controlled release of risperidone. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1099100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor. NANOMATERIALS 2015; 5:1544-1555. [PMID: 28347080 PMCID: PMC5304625 DOI: 10.3390/nano5031544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.
Collapse
|
19
|
Burrs SL, Vanegas DC, Rong Y, Bhargava M, Mechulan N, Hendershot P, Yamaguchi H, Gomes C, McLamore ES. A comparative study of graphene-hydrogel hybrid bionanocomposites for biosensing. Analyst 2015; 140:1466-76. [PMID: 25612313 DOI: 10.1039/c4an01788a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels have become increasingly popular as immobilization materials for cells, enzymes and proteins for biosensing applications. Enzymatic biosensors that utilize hydrogel as an encapsulant have shown improvements over other immobilization techniques such as cross linking and covalent bonding. However, to date there are no studies which directly compare multiple hydrogel-graphene nanocomposites using the same enzyme and test conditions. This study compares the performance of four different hydrogels used as protein encapsulants in a mediator-free biosensor based on graphene-nanometal-enzyme composites. Alcohol oxidase (AOx) was encapsulated in chitosan poly-N-isopropylacrylamide (PNIPAAM), silk fibroin or cellulose nanocrystals (CNC) hydrogels, and then spin coated onto a nanoplatinum-graphene modified electrode. The transduction mechanism for the biosensor was based on AOx-catalyzed oxidation of methanol to produce hydrogen peroxide. To isolate the effect(s) of stimulus response on biosensor behavior, all experiments were conducted at 25 °C and pH 7.10. Electroactive surface area (ESA), electrochemical impedance spectroscopy (EIS), sensitivity to methanol, response time, limit of detection, and shelf life were measured for each bionanocomposite. Chitosan and PNIPAAM had the highest sensitivity (0.46 ± 0.2 and 0.3 ± 0.1 μA mM(-1), respectively) and electroactive surface area (0.2 ± 0.06 and 0.2 ± 0.02 cm(2), respectively), as well as the fastest response time (4.3 ± 0.8 and 4.8 ± 1.1 s, respectively). Silk and CNC demonstrated lower sensitivity (0.09 ± 0.02 and 0.15 ± 0.03 μA mM(-1), respectively), lower electroactive surface area (0.12 ± 0.02 and 0.09 ± 0.03 cm(2), respectively), and longer response time (8.9 ± 2.1 and 6.3 ± 0.8 s, respectively). The high porosity of chitosan, PNIPAAM, and silk gels led to excellent transport, which was significantly better than CNC bionanocomposites. Electrochemical performance of CNC bionanocomposites were relatively poor, which may be linked to poor gel stability. The differences between the Chitosan/PNIPAAM group and the Silk/CNC group were statistically significant (p < 0.05) based on ANOVA. Each of these composites was within the range of other published devices in the literature, while some attributes were significantly improved (namely response time and shelf life). The main advantages of these hydrogel composites over other devices is that only one enzyme is required, all materials are non-toxic, the sensor does not require mediators/cofactors, and the shelf life and response time are significantly improved over other devices.
Collapse
Affiliation(s)
- S L Burrs
- Agricultural & Biological Engineering Department, University of Florida, 1741 Museum Road, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu YY, Zhang J, Fang QC, Jiang DM, Lin CC, Zeng Y, Jiang JS. Salt and pH sensitive semi-interpenetrating polyelectrolyte hydrogels poly(HEMA-co-METAC)/PEG and its BSA adsorption behavior. J Appl Polym Sci 2014. [DOI: 10.1002/app.41537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan-Yan Hu
- Department of Physics; Center for Functional Nanomateriels and Devices, East China Normal University; Shanghai 200241 People's Republic of China
| | - Jing Zhang
- Shanghai Key Laboratory of Diabeties Mellitus, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes; Shanghai 200233 People's Republic of China
- Department of Endocrinology and Metabolism; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 People's Republic of China
| | - Qi-Chen Fang
- Shanghai Key Laboratory of Diabeties Mellitus, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes; Shanghai 200233 People's Republic of China
- Department of Endocrinology and Metabolism; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 People's Republic of China
| | - Dong-Mei Jiang
- Department of Physics; Center for Functional Nanomateriels and Devices, East China Normal University; Shanghai 200241 People's Republic of China
| | - Chu-Cheng Lin
- Shanghai Institute of Ceramics; Chinese Academy of Science; Shanghai 200050 People's Republic of China
| | - Yi Zeng
- Shanghai Institute of Ceramics; Chinese Academy of Science; Shanghai 200050 People's Republic of China
| | - Ji-Sen Jiang
- Department of Physics; Center for Functional Nanomateriels and Devices, East China Normal University; Shanghai 200241 People's Republic of China
| |
Collapse
|
21
|
Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers. Anal Bioanal Chem 2014; 406:5657-67. [DOI: 10.1007/s00216-014-7945-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
22
|
Biofabrication Using Pyrrole Electropolymerization for the Immobilization of Glucose Oxidase and Lactate Oxidase on Implanted Microfabricated Biotransducers. Bioengineering (Basel) 2014; 1:85-110. [PMID: 28955018 DOI: 10.3390/bioengineering1010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/01/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022] Open
Abstract
The dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037) is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Fabrication of the biorecognition membrane via pyrrole electropolymerization and both in vitro and in vivo characterization of the resulting biotransducer is described. The influence of EDC-NHS covalent conjugation of glucose oxidase with 4-(3-pyrrolyl) butyric acid (monomerization) and with 4-sulfobenzoic acid (sulfonization) on biosensor performance was examined. As the extent of enzyme conjugation was increased sensitivity decreased for monomerized enzymes but increased for sulfonized enzymes. Implanted biotransducers were examined in a Sprague-Dawley rat hemorrhage model. Resection after 4 h and subsequent in vitro re-characterization showed a decreased sensitivity from 0.68 (±0.40) to 0.22 (±0.17) µA·cm-2·mM-1, an increase in the limit of detection from 0.05 (±0.03) to 0.27 (±0.27) mM and a six-fold increase in the response time from 41 (±18) to 244 (±193) s. This evidence reconfirms the importance of biofouling at the bio-abio interface and the need for mitigation strategies to address the foreign body response.
Collapse
|
23
|
Kotanen CN, Guiseppi-Elie A. Monitoring systems and quantitative measurement of biomolecules for the management of trauma. Biomed Microdevices 2014; 15:561-77. [PMID: 23494594 DOI: 10.1007/s10544-013-9756-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Continued high morbidity and complications due to trauma related hemorrhage underscores the fact that our understanding of the detailed molecular events of trauma are inadequate to bring life-saving changes to practice. The current state of efficacy and advances in biomedical microdevice technology for trauma diagnostics concerning hemorrhage and hemorrhagic shock was considered with respect to vital signs and metabolic biomarkers. Tachycardia and hypotension are markers of hemorrhagic shock in decompensated trauma patients. Base deficit has been predicative of injury severity at hospital admission. Tissue oxygen saturation has been predicative of onset of multiple organ dysfunction syndrome. Blood potassium levels increase with onset of hemorrhagic shock. Lactate is a surrogate for tissue hypoxia and its clearance predicts mortality. Triage glucose measurements have been shown to be specific in predicting major injuries. No vital sign has yet to be proven effective as an independent predictor of trauma severity. Point of care (POC) devices allow for rapid results, easy sample preparation and processing, small sample volumes, small footprint, multifunctional analysis, and low cost. Advances in the field of in-vivo biosensors has provided a much needed platform by which trauma related metabolites can be monitored easily, rapidly and continuously. Multi-analyte monitoring biosensors have the potential to explore areas still undiscovered in the realm of trauma physiology.
Collapse
Affiliation(s)
- Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips, Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, SC 29625, USA.
| | | |
Collapse
|
24
|
Yang Z, Zhang C, Zhang J, Bai W. Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosens Bioelectron 2014; 51:268-73. [DOI: 10.1016/j.bios.2013.07.054] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/16/2013] [Accepted: 07/21/2013] [Indexed: 02/07/2023]
|
25
|
Thakur B, Amarnath CA, Sawant SN. Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Adv 2014. [DOI: 10.1039/c4ra05264a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile strategy for synthesis of polyaniline nanoparticles and their application for development of highly sensitive amperometric glucose biosensor is demonstrated herein.
Collapse
Affiliation(s)
- Bhawana Thakur
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | | | - Shilpa N. Sawant
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| |
Collapse
|
26
|
Yang Z, Zhang C, Zhang J, Huang L. Development of magnetic single-enzyme nanoparticles as electrochemical sensor for glucose determination. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Kotanen CN, Wilson AN, Dong C, Dinu CZ, Justin GA, Guiseppi-Elie A. The effect of the physicochemical properties of bioactive electroconductive hydrogels on the growth and proliferation of attachment dependent cells. Biomaterials 2013; 34:6318-27. [DOI: 10.1016/j.biomaterials.2013.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/12/2013] [Indexed: 11/28/2022]
|