1
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Lu N, Sticker D, Kretschmann A, Petersen NJ, Kutter JP. A thiol-ene microfluidic device enabling continuous enzymatic digestion and electrophoretic separation as front-end to mass spectrometric peptide analysis. Anal Bioanal Chem 2020; 412:3559-3571. [DOI: 10.1007/s00216-020-02609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
|
3
|
Liu X, Azhar I, Khan H, Qu Q, Tian M, Yang L. Capillary electrophoresis-immobilized enzyme microreactors for acetylcholinesterase assay with surface modification by highly-homogeneous microporous layer. J Chromatogr A 2019; 1609:460454. [PMID: 31443966 DOI: 10.1016/j.chroma.2019.460454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
We propose a new capillary electrophoresis (CE)-based open-tubular immobilized enzyme microreactor (OT-IMER) and its application in acetylcholinesterase (AChE) assays. The IMER is fabricated at the capillary inlet (reactor length of ∼1 cm) with the inner surface modified by a micropore-structured layer (thickness of ∼220 nm, pore size of ∼15-20 nm). The use of IMER accomplishes the enzymatic reaction and separation/detection of the products in the same capillary within 3 min. The feasibility of the proposed method is evaluated via online analysis of the activity and inhibition of AChE enzymes. Such method exhibits good reproducibility with relative standard deviation (RSD) of less than 4% for 20 runs, and the enzyme remains over 82% of the initial activity after usage of 7 days. The IMERs are successfully applied to detect the organophosphorus pesticide, paraoxon, in three types of vegetable juice samples with a limit of detection of as low as 61 ng mL-1. Results show that the spiked samples are in the range of 89.6-105.9% with RSD less than 2.7%, thereby indicating its satisfactory level of accurate and reliable analysis of real samples by using the proposed method. Our study indicates that, with combination of advantages of both porous-layer capillary and CE OT-IMER, the proposed method is capable to enhance enzymatic reactions and to achieve rapid analysis with simple instrumentation and operation, thus would pave the way for extensive application of CE-based IMERs in a variety of bioanalysis.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Irfan Azhar
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Habib Khan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Qishu Qu
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, 130052, China.
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
4
|
|
5
|
Gattu S, Crihfield CL, Lu G, Bwanali L, Veltri LM, Holland LA. Advances in enzyme substrate analysis with capillary electrophoresis. Methods 2018; 146:93-106. [PMID: 29499329 PMCID: PMC6098732 DOI: 10.1016/j.ymeth.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Capillary electrophoresis provides a rapid, cost-effective platform for enzyme and substrate characterization. The high resolution achievable by capillary electrophoresis enables the analysis of substrates and products that are indistinguishable by spectroscopic techniques alone, while the small volume requirement enables analysis of enzymes or substrates in limited supply. Furthermore, the compatibility of capillary electrophoresis with various detectors makes it suitable for KM determinations ranging from nanomolar to millimolar concentrations. Capillary electrophoresis fundamentals are discussed with an emphasis on the separation mechanisms relevant to evaluate sets of substrate and product that are charged, neutral, and even chiral. The basic principles of Michaelis-Menten determinations are reviewed and the process of translating capillary electrophoresis electropherograms into a Michaelis-Menten curve is outlined. The conditions that must be optimized in order to couple off-line and on-line enzyme reactions with capillary electrophoresis separations, such as incubation time, buffer pH and ionic strength, and temperature, are examined to provide insight into how the techniques can be best utilized. The application of capillary electrophoresis to quantify enzyme inhibition, in the form of KI or IC50 is detailed. The concept and implementation of the immobilized enzyme reactor is described as a means to increase enzyme stability and reusability, as well as a powerful tool for screening enzyme substrates and inhibitors. Emerging techniques focused on applying capillary electrophoresis as a rapid assay to obtain structural identification or sequence information about a substrate and in-line digestions of peptides and proteins coupled to mass spectrometry analyses are highlighted.
Collapse
Affiliation(s)
- Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Cassandra L Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lindsay M Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
6
|
Yang J, Hu X, Xu J, Liu X, Yang L. Single-Step In Situ Acetylcholinesterase-Mediated Alginate Hydrogelation for Enzyme Encapsulation in CE. Anal Chem 2018; 90:4071-4078. [DOI: 10.1021/acs.analchem.7b05353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiqing Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Xiaotong Hu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Jia Xu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Xin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| |
Collapse
|
7
|
Zhao Y, Sun L, Zhu G, Dovichi NJ. Coupling Capillary Zone Electrophoresis to a Q Exactive HF Mass Spectrometer for Top-down Proteomics: 580 Proteoform Identifications from Yeast. J Proteome Res 2016; 15:3679-3685. [PMID: 27490796 DOI: 10.1021/acs.jproteome.6b00493] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Heemskerk AAM, Deelder AM, Mayboroda OA. CE-ESI-MS for bottom-up proteomics: Advances in separation, interfacing and applications. MASS SPECTROMETRY REVIEWS 2016; 35:259-271. [PMID: 24852088 DOI: 10.1002/mas.21432] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
With the development of more sensitive hyphenation strategies for capillary electrophoresis-electrospray-mass spectrometry the technique has reemerged as technique with high separation power combined with high sensitivity in the analysis of peptides and protein digests. This review will discuss the newly developed hyphenation strategies for CE-ESI-MS and their application in bottom-up proteomics as well as the applications in the same time span, 2009 to present, using co-axial sheathliquid. Subsequently all separate aspects in the development of a CE-ESI-MS method for bottom-up proteomics shall be discussed, highlighting certain applications and discussing pros and cons of the various choices. The separation of peptides in a capillary electrophoresis system is discussed including the great potential for modeling of this migration of peptides due to the simple electrophoretic separation process. Furthermore, the technical aspects of method development are discussed, namely; background electrolyte choice, coating of the separation capillary and chosen loading method. Finally, conclusions and an outlook on future developments in the field of bottom-up proteomics by CE-ESI-MS will be provided.
Collapse
Affiliation(s)
- Anthonius A M Heemskerk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| |
Collapse
|
9
|
Ollikainen E, Bonabi A, Nordman N, Jokinen V, Kotiaho T, Kostiainen R, Sikanen T. Rapid separation of phosphopeptides by microchip electrophoresis-electrospray ionization mass spectrometry. J Chromatogr A 2016; 1440:249-254. [PMID: 26931427 DOI: 10.1016/j.chroma.2016.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/12/2023]
Abstract
Protein phosphorylation is a significant biological process, but separation of phosphorylated peptide isomers is often challenging for many analytical techniques. We developed a microchip electrophoresis (MCE) method for rapid separation of phosphopeptides with on-chip electrospray ionization (ESI) facilitating online sample introduction to the mass spectrometer (MS). With the method, two monophosphorylated positional isomers of insulin receptor peptide (IR1A and IR1B) and a triply phosphorylated insulin receptor peptide (IR3), all with the same amino acid sequence, were separated from the nonphosphorylated peptide (IR0) in less than one minute. For efficient separation of the positional peptide isomers from each other derivatization with 9-fluorenylmethyl reagents (either chloroformate, Fmoc-Cl, or N-succinimidyl carbonate, Fmoc-OSu) was required before the analysis. The derivatization improved not only the separation of the monophosphorylated positional peptide isomers in MCE, but also identification of the phosphorylation site based on MS/MS.
Collapse
Affiliation(s)
- Elisa Ollikainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Ashkan Bonabi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Nina Nordman
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Ville Jokinen
- Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, Finland, Micronova, Tietotie 3, 02150, Finland
| | - Tapio Kotiaho
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 University of Helsinki, Finland; Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 University of Helsinki, Finland
| | - Risto Kostiainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Tiina Sikanen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 University of Helsinki, Finland.
| |
Collapse
|
10
|
Zhao Y, Sun L, Knierman MD, Dovichi NJ. Fast separation and analysis of reduced monoclonal antibodies with capillary zone electrophoresis coupled to mass spectrometry. Talanta 2016; 148:529-33. [DOI: 10.1016/j.talanta.2015.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
|
11
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
12
|
|
13
|
Zhao Y, Riley NM, Sun L, Hebert AS, Yan X, Westphall MS, Rush MJP, Zhu G, Champion MM, Medie FM, DiGiuseppe Champion PA, Coon JJ, Dovichi NJ. Coupling capillary zone electrophoresis with electron transfer dissociation and activated ion electron transfer dissociation for top-down proteomics. Anal Chem 2015; 87:5422-9. [PMID: 25893372 PMCID: PMC4439324 DOI: 10.1021/acs.analchem.5b00883] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Top-down proteomics offers the potential for full protein characterization, but many challenges remain for this approach, including efficient protein separations and effective fragmentation of intact proteins. Capillary zone electrophoresis (CZE) has shown great potential for separation of intact proteins, especially for differentially modified proteoforms of the same gene product. To date, however, CZE has been used only with collision-based fragmentation methods. Here we report the first implementation of electron transfer dissociation (ETD) with online CZE separations for top-down proteomics, analyzing a mixture of four standard proteins and a complex protein mixture from the Mycobacterium marinum bacterial secretome. Using a multipurpose dissociation cell on an Orbitrap Elite system, we demonstrate that CZE is fully compatible with ETD as well as higher energy collisional dissociation (HCD), and that the two complementary fragmentation methods can be used in tandem on the electrophoretic time scale for improved protein characterization. Furthermore, we show that activated ion electron transfer dissociation (AI-ETD), a recently introduced method for enhanced ETD fragmentation, provides useful performance with CZE separations to greatly increase protein characterization. When combined with HCD, AI-ETD improved the protein sequence coverage by more than 200% for proteins from both standard and complex mixtures, highlighting the benefits electron-driven dissociation methods can add to CZE separations.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nicholas M. Riley
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alexander S. Hebert
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael S. Westphall
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Matthew J. P. Rush
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Felix Mba Medie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Joshua J. Coon
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
15
|
Mou S, Sun L, Dovichi NJ. Accurate determination of peptide phosphorylation stoichiometry via automated diagonal capillary electrophoresis coupled with mass spectrometry: proof of principle. Anal Chem 2013; 85:10692-6. [PMID: 24144020 DOI: 10.1021/ac402858a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While reversible protein phosphorylation plays an important role in many cellular processes, simple and reliable measurement of the stoichiometry of phosphorylation can be challenging. This measurement is confounded by differences in the ionization efficiency of phosphorylated and unphosphorylated sites during analysis by mass spectrometry. Here, we demonstrate diagonal capillary electrophoresis-mass spectrometry for the accurate determination of this stoichiometry. Diagonal capillary electrophoresis is a two-dimensional separation method that incorporates an immobilized alkaline phosphatase microreactor at the distal end of the first capillary and employs identical electrophoretic separation modes in both dimensions. The first dimension is used to separate a mixture of the phosphorylated and unphosphorylated forms of a peptide. Fractions are parked in the reactor where they undergo complete dephosphorylation. The products are then periodically transferred to the second capillary and analyzed by mass spectrometry (MS). Because the phosphorylated and unphosphorylated forms differ in charge, they are well resolved in the first dimension separation. Because the unphosphorylated and dephosphorylated peptides are identical, there is no bias in ionization efficiency, and phosphorylation stoichiometry can be determined by the ratio of the signal of the two forms. A calibration curve was generated from mixtures of a phosphorylated standard peptide and its unphosphorylated form, prepared in a bovine serum albumin tryptic digest. This proof of principle experiment demonstrated a linear response across nearly 2 orders of magnitude in stoichiometry.
Collapse
Affiliation(s)
- Si Mou
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|