1
|
Jiao Y, Li L, Ge J, Tai Y, Han H. A Polymethionine Nanoparticle Fluorescent Probe for Sensitive Detection of Naringin and Naringenin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3919. [PMID: 39203099 PMCID: PMC11355485 DOI: 10.3390/ma17163919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
In this work, we demonstrated a novel, sensitive and effective fluorescent naringin (NRG) and naringenin (NRGe) detection method using polymethionine nanoparticles (PMNPs) as a fluorescent nanoprobe. The PMNPs were first synthesized by autopolymerization of methionine at 90 °C when trace copper ions existed. The as-prepared PMNPs were thoroughly characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), gel permeation chromatograph (GPC), nuclear magnetic resonance spectroscopy (NMR), transient and steady-state fluorescence and UV-Vis absorption spectroscopy. The quenching mechanism was attributed to the inner filter effect (IFE). Moreover, the developed assay was used successfully to detect NRG and NRGe in real samples of citrus fruits, illustrating that this detection method has great potential application in the field of citrus fruits analysis.
Collapse
Affiliation(s)
- Yuhong Jiao
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Lu Li
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Jinlong Ge
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Yanfang Tai
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Hui Han
- Anhui Triumph Applied Materials Co., Ltd., Bengbu 233000, China;
| |
Collapse
|
2
|
Li L, Liu T, Wang M, Ren Y, Jia N, Bu H, Xie G, Xu H, Wu Y, Ouyang X. Snowflake-like DNA crystals templated Cu clusters as a fluorescent turn-on probe for sensing actin. Anal Chim Acta 2021; 1173:338700. [PMID: 34172154 DOI: 10.1016/j.aca.2021.338700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022]
Abstract
Herein, we synthesized snowflake-like DNA crystals (SDC) via hybridization chain reaction and used it for the first time in the synthesis of copper nanoclusters with enhanced fluorescence. Atomic force microscopy (AFM) and laser confocal microscopy characterization confirmed that SDC/CuNCs are self-assembled successfully on SDC. Aggregation induced emission allows SDC/CuNCs to exhibit better stability and stronger emission intensity. Thus, we developed the "turn-on" label-free fluorescence detection method of actin based on SDC/CuNCs which offer simplicity, low cost, good selectivity, and high sensitivity. The detection limit was determined to be 0.0124 μg mL-1, which was an order of magnitude lower than that of reported fluorescent methods (0.12 μg mL-1). Compared with previous method, the linear range is also much wider. We also performed standard recovery experiments in actual samples for evaluating the practicality of this strategy and proved that the capability of the proposed approach for the determination of actin is feasible and the interference from complex biological samples is negligible. These results indicate that SDC/CuNCs are expected to play a more important role in the field of biosensors.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Meifang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yong'an Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Nan Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Huaiyu Bu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Hang Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yongli Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| |
Collapse
|
3
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
4
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
5
|
Song Q, Chen C, Yu W, Yang L, Zhang K, Zheng J, Du X, Chen H. In situ formation of DNA-templated copper nanoparticles as fluorescent indicator for hydroxylamine detection. RSC Adv 2019; 9:25976-25980. [PMID: 35531001 PMCID: PMC9070379 DOI: 10.1039/c9ra04476k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we develop a facile method for selective and sensitive detection of hydroxylamine (HA) based on the in situ formation of DNA templated copper nanoparticles (DNA-CuNPs) as fluorescent probes. It is firstly found that HA as a reducing agent can play a key role in the in situ formation of fluorescent DNA-CuNPs. This special optical property of DNA-CuNPs with (λ ex = 340 nm, λ em = 588 nm) with a mega-Stokes shifting (248 nm) makes it applicable for the turn-on detection of HA. In addition, this fluorescent method has several advantages such as being simple, rapid, and environmentally friendly, because it avoids the traditional organic dye molecules and complex procedures. Under optimized conditions, this platform achieves a fluorescent response for HA with a detection limit of 0.022 mM. Especially, successful detection capability in tap waters and ground waters exhibits its potential to be general method.
Collapse
Affiliation(s)
- Quanwei Song
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Changzhao Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Wenhe Yu
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Lixia Yang
- Beijing Key Laboratory of Metal Material Characterization, Central Iron and Steel Research Institute Beijing 100081 China
| | - Kunfeng Zhang
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Jin Zheng
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| |
Collapse
|
6
|
Chen C, Chen S, Shiddiky MJA, Chen C, Wu KC. DNA‐Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. CHEM REC 2019; 20:174-186. [DOI: 10.1002/tcr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chung‐An Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Shih‐Chia Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Muhammad J. A. Shiddiky
- School of Environment and Science & Queensland Micro- and Nanotechnology CentreNathan campus, Griffith University 170 Kessels Road QLD 4111 Australia
| | - Chien‐Fu Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Kevin C.‐W. Wu
- Department of Chemical EngineeringNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
- Division of Medical Engineering Research, National Health
| |
Collapse
|
7
|
Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 2019; 137:96-109. [PMID: 31085403 DOI: 10.1016/j.bios.2019.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
During the last decades, by virtue of their unique physicochemical properties and potential application in microelectronics, biosensing and biomedicine, metal nanomaterials (MNs) have attracted great research interest and been highly developed. Deoxyribonucleic acid (DNA) is a particularly interesting ligand for templating bottom-up nanopreparation, by virtue of its excellent properties including nanosized geometry structure, programmable and artificial synthesis, DNA-metal ion interaction and powerful molecular recognition. DNA-templated copper nanoparticles (DNA-CuNPs) has been developed in recent years. Because of its advantages including simple and rapid preparation, high efficiency, MegaStokes shifting and low biological toxicity, DNA-CuNPs has been highly exploited for biochemical sensing from 2010, especially as a label-free detection manner, holding advantages in multiple analytical technologies including fluorescence, electrochemistry, surface plasmon resonance, inductively coupled plasma mass spectrometry and surface enhanced Raman spectroscopy. This review comprehensively tracks the preparation of DNA-CuNPs and its application in biosensing, and highlights the potential development and challenges regarding this field, aiming to promote the advance of this fertile research area.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| | - Ailing Bai
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
8
|
Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: Versatile platform for label-free bioassays. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Chen M, Yeasmin Khusbu F, Ma C, Wu K, Zhao H, Chen H, Wang K. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj02774a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A label-free fluorescence assay has been developed for the detection of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | | | - Changbei Ma
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kefeng Wu
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Han Zhao
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Hanchun Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410081
- China
| |
Collapse
|