1
|
Yu W, Hu S, Xu X, Shao J, Yan J, Ding F. Association between O-GlcNAc transferase activity and major adverse cardiovascular events: findings from the China PEACE-MPP cohort. BMC Cardiovasc Disord 2025; 25:281. [PMID: 40221667 PMCID: PMC11992785 DOI: 10.1186/s12872-025-04732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The O-GlcNAc transferase (OGT) levels are closely related to the O-GlcNAcylation of proteins and are also associated with cardiovascular disease. This study explored the association between OGT activity and major adverse cardiovascular events (MACEs) in patients with high cardiovascular disease risk. This post hoc study included patients from the China PEACE-MPP study in Yi Wu, Zhejiang Province, between 2014 and 2015. METHODS The patients were divided into the low and high OGT activity groups according to the median serum OGT value. The outcome was the occurrence of MACEs (cardiovascular death, non-fatal acute myocardial infarction, and non-fatal ischemic stroke). RESULTS Finally, 1947 participants (973 and 974 with low and high OGT activity, respectively) were included. The mean follow-up was 5.56 ± 1.01 years. The participants in the low OGT activity group had a significantly higher occurrence rate of MACEs compared with the high OGT activity group (100 [10.4%] vs. 74 [7.6%], P = 0.032). The Kaplan-Meier analysis showed that the event-free survival rate in the low OGT activity group was significantly lower than in the high OGT activity group (P = 0.036). Multivariable Cox proportional hazards regression analysis showed that after adjustment for age, drinking, hyperglycemia, history of hypertension, and history of cardiovascular and cerebrovascular disease, a high OGT activity was independently associated with a lower risk of MACEs (HR = 0.738, 95%CI: 0.547-0.997, P = 0.048). CONCLUSIONS A low OGT activity was independently associated with an increased risk of MACE among patients with a high risk of cardiovascular disease. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Wei Yu
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Shiyun Hu
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Xiaoling Xu
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jianlin Shao
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jing Yan
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Fang Ding
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China.
| |
Collapse
|
2
|
Hou C, Deng J, Wu C, Zhang J, Byers S, Moremen KW, Pei H, Ma J. Ultradeep O-GlcNAc proteomics reveals widespread O-GlcNAcylation on tyrosine residues of proteins. Proc Natl Acad Sci U S A 2024; 121:e2409501121. [PMID: 39531497 PMCID: PMC11588081 DOI: 10.1073/pnas.2409501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As a unique type of glycosylation, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on Ser/Thr residues of proteins was discovered 40 y ago. O-GlcNAcylation is catalyzed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove O-GlcNAc, respectively. O-GlcNAcylation is an essential glycosylation that regulates the functions of many proteins in virtually all cellular processes. However, deep and site-specific characterization of O-GlcNAcylated proteins remains a challenge. We developed an ultradeep O-GlcNAc proteomics workflow by integrating digestion with multiple proteases, two mass spectrometric approaches (i.e., electron-transfer/higher-energy collision dissociation [EThcD] and HCD product-dependent electron-transfer/higher-energy collision dissociation [HCD-pd-EThcD]), and two data analysis tools (i.e., MaxQuant and Proteome Discoverer). The performance of this strategy was benchmarked by the analysis of whole lysates from PANC-1 (a pancreatic cancer cell line). In total, 2,831 O-GlcNAc sites were unambiguously identified, representing the largest O-GlcNAc dataset of an individual study reported so far. Unexpectedly, in addition to confirming known sites and identifying many other sites of Ser/Thr modification, O-GlcNAcylation was found on 121 tyrosine (Tyr) residues of 93 proteins. In vitro enzymatic assays showed that OGT catalyzes the transfer of O-GlcNAc onto Tyr residues of peptides and OGA catalyzes its removal. Taken together, our work reveals widespread O-GlcNAcylation on Tyr residues of proteins and that Tyr O-GlcNAcylation is mediated by OGT and OGA. As another form of glycosylation, Tyr O-GlcNAcylation is likely to have important regulatory roles.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jingtao Deng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jing Zhang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA30302
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| |
Collapse
|
3
|
Hou C, Wu C, Wu Z, Cheng Y, Li W, Sun H, Ma J. Systematic Evaluation of Affinity Enrichment Methods for O-GlcNAc Proteomics. J Proteome Res 2024; 23:4422-4432. [PMID: 39302247 PMCID: PMC11459509 DOI: 10.1021/acs.jproteome.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (i.e., O-GlcNAcylation) on proteins plays critical roles in the regulation of diverse biological processes. However, protein O-GlcNAcylation analysis, especially at a large scale, has been a challenge. So far, a number of enrichment materials and methods have been developed for site-specific O-GlcNAc proteomics in different biological settings. Despite the presence of multiple methods, their performance for the O-GlcNAc proteomics is largely unclear. In this work, by using the lysates of PANC-1 cells (a pancreatic cancer cell line), we provided a head-to-head comparison of three affinity enrichment methods and materials (i.e., antibody, lectin AANL6, and an OGA mutant) for site-specific O-GlcNAc proteomics. The enriched peptides were analyzed by HCD product-dependent EThcD (i.e., HCD-pd-EThcD) mass spectrometry. The resulting data files were processed by three different data analysis packages (i.e., Sequest HT, Byonic, and FragPipe). Our data suggest that each method captures a subpopulation of the O-GlcNAc proteins. Besides the enrichment methods, we also observe complementarity between the different data analysis tools. Thus, combining different approaches holds promise for enhanced coverage of O-GlcNAc proteomics.
Collapse
Affiliation(s)
- Chunyan Hou
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Ci Wu
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Zichun Wu
- Information
Science and Technology College, Dalian Maritime
University, Dalian 116026, China
| | - Yifan Cheng
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Weiyu Li
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
- Department
of Applied Mathematics and Statistics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Hui Sun
- Department
of Biochemistry, College of Life Sciences,
Wuhan University, Wuhan 430072, China
| | - Junfeng Ma
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| |
Collapse
|
4
|
Ma X, Fu H, Sun C, Wu W, Hou W, Zhou Z, Zheng H, Gong Y, Wu H, Qin J, Lou H, Li J, Tang TS, Guo C. RAD18 O-GlcNAcylation promotes translesion DNA synthesis and homologous recombination repair. Cell Death Dis 2024; 15:321. [PMID: 38719812 PMCID: PMC11078974 DOI: 10.1038/s41419-024-06700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.
Collapse
Affiliation(s)
- Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hui Fu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyi Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Wei Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Zibin Zhou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifei Gong
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Honglin Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junying Qin
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Tie-Shan Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Wright TA, Gemmell AO, Tejeda GS, Blair CM, Baillie GS. Cancer: Phosphodiesterase type 4C (PDE4C), the forgotten subfamily as a therapeutic target. Int J Biochem Cell Biol 2023; 162:106453. [PMID: 37499270 DOI: 10.1016/j.biocel.2023.106453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Phosphodiesterase type 4 (PDE4) enzymes specifically hydrolyse cAMP in many cell signalling systems that are transduced by hormones and other primary messengers. The physiological function of the four PDE4 subfamilies (A, B, C and D) are numerous and varied due to the differentially localised plethora of isoforms that can be detected in cardiovascular, CNS and immune systems. Of the four subfamilies, least is known about PDE4C probably due to its restricted distribution pattern, scarcity of selective inhibitors and the lack of developed research tools. Here, for the first time, we chart the discovery of PDE4C, describe its regulation and highlight cancers where future development of PDE4C selective small molecules may have potential.
Collapse
Affiliation(s)
- Thomas A Wright
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Alistair O Gemmell
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Connor M Blair
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Zhou X, Zhang H, Wang L, Lv L, Wu R. Simultaneous enrichment optimization of glycopeptides and phosphopeptides with the highly hydrophilic DZMOF-FDP. Analyst 2023; 148:1483-1491. [PMID: 36876469 DOI: 10.1039/d2an02004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein glycosylation and phosphorylation play essential roles in biological systems. The crosstalk of both glycosylation and phosphorylation on one protein represents an unveiled biological function. To realize the analyses of both glycopeptides and phosphopeptides, a simultaneous enrichment method of N-glycopeptides, mono-phosphopeptides and multi-phosphopeptides was developed based on a multi-functional dual-metal centered zirconium metal-organic framework that provided multiple interactions for HILIC, IMAC, and MOAC for glycopeptides and phosphopeptides. Based on a careful optimization of sample loading and elution conditions for the simultaneous enrichment of glycopeptides and phosphopeptides with the zirconium metal-organic framework, a total of 1011 N-glycopeptides derived from 410 glycoproteins and 1996 phosphopeptides including 741 multi-phosphopeptides derived from 1189 phosphoproteins could be identified from a HeLa cell digest. The simultaneous enrichment approach for glycopeptides and mono-/multi-phosphopeptides demonstrates the great potential of the combined interactions for HILIC, IMAC, and MOAC in integrated post-translational modification proteomics research.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liting Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
9
|
Wu C, Shi S, Hou C, Luo Y, Byers S, Ma J. Design and Preparation of Novel Nitro-Oxide-Grafted Nanospheres with Enhanced Hydrogen Bonding Interaction for O-GlcNAc Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47482-47490. [PMID: 36240223 PMCID: PMC9938961 DOI: 10.1021/acsami.2c15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an essential modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modulates the functions of many proteins. However, site-specific characterization of O-GlcNAcylated proteins remains challenging. Herein, an innovative material grafted with nitro-oxide (N→O) groups was designed for high affinity enrichment for O-GlcNAc peptides from native proteins. By testing with synthetic O-GlcNAc peptides and standard proteins, the synthesized material exhibited high affinity and selectivity. Based on the material prepared, we developed a workflow for site-specific analysis of O-GlcNAcylated proteins in complex samples. We performed O-GlcNAc proteomics with the PANC-1 cell line, a representative model for pancreatic ductal adenocarcinoma. In total 364 O-GlcNAc peptides from 267 proteins were identified from PANC-1 cells. Among them, 183 proteins were newly found to be O-GlcNAcylated in humans (with 197 O-GlcNAc sites newly reported). The materials and methods can be facilely applied for site-specific O-GlcNAc proteomics in other complex samples.
Collapse
Affiliation(s)
- Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Song Shi
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, USA 19716, USA
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Yang Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| |
Collapse
|
10
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
11
|
Dupas T, Betus C, Blangy-Letheule A, Pelé T, Persello A, Denis M, Lauzier B. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. Int J Biochem Cell Biol 2022; 151:106289. [PMID: 36031106 DOI: 10.1016/j.biocel.2022.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is a post-translational modification which affects approximately 5000 human proteins. Its involvement has been shown in many if not all biological processes. Variations in O-GlcNAcylation levels can be associated with the development of diseases. Deciphering the role of O-GlcNAcylation is an important issue to (i) understand its involvement in pathophysiological development and (ii) develop new therapeutic strategies to modulate O-GlcNAc levels. Over the past 30 years, despite the development of several approaches, knowledge of its role and regulation have remained limited. This review proposes an overview of the currently available tools to study O-GlcNAcylation and identify O-GlcNAcylated proteins. Briefly, we discuss pharmacological modulators, methods to study O-GlcNAcylation levels and approaches for O-GlcNAcylomic profiling. This review aims to contribute to a better understanding of the methods used to study O-GlcNAcylation and to promote efforts in the development of new strategies to explore this promising modification.
Collapse
Affiliation(s)
- Thomas Dupas
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.
| | - Charlotte Betus
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Thomas Pelé
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Persello
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
12
|
Oxonium Ion Guided Analysis of Quantitative Proteomics Data Reveals Site-Specific O-Glycosylation of Anterior Gradient Protein 2 (AGR2). Int J Mol Sci 2021; 22:ijms22105369. [PMID: 34065225 PMCID: PMC8160981 DOI: 10.3390/ijms22105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between O-GalNAc and O-GlcNAc. Here, we thought to investigate how such information can be used to examine quantitative proteomics data. For this purpose, we used tandem mass tag (TMT)-labeled samples from total cell lysates and secreted proteins from three different colorectal cancer cell lines. Following automated glycopeptide assignment (Byonic) and evaluation of the presence and relative intensity of oxonium ions, we observed that, in particular, the ratio of the ions at m/z 144.066 and 138.055, respectively, could be used to discriminate between O-GlcNAcylated and O-GalNAcylated peptides, with concomitant relative quantification between the different cell lines. Among the O-GalNAcylated proteins, we also observed anterior gradient protein 2 (AGR2), a protein which glycosylation site and status was hitherto not well documented. Using a combination of multiple fragmentation methods, we then not only assigned the site of modification, but also showed different glycosylation between intracellular (ER-resident) and secreted AGR2. Overall, our study shows the potential of broad application of the use of the relative intensities of oxonium ions for the confident assignment of glycopeptides, even in complex proteomics datasets.
Collapse
|
13
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
15
|
Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zhao X, Yu Z, Huang Y, Liu C, Wang M, Li X, Qian X, Ying W. Integrated Strategy for Large-Scale Investigation on Protein Core Fucosylation Stoichiometry Based on Glycan-Simplification and Paired-Peaks-Extraction. Anal Chem 2020; 92:2896-2901. [PMID: 31986883 DOI: 10.1021/acs.analchem.9b05276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Core fucosylation (CF) is a special form of N-glycosylation and plays an important role in pathological and biological processes. Increasing efforts in this area are focused on the identification of CF glycosites, whereas evidence showed that the stoichiometry of CF occupancy is functionally important. Here, an integrated strategy based on "Glycan-Simplification and Paired-Peaks-extraction" (GSPPE) for detecting large-scale stoichiometries of CF was developed. After HILIC enrichment of intact glycopeptides, sequential cleavages by endoglycosidases H and endoglycosidases F3 were performed to generate simplified glycopeptide forms (SGFs), i.e., peptide-GlcNAc (pep-HN) and peptide-GlcNAc-Fucose (pep-CF). These paired SGFs were found to be eluted consecutively on a reversed-phase chromatography column, which allowed us to obtain peak areas of SGF pairs, even if only one of the peaks was captured by the mass spectrometer (MS), by introducing the Paired-Peaks-Extraction algorithm. Thus, the missing value dilemma of random data-dependent MS/MS acquisition was reduced and the stoichiometry of site-specific CF could be calculated. We systematically evaluated the feasibility of this strategy using standard glycoproteins and then explored urinary samples from healthy individuals and hepatocellular carcinoma (HCC) patients. In total, 1449 highly reliable core fucose glycosites and their corresponding CF stoichiometries were obtained. Dozens of glycosites that differed significantly in the urine of healthy individuals and HCC patients were disclosed. The developed approach and program presented here may promote studies on core fucosylation and lead to a deeper understanding of their dysregulation in physiological- or pathological processes.
Collapse
Affiliation(s)
- Xinyuan Zhao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China
| | - Zixiang Yu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China.,Department of Pathology, Zhongshan Hospital , Fudan University , Shanghai 200032 , P. R. China.,Anhui Medical University , No. 81, Meishan Road , Hefei , Anhui 230032 , P. R. China
| | - Yi Huang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China.,Anhui Medical University , No. 81, Meishan Road , Hefei , Anhui 230032 , P. R. China
| | - Chang Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China.,College of Life Science and Bioengineering , Beijing University of Technology , No. 100, Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Mingchao Wang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China
| | - Xiaoyu Li
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China.,College of Life Science and Bioengineering , Beijing University of Technology , No. 100, Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China
| | - Wantao Ying
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Lifeomics , Beijing 102206 , P. R. China
| |
Collapse
|
17
|
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci 2019; 43:313-336. [PMID: 31631532 DOI: 10.1002/jssc.201900804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Collapse
Affiliation(s)
- Luisa Pieroni
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Martelli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
20
|
You X, Yao Y, Mao J, Qin H, Liang X, Wang L, Ye M. Chemoenzymatic Approach for the Proteomics Analysis of Mucin-Type Core-1 O-Glycosylation in Human Serum. Anal Chem 2018; 90:12714-12722. [PMID: 30350625 DOI: 10.1021/acs.analchem.8b02993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human serum is a complex body fluid that contains various N-linked and O-linked glycoproteins. Compared with N-linked glycoproteins, the serum O-linked glycoproteins are not well-studied due to their high heterogeneity and their low abundance. Herein, we presented a novel chemoenzymatic method to analyze core-1 type of O-GalNAcylation in human serum. In this approach, the tryptic digest of serum was first subjected to PNGase F treatment to release the N-glycan and was then treated with strong acid to release sialic acid residues from mucin-type O-glycans. In this way, the internal Gal/GalNAc residues were exposed and were oxidized by the galactose oxidase to carry the aldehyde groups. The oxidized O-GalNAcylated peptides were then captured by hydrazide beads and eluted with methoxylamine for LC-MS/MS analysis. The de-N-deglycosylation decreased the abundance of N-glycopeptides, the desialylation simplified the O-glycans and the enzymatic oxidization conferred the enrichment specificity. We have demonstrated that this method was fitted to analyze O-GalNAcylated peptides with high confidence. This method was applied to analyze human serum, which resulted in the identification of 59 O-GalNAc modified peptide sequences corresponding to 38 glycoproteins from 50 μL of serum. This method is expected to have broad applications in the analysis of O-glycoproteome.
Collapse
Affiliation(s)
- Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian , 116023 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Yating Yao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian , 116023 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian , 116023 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian , 116023 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian , 116023 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , The Second Hospital of Dalian Medical University , Dalian , Liaoning 116023 , China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian , 116023 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
21
|
You X, Qin H, Ye M. Recent advances in methods for the analysis of protein o-glycosylation at proteome level. J Sep Sci 2017; 41:248-261. [PMID: 28988430 DOI: 10.1002/jssc.201700834] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
O-Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post-translational modifications. Compared with N-linked glycosylation, O-glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O-glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O-glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O-glycosylation, i.e. O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O-glycosylation. For the large-scale analysis of mucin-type glycosylation, the glycan simplification strategies including the ''SimpleCell'' technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation.
Collapse
Affiliation(s)
- Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|