1
|
Tonn J, Keithley RB. Waveform Optimization for the In Vitro Detection of Caffeic Acid by Fast-Scan Cyclic Voltammetry. ACS MEASUREMENT SCIENCE AU 2024; 4:534-545. [PMID: 39430967 PMCID: PMC11487675 DOI: 10.1021/acsmeasuresciau.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 10/22/2024]
Abstract
Caffeic acid is a polyphenol of critical importance in plants, involved in a variety of physiological processes including lignin formation, cellular growth, stress response, and external signaling. This small molecule also acts as a powerful antioxidant and thus has therapeutic potential for a variety of health conditions. Traditional methods of detecting caffeic acid lack appropriate temporal resolution to monitor real time concentration changes on a subsecond time scale with nM detection limits. Here we report on the first usage of fast-scan cyclic voltammetry with carbon fiber microelectrodes for the detection of caffeic acid. Through the use of flow injection analysis, the optimal waveform for its detection under acidic conditions at a scan rate of 400 V/s was determined to be sawtooth-shaped, from 0 to 1.4 to -0.4 to 0 V. Signal was linear with concentration up to 1 μM with a sensitivity of 44.8 ± 1.3 nA/μM and a detection limit of 2.3 ± 0.2 nM. The stability of its detection was exceptional, with an average of 0.96% relative standard deviation across 32 consecutive injections. This waveform was also successful in detecting other catechol-based plant antioxidants including 5-chlorogenic acid, oleuropein, rosmarinic acid, chicoric acid, and caffeic acid phenethyl ester. Finally, we show the successful use of fast-scan cyclic voltammetry in monitoring the degradation of caffeic acid by polyphenol oxidase on a subsecond time scale via a novel modification of a Ramsson cell. This work demonstrates that fast-scan cyclic voltammetry can be used to successfully monitor real-time dynamic changes in the concentrations of catechol-containing plant polyphenols.
Collapse
Affiliation(s)
- Joseph
N. Tonn
- Department of Chemistry, Roanoke College, 221 College Lane, Salem, Virginia 24153, United States
| | - Richard B. Keithley
- Department of Chemistry, Roanoke College, 221 College Lane, Salem, Virginia 24153, United States
| |
Collapse
|
2
|
Bounegru AV, Apetrei C. Studies on the Detection of Oleuropein from Extra Virgin Olive Oils Using Enzymatic Biosensors. Int J Mol Sci 2022; 23:ijms232012569. [PMID: 36293426 PMCID: PMC9604468 DOI: 10.3390/ijms232012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
Oleuropein (OLEU) is an important indicator of the quality and authenticity of extra virgin olive oils (EVOO). Electrochemical sensors and biosensors for the detection of oleuropein can be used to test the adulteration of extra virgin olive oils. The present study aimed at the qualitative and quantitative determination of oleuropein in commercial EVOO samples by applying electrochemical techniques, cyclic voltammetry (CV) and square wave voltammetry (SWV). The sensing devices used were two newly constructed enzyme biosensors, supported on single-layer carbon-nanotube-modified carbon screen-printed electrode (SPE/SWCNT) on whose surface tyrosinase (SPE/SWCNT/Tyr) and laccase (SPE/SWCNT/Lac) were immobilized, respectively. The active surfaces of the two biosensors were analyzed and characterized by different methods, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) and the results confirmed the efficient immobilization of the enzymes. SPE/SWCNT/Tyr was characterized by a low detection limit (LOD = 9.53 × 10−8 M) and a very good sensitivity (0.0718 μA·μM−1·cm−2) over a wide linearity range from 0.49 to 11.22 μM. The process occurring at the biosensor surface corresponds to kinetics (h = 0.90), and tyrosinase showed a high affinity towards OLEU. The tyrosinase-based biosensor was shown to have superior sensitive properties to the laccase-based one. Quantitative determination of OLEU in EVOOs was performed using SPE/SWCNT/Tyr and the results confirmed the presence of the compound in close amounts in the EVOOs analysed, proving that they have very good sensory properties.
Collapse
|
3
|
Bounegru AV, Apetrei C. Sensitive Detection of Hydroxytyrosol in Extra Virgin Olive Oils with a Novel Biosensor Based on Single-Walled Carbon Nanotubes and Tyrosinase. Int J Mol Sci 2022; 23:ijms23169132. [PMID: 36012400 PMCID: PMC9409382 DOI: 10.3390/ijms23169132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/18/2022] Open
Abstract
Hydroxytyrosol (HT) is an important marker for the authenticity and quality assessment of extra virgin olive oils (EVOO). The aim of the study was the qualitative and quantitative determination of hydroxytyrosol in commercial extra virgin olive oils of different origins and varieties using a newly developed biosensor based on a screen-printed electrode modified with single-layer carbon nanotubes and tyrosinase (SPE-SWCNT-Ty). The enzyme was immobilized on a carbon-based screen-printed electrode previously modified with single-layer carbon nanotubes (SPE-SWCNT-Ty) by the drop-and-dry method, followed by cross-linking with glutaraldehyde. The modified electrode surface was characterized by different methods, including electrochemical (cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS)) and spectrometric (Fourier transform infrared (FTIR) spectroscopy) methods. Cyclic voltammetry was used for the quantitative determination of HT, obtaining a detection limit of 3.49 × 10−8 M and a quantification limit of 1.0 × 10−7 M, with a wide linearity range (0.49–15.602 µM). The electrochemical performance of the SPE-SWCNT-Ty biosensor was compared with that of the modified SPE-SWCNT sensor, and the results showed increased selectivity and sensitivity of the biosensor due to the electrocatalytic activity of tyrosinase. The results obtained from the quantitative determination of HT showed that commercial EVOOs contain significant amounts of HT, proving the high quality of the finished products. The determination of the antiradical activity of HT was carried out spectrophotometrically using the free reagent galvinoxyl. The results showed that there is a very good correlation between the antiradical capacity of EVOOs, the voltammetric response and implicitly the increased concentration of HT. SPE-SWCNT-Ty has multiple advantages such as sensitivity, selectivity, feasibility and low cost and could be used in routine analysis for quality control of food products such as vegetable oils.
Collapse
|
4
|
Wang H, Xie A, Li S, Wang J, Chen K, Su Z, Song N, Luo S. Three-dimensional g-C3N4/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. Anal Chim Acta 2022; 1211:339907. [DOI: 10.1016/j.aca.2022.339907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 12/31/2022]
|
5
|
Cittan M. Development of a spiramycin sensor based on adsorptive stripping linear sweep voltammetry and its application for the determination of spiramycin in chicken egg samples. Turk J Chem 2021; 45:463-474. [PMID: 34104057 PMCID: PMC8164207 DOI: 10.3906/kim-2010-68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/01/2022] Open
Abstract
Herein, an adsorptive stripping linear sweep voltammetric technique was described to determine spiramycin, a macrolide antibiotic, using a carboxylic multiwalled glassy carbon electrode modified with carbon nanotubes. The main principle of the analytical methodology proposed was based on the preconcentration of spiramycin by open-circuit accumulation of the macrolide onto the modified electrode surface. As a result of the adsorption affinity of spiramycin to the modified surface, the sensitivity of the glassy carbon electrode was significantly increased for the determination of spiramycin. The electrochemical behavior of spiramycin was evaluated by cyclic voltammetry and the irreversible anodic peak observed was measured as an analytical signal in the methodology. The proposed electrochemical sensing platform was quite linear in the range of 0.100–40.0 µM of spiramycin concentration with a correlation coefficient of 0.9993. The limit of detection and the limit of quantification were 0.028 and 0.094 µM, respectively. The intra- and interday repeatability of the proposed sensor was within acceptable limits. Finally, the applicability of the electrochemical methodology was examined by determining the drug content of chicken egg samples spiked with spiramycin standard. A rapid and easy extraction technique was performed to extract spiked spiramycin from the egg samples. The extraction technique followed had good recovery values between 85.3 ± 4.0% and 93.4 ± 1.9%.
Collapse
Affiliation(s)
- Mustafa Cittan
- Department of Chemistry, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa Turkey
| |
Collapse
|
6
|
Multi-walled carbon nanotube modified glassy carbon electrode as curcumin sensor. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02615-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Özdokur KV. Voltammetric Determination of Isoniazid Drug in Various Matrix by Using CuO
x
Decorated MW‐CNT Modified Glassy Carbon Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- K. Volkan Özdokur
- Erzincan Binali Yıldırım UniversityFaculty of Science and Letter, Department of Chemistry Erzincan Turkey
| |
Collapse
|
8
|
Koçak ÇC, Karabiberoğlu ŞU, Dursun Z. Highly sensitive determination of gallic acid on poly (l-Methionine)-carbon nanotube composite electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Yazar S, Kurtulbaş E, Ortaboy S, Atun G, Şahin S. Screening of the antioxidant properties of olive (Olea europaea) leaf extract by titanium based reduced graphene oxide electrode. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0288-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Kurtulbaş E, Yazar S, Ortaboy S, Atun G, Şahin S. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1630397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ebru Kurtulbaş
- Engineering Faculty, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Sibel Yazar
- Engineering Faculty, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Sinem Ortaboy
- Engineering Faculty, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Gülten Atun
- Engineering Faculty, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Selin Şahin
- Engineering Faculty, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| |
Collapse
|
11
|
Koçak ÇC. Poly(Taurine‐Glutathione)/Carbon Nanotube Modified Glassy Carbon Electrode as a New Levofloxacin Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Çağrı Ceylan Koçak
- Dokuz Eylul UniversityBergama Vocational School 35700 Bergama, Izmir Turkey Tel: +90 (0232) 632 12 47/115 Fax: +90 (0232) 631 11 10
| |
Collapse
|
12
|
Rojas D, Della Pelle F, Del Carlo M, Fratini E, Escarpa A, Compagnone D. Nanohybrid carbon black-molybdenum disulfide transducers for preconcentration-free voltammetric detection of the olive oil o-diphenols hydroxytyrosol and oleuropein. Mikrochim Acta 2019; 186:363. [PMID: 31104163 DOI: 10.1007/s00604-019-3418-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/05/2019] [Indexed: 11/26/2022]
Abstract
A new hybrid nanomaterial is used in a screen-printed electrode (SPE) for sensing of the ortho-diphenols oleuropein (OLEU) and hydroxytyrosol (HYT) in extra virgin olive oil (EVOO) and related samples. The hybrid material consists of carbon black (CB) and molybdenum disulfide (MoS2). In comparison with individual nanomaterials, CB-MoS2 exhibits improved charge-transfer ability, low charge-transfer resistance, high electrical conductivity and enhanced electrocatalysis. The sensor is also characterized by (a) high sensitivity that avoids the need for adsorptive voltammetry, (b) reduced analysis time, and (c) high anti-fouling ability (electrode RSDOLEU < 8%, for n = 10). OLEU can be detected in the 0.3 to 30 μM concentration range with a 0.1 μM LOD, and HYT in the 2-100 μM range with a 1 μM LOD. A comparison of the data obtained by this sensor and by HPLC-UV exhibited high correlation (r = 0.995, p < 0.05). These data revealed the reliability of CB-MoS2 for analysis of complex EVOO and related samples. Graphical abstract CB-MoS2-based electrochemical sensor for fast and reliable assessment of total ortho-diphenols antioxidants in olive oils.
Collapse
Affiliation(s)
- Daniel Rojas
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, 64023, Teramo, Italy
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871, Madrid, Spain
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, 64023, Teramo, Italy
| | - Michele Del Carlo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, 64023, Teramo, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3 Sesto Fiorentino, I-50019, Florence, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871, Madrid, Spain.
- Chemical Research Institute "Andres M. del Rio", University of Alcalá, E-28871, Madrid, Spain.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, 64023, Teramo, Italy.
| |
Collapse
|
13
|
Cittan M, Çelik A. Development and Validation of an Analytical Methodology Based on Liquid Chromatography-Electrospray Tandem Mass Spectrometry for the Simultaneous Determination of Phenolic Compounds in Olive Leaf Extract. J Chromatogr Sci 2018; 56:336-343. [PMID: 29373655 DOI: 10.1093/chromsci/bmy003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/06/2018] [Indexed: 11/14/2022]
Abstract
A simple method was validated for the analysis of 31 phenolic compounds using liquid chromatography-electrospray tandem mass spectrometry. Proposed method was successfully applied to the determination of phenolic compounds in an olive leaf extract and 24 compounds were analyzed quantitatively. Olive biophenols were extracted from olive leaves by using microwave-assisted extraction with acceptable recovery values between 78.1 and 108.7%. Good linearities were obtained with correlation coefficients over 0.9916 from calibration curves of the phenolic compounds. The limits of quantifications were from 0.14 to 3.2 μg g-1. Intra-day and inter-day precision studies indicated that the proposed method was repeatable. As a result, it was confirmed that the proposed method was highly reliable for determination of the phenolic species in olive leaf extracts.
Collapse
Affiliation(s)
- Mustafa Cittan
- Department of Chemistry, Faculty of Science and Letters, Şehit Prof. Dr. İlhan Varank Campus, Manisa Celal Bayar University, 45140 Yunusemre, Manisa, Turkey.,Applied Science Research Center, Şehit Prof. Dr. İlhan Varank Campus, Manisa Celal Bayar University, 45140 Yunusemre, Manisa, Turkey
| | - Ali Çelik
- Department of Chemistry, Faculty of Science and Letters, Sehit Prof. Dr. Ilhan Varank Campus, Manisa Celal Bayar University, 45140 Yunusemre, Manisa, Turkey
| |
Collapse
|
14
|
Adsorptive stripping voltammetry for simultaneous determination of hydrochlorothiazide and triamterene in hemodialysis samples using a multi-walled carbon nanotube-modified glassy carbon electrode. Talanta 2018; 179:652-657. [DOI: 10.1016/j.talanta.2017.11.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022]
|
15
|
Gomez FJV, Spisso A, Fernanda Silva M. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of Natural Deep Eutectic Solvents and graphene oxide. Electrophoresis 2017; 38:2704-2711. [PMID: 28881013 DOI: 10.1002/elps.201700173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022]
Abstract
A novel methodology is presented for the enhanced electrochemical detection of oleuropein in complex plant matrices by Graphene Oxide Pencil Grahite Electrode (GOPGE) in combination with a buffer modified with a Natural Deep Eutectic Solvent, containing 10% (v/v) of Lactic acid, Glucose and H2 O (LGH). The electrochemical behavior of oleuropein in the modified-working buffer was examined using differential pulse voltammetry. The combination of both modifications, NADES modified buffer and nanomaterial modified electrode, LGH-GOPGE, resulted on a signal enhancement of 5.3 times higher than the bare electrode with unmodified buffer. A calibration curve of oleuropein was performed between 0.10 to 37 μM and a good linearity was obtained with a correlation coefficient of 0.989. Detection and quantification limits of the method were obtained as 30 and 102 nM, respectively. In addition, precision studies indicated that the voltammetric method was sufficiently repeatable, %RSD 0.01 and 3.16 (n = 5) for potential and intensity, respectively. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract prepared by ultrasound-assisted extraction. The results obtained with the proposed electrochemical sensor were compared with Capillary Zone Electrophoresis analysis with satisfactory results.
Collapse
Affiliation(s)
- Federico J V Gomez
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Adrian Spisso
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Fernanda Silva
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
16
|
Ghasemi-Kooch M, Dehestani M, Housaindokht MR, Bozorgmehr MR. Oleuropein interactions with inner and outer surface of different types of carbon nanotubes: Insights from molecular dynamic simulation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ahmad Farooqi A, Fayyaz S, Silva AS, Sureda A, Nabavi SF, Mocan A, Nabavi SM, Bishayee A. Oleuropein and Cancer Chemoprevention: The Link is Hot. Molecules 2017; 22:molecules22050705. [PMID: 28468276 PMCID: PMC6154543 DOI: 10.3390/molecules22050705] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer comprises a collection of related diseases characterized by the existence of altered cellular pathways resulting in an abnormal tendency for uncontrolled growth. A broad spectrum, coordinated, and personalized approach focused on targeting diverse oncogenic pathways with low toxicity and economic natural compounds can provide a real benefit as a chemopreventive and/or treatment of this complex disease. Oleuropein, a bioactive phenolic compound mainly present in olive oil and other natural sources, has been reported to modulate several oncogenic signalling pathways. This review presents and critically discusses the available literature about the anticancer and onco-suppressive activity of oleuropein and the underlying molecular mechanisms implicated in the anticarcinogenic and therapeutic effects. The existence of limitations and the promising perspectives of research on this phenolic compound are also critically analyzed and discussed.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore 54000, Pakistan.
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore 54000, Pakistan.
| | - Ana Sanches Silva
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal.
- Center for Study in Animal Science, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN-Physiopathology of Obesity and Nutrition, University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| |
Collapse
|