1
|
Frąckowiak J, Komorowicz I, Sajnóg A, Skrypnik K, Suliburska J, Hanć A. Do probiotics and iron supplementation have any impact on element distribution in rat kidneys? - bioimaging by laser ablation inductively coupled plasma mass spectrometry. Talanta 2025; 283:127112. [PMID: 39492141 DOI: 10.1016/j.talanta.2024.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the influence of multistrain probiotics and iron supplementation on the distribution and interaction of trace elements in the kidneys of Wistar rats using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) bioimaging. Forty 6-week-old female Wistar rats were divided into five groups, each fed an AIN-93 M diet with varying additions or deficiencies of iron and probiotics, which included a control, an iron-deficient diet, an iron-deficient diet with probiotics, an iron-deficient diet with iron supplementation, and an iron-deficient diet with both probiotics and iron supplementation. The obtained two-dimensional maps of the distribution of elements reveal distinct locations of Cu, Fe, Mn, and Zn in specific tissues of rat kidneys. Specifically, Cu and Fe were co-localized in the renal cortex, while Zn was mostly absent from regions where Cu and Fe accumulated. Fe supplementation alone increased Fe in the renal cortex, while probiotics enhanced this effect, suggesting a synergistic role in Fe absorption. The total content of elements in the kidneys of all groups was determined after digestion: Cu 13.3-24.7 mg kg-1, Fe 218-509 mg kg-1, Mn 0.87-1.29 mg kg-1, and Zn 28.6-40.1 mg kg-1. Competitive interactions among Cu, Fe, and Zn were observed, with probiotics modulating their concentrations and distribution, highlighting their role in trace element homeostasis. Our research provides insights into the interactions between dietary supplements, probiotics, and trace element distribution in kidneys, paving the way for targeted nutritional interventions. This study highlights the need for further research on trace element functions in organisms and their impact on health.
Collapse
Affiliation(s)
- Julia Frąckowiak
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Komorowicz
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Anetta Hanć
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022; 14:455. [PMID: 35214186 PMCID: PMC8876580 DOI: 10.3390/pharmaceutics14020455] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
An increase in the world population and its life expectancy, as well as the ongoing concern about our physical appearance, have elevated the relevance of dental implantology in recent decades. Engineering strategies to improve the survival rate of dental implants have been widely investigated, focusing on implant material composition, geometry (usually guided to reduce stiffness), and interface surrounding tissues. Although efforts to develop different implant surface modifications are being applied in commercial dental prostheses today, the inclusion of surface coatings has gained special interest, as they can be tailored to efficiently enhance osseointegration, as well as to reduce bacterial-related infection, minimizing peri-implantitis appearance and its associated risks. The use of biomaterials to replace teeth has highlighted the need for the development of reliable analytical methods to assess the therapeutic benefits of implants. This literature review considers the state-of-the-art strategies for surface modification or coating and analytical methodologies for increasing the survival rate for teeth restoration.
Collapse
Affiliation(s)
- Francesca Accioni
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Juan Vázquez
- Departamento de Química Orgánica, Universidad de Sevilla, 41012 Seville, Spain;
| | - Manuel Merinero
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| |
Collapse
|
3
|
Kunrath MF, Muradás TC, Penha N, Campos MM. Innovative surfaces and alloys for dental implants: What about biointerface-safety concerns? Dent Mater 2021; 37:1447-1462. [PMID: 34426019 DOI: 10.1016/j.dental.2021.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The present review article aimed to discuss the recent technologies employed for the development of dental implants, mainly regarding innovative surface treatments and alternative alloys, emphasizing the bio-tribocorrosion processes. METHODS An electronic search applying specific MeSH terms was carried out in PubMed and Google Scholar databases to collect data until August 2021, considering basic, pre-clinical, clinical and review studies. The relevant articles (n=111), focused on innovative surface treatments for dental implants and their potential undesirable biological effects, were selected and explored. RESULTS Novel texturization methodologies for dental implants clearly provided superficial and structural atomic alterations in micro- and nanoscale, promoting different mechanical-chemical interactions when applied in the clinical set. Some particulate metals released from implant surfaces, their degradation products and/or contaminants exhibited local and systemic reactions after implant installation and osseointegration, contributing to unexpected treatment drawbacks and adverse effects. Therefore, there is an urgent need for development of pre-clinical and clinical platforms for screening dental implant devices, to predict the biointerface reactions as early as possible during the development phases. SIGNIFICANCE Modern surface treatments and innovative alloys developed for dental implants are not completely understood regarding their integrity during long-term clinical function, especially when considering the bio-tribocorrosion process. From this review, it is possible to assume that degradation and contamination of dental surfaces might be associated within peri-implant inflammation and cumulative long-lasting systemic toxicity. The in-depth comprehension of the biointerface modifications on these novel surface treatments might preclude unnecessary expenses and postoperative complications involving osseointegration failures.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thaís C Muradás
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Wepner L, Färber HA, Weber A, Jaensch A, Keilig L, Heuser FA, Bourauel CP. [Aluminium release of glitter particles in removable orthodontic appliances]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:856-861. [PMID: 34115152 PMCID: PMC8241636 DOI: 10.1007/s00103-021-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM In order to support children's compliance with orthodontic treatment, glitter particles containing aluminium (Al) are often embedded in the acrylic of removable appliances. When worn for up to 16 h daily for 2-3 years, it can be assumed that Al ions diffuse into saliva over time. The aim of this study was to investigate the release of Al ions from the acrylic using different orthodontic wires. MATERIALS AND METHOD Test specimens (surface area 5.65 cm2) were prepared from orthodontic resin and various wires; half contained aluminium glitter particles. The test specimens were placed in Petri dishes containing 50 ml of corrosion medium (pH 2.3) according to DIN EN ISO 10271 at 37 °C for 7 days. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the specific ions in the corrosion solution. RESULTS Statistical analysis showed a significant difference in the concentration of Al ions between samples with and without glitter particles. Concentrations from samples with glitter reached up to 14,474 μg/l Al ions; samples without glitter contained on average 1260 μg/l. A small proportion of the Al ions may originate from the alloys of the wires. CONCLUSIONS It should be investigated whether the aluminium concentration can lead to health risks for humans. In view of the findings, orthodontists should not offer appliances containing glitter in order to minimize aluminium uptake with saliva. It needs to be clarified whether the conditions found in the oral cavity lead to the same results as under the abovementioned conditions. Legislation should be developed to limit the release of aluminium from orthodontic products.
Collapse
Affiliation(s)
- Lena Wepner
- Oralmedizinische Technologie, Zentrum für Zahn‑, Mund- und Kieferheilkunde, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Bonn, Deutschland
| | - Harald Andreas Färber
- Institut für Hygiene und öffentliche Gesundheit, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Venusberg-Campus 1 (Gebäude 63), 53127, Bonn, Deutschland.
| | - Anna Weber
- Oralmedizinische Technologie, Zentrum für Zahn‑, Mund- und Kieferheilkunde, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Bonn, Deutschland
| | - Andreas Jaensch
- Institut für Hygiene und öffentliche Gesundheit, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Venusberg-Campus 1 (Gebäude 63), 53127, Bonn, Deutschland
| | - Ludger Keilig
- Oralmedizinische Technologie, Zentrum für Zahn‑, Mund- und Kieferheilkunde, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Bonn, Deutschland
- Poliklinik für Zahnärztliche Prothetik, Propädeutik und Werkstoffwissenschaften, Zentrum für Zahn-, Mund- und Kieferheilkunde, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Bonn, Deutschland
| | - Florian Andreas Heuser
- Poliklinik für Zahnärztliche Prothetik, Propädeutik und Werkstoffwissenschaften, Zentrum für Zahn-, Mund- und Kieferheilkunde, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Bonn, Deutschland
| | - Christoph Peter Bourauel
- Oralmedizinische Technologie, Zentrum für Zahn‑, Mund- und Kieferheilkunde, Medizinische Fakultät, Universitätsklinikum Bonn (AöR), Universität Bonn, Bonn, Deutschland
| |
Collapse
|
5
|
Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics 2021; 5:321-332. [PMID: 33732603 PMCID: PMC7961127 DOI: 10.7150/ntno.56401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Titanium is considered to be a metal material with the best biological safety. Studies have proved that the titanium implanted in the bone continuously releases titanium particles (Ti particles), significantly increasing the total titanium content in human body. Generally, Ti particles are released slowly without causing a systemic immune response. However, the continuous increased local concentration may result in damage to the intraepithelial homeostasis, aggravation of inflammatory reaction in the surrounding tissues, bone resorption and implant detachment. They also migrate with blood flow and aggregate in the distal organ. The release of Ti particles is affected by the score of the implant surface structure, microenvironment wear and corrosion, medical operation wear, and so on, but the specific mechanism is not clear. Thus, it difficult to prevent the release completely. This paper reviews the causes of the Ti particles formation, the damage to the surrounding tissue, and its mechanism, in particular, methods for reducing the release and toxicity of the Ti particles.
Collapse
Affiliation(s)
- Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Quan Shi
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
6
|
Determination of Chromium Based on Laser Ablation Inductively Coupled Plasma Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60086-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Silva GAF, Faot F, da Silva WJ, Del Bel Cury AA. Does implant surface hydrophilicity influence the maintenance of surface integrity after insertion into low-density artificial bone? Dent Mater 2020; 37:e69-e84. [PMID: 33234316 DOI: 10.1016/j.dental.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/05/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To evaluate the influence of hydrophilicity on the surface integrity of implants after insertion in low-density artificial bone and to determine the distribution of titanium (Ti) particles along the bone bed. METHODS Forty-eight dental implants with different designs (Titamax Ex, Facility, Alvim, and Drive) and surface treatments (Neoporos® and Aqua™) were inserted into artificial bone blocks with density compatible with bone type III-IV. Hydrophobic Neoporos® surfaces were obtained by sandblasting and acid etching while hydrophilic Aqua™ surfaces were obtained by sandblasting, acid etching, and storage in an isotonic 0.9% NaCl solution. The surface integrity was evaluated by Scanning Electron Microscope (SEM) and the surface roughness parameters (Sa, Sp, Ssk, Sdr, Spk, Sk, and Svk) and surface area were measured with Laser Scanning Confocal Microscopy before and after installation. Bone beds were inspected with Digital Microscopy and micro X-Ray Fluorescence (μ-XRF) to analyze the metallic element distribution along the bone bed. RESULTS Acqua™ implants had higher initial Sa and a pronounced reduction of Sa and Sp during insertion, compared to NeoPoros® implants. After insertion, Sa and Sp of Acqua™ and NeoPoros® implants equalized, differing only between designs of Acqua™ implants. Surface damage was observed after insertion, mainly in the apical region. Facility implants that are made of TiG5 released fewer debris particles, while the highest Ti intensity was detected in the cervical region of the Titamax Ex Acqua™ and Drive Acqua™ implants. SIGNIFICANCE Physicochemical modifications to achieve surface hydrophilicity created a rougher surface that was more susceptible to surface alterations, resulting in more Ti particle release into the bone bed during surgical insertion. The higher Ti intensities detected in the cervical region of bone beds may be related to peri-implantitis and marginal bone resorption.
Collapse
Affiliation(s)
| | - Fernanda Faot
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Wander José da Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil.
| | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Bioimaging of macro- and microelements in blood vessels with calcified plaque in atherosclerosis obliterans by LA-ICP-MS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Sajnóg A, Hanć A, Barałkiewicz D. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies. Talanta 2018; 182:92-110. [DOI: 10.1016/j.talanta.2018.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 11/29/2022]
|