1
|
Song X, Hou X, Dang M, Zhao Q, Liu S, Ma Z, Ren Y. Design and preparation of a multi-responsive Cd-based fluorescent coordination polymer for smart sensing of nitrobenzene and ornidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124656. [PMID: 38880074 DOI: 10.1016/j.saa.2024.124656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The improper utilization of nitrobenzene (NB) and ornidazole (ORN) has resulted in irreversible effects on the environment. By combining experimental investigation, density functional theory (DFT) calculations, and machine learning, an effective green strategy for detecting NB and ORN in aqueous solutions can be developed. In this study, a one-dimensional Cd-based coordination polymer (Cd-HCIA-3) was designed and synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid and rigid 2,2'-bipyridine under solvothermal reaction conditions. Cd-HCIA-3 exhibits excellent fluorescence properties and stability in aqueous solutions. DFT calculations were performed to predict the fluorescence sensing performance of Cd-HCIA-3, revealing that photoinduced electron transfer is the key mechanism for inducing fluorescence quenching in the presence of NB and ORN, with weak molecular interactions promoting electron transfer. Fluorescence sensing experiments were conducted to verify the DFT results, showing that Cd-HCIA-3 can selectively detect NB and ORN in aqueous solutions with limits of detection of 7.22 × 10-8 and 1.31 × 10-7 mol/L, respectively. This study's findings provide valuable insights into the design and synthesis of fluorescent coordination polymers for target analytes.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
2
|
Batista LFA, Gonçalves SRS, Bressan CD, Grassi MT, Abate G. Evaluation of organo-vermiculites as sorbent phases for solid-phase extraction of ibuprofen from water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1880-1886. [PMID: 38469698 DOI: 10.1039/d3ay02291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The study of ibuprofen (IBU) preconcentration was carried out making use of a homemade column for solid-phase extraction (SPE), using vermiculite (VT) or organo-vermiculites (OVTs) as sorbent phases. Aqueous samples (50.0 mL) percolated the column and IBU was sorbed onto the VT or OVT and then desorbed using acetonitrile. Employing this SPE system and OVT, calibration curves were generated for IBU, by spectrophotometric quantification using the α-naphthylamine method. R2 values higher than 0.9950 and LOD between 12 and 18 μg L-1 were observed, for real enrichment factors of 21 and 31, by using OVTs. The analytical protocol was applied to three water samples, which were spiked with IBU solutions to evaluate the precision and accuracy of the method. Recoveries between 77 and 110% at three different IBU concentrations and RSD lower than 18% were observed, even by using the spectrophotometric method. The protocol developed in this study demonstrated that the OVT was appropriate to work as a preconcentration phase for IBU determination in water samples.
Collapse
Affiliation(s)
- Luis Fernando A Batista
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Sara Renata S Gonçalves
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Carolina D Bressan
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Marco T Grassi
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| |
Collapse
|
3
|
Effect of Coexisting Ions on the Removal of Zn2+ from Aqueous Solution Using FePO4. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Minaberry YS, Costa C, Diz V, Tudino M. An ion imprinted magnetic organosilica nanocomposite for the selective determination of traces of Cd(II) in a minicolumn flow-through preconcentration system coupled with graphite furnace atomic absorption spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2920-2928. [PMID: 35861161 DOI: 10.1039/d2ay00804a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper we present the determination of ultratraces of cadmium ions in water by means of a minicolumn (MC) flow-through preconcentration system coupled with graphite furnace atomic absorption spectrometry. The core of the system is a lab-made ion imprinted magnetic organosilica nanocomposite which is employed as filler of the MC for the selective retention of the analyte. In this case superparamagnetic magnetite nanoparticles were coated with an amine-functionalized shell and ion imprinted with Cd(II) by a simple sol-gel co-condensation method. The setup was completed with the inclusion of a magnet fixed around the packed MC. This assembly - which is studied with an MII material for the first time here - allowed a homogeneous distribution of the solid on the walls of the MC, leaving a hole in the center and enabling the absence of material bleeding or obstructions to the free movement of fluids. Ion imprinted (MII) and non-imprinted (MNI) materials were studied for comparison purposes. Both were characterized and compared by DRX, FTIR, and SEM and their magnetic behavior by magnetization curves. Batch experiments showed an equilibration time of less than 10 minutes and a maximum adsorption pH of around 7 for both solids. The maximum capacity for MII was greater than that of MNI (200 mg g-1 and 30 mg g-1 respectively) and thus, the former was chosen for analytical purposes. Under MC dynamic conditions, sample and elution flow rates, volumes of the sample and eluant, and type and concentration of the most suitable eluant have been thoroughly investigated and optimized. Under the optimal experimental conditions, the MII filler showed a preconcentration factor of 200, a limit of detection of 0.64 ng L-1, a linear range of 2.5-100 ng L-1, RSD% of 1.9 (n = 6; 10 ng L-1) and a lifetime of more than 800 cycles of concentration-elution with no loss of sensitivity or need for refilling. The effect of potentially interfering ions on the percent recovery of cadmium was also studied. The proposed method was successfully applied to the determination of traces of Cd(II) in osmosis and tap water with recoveries of 98.0-101.3%. A comparison with similar methods is also provided.
Collapse
Affiliation(s)
- Yanina Susana Minaberry
- Laboratorio de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina.
| | - Cecilia Costa
- Departamento de Química Inorgánica, Analítica y Química Física,, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Virginia Diz
- Departamento de Química Inorgánica, Analítica y Química Física,, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Mabel Tudino
- Laboratorio de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Ebrar Karlidağ N, Toprak M, Demirel R, Tuğba Zaman B, Bakirdere S. Development of copper nanoflowers based dispersive solid-phase extraction method for cadmium determination in shalgam juice samples using slotted quartz tube atomic absorption spectrometry. Food Chem 2022; 396:133669. [PMID: 35841682 DOI: 10.1016/j.foodchem.2022.133669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
In this work, dispersive solid-phase extraction procedure was developed for trace cadmium determination before flame atomic absorption spectrometry (FAAS) measurement. Copper(II) based nanoflowers were synthesized to utilize as adsorbent for preconcentration of cadmium. The detection power of the spectrometric system was enhanced by placing a slotted quartz tube (SQT) onto the flame burner which increases the residence time of the analyte atoms in the flame region. The analytical performance of the developed system was evaluated with and without SQT equipment and the enhancement in detection power was calculated by the ratio of detection limits of CuNF-DSPE-FAAS (copper nanoflower based dispersive solid phase extraction-flame atomic absorption spectrometry) and FAAS system. Enhancement was determined as 73 and 104.3 times for CuNF-DSPE-FAAS and CuNF-DSPE-SQT-FAAS (CuNF-DSPE-slotted quartz tube-FAAS), respectively. Percent recovery results indicated the applicability of the developed method for the determination of trace cadmium.
Collapse
Affiliation(s)
| | - Münevver Toprak
- Yıldız Technical University, Department of Chemistry, 34210 İstanbul, Turkey
| | - Rabia Demirel
- Yıldız Technical University, Department of Chemistry, 34210 İstanbul, Turkey
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34210 İstanbul, Turkey
| | - Sezgin Bakirdere
- Yıldız Technical University, Department of Chemistry, 34210 İstanbul, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya 06670, Ankara, Turkey.
| |
Collapse
|
6
|
Saygili Canlidinç R. Determination of the Cadmium Ions from Aqueous Solution Using EDTA Functionalized Prunus Dulcis L. Peels by Solid-Phase Extraction Method. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:976-984. [PMID: 35080672 DOI: 10.1007/s00128-021-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
In the present study, Prunus Dulcis L. Peels was modified with ethylenedinitrilo tetraacetic acid and used as the sorbent for the preconcentration of Cd(II) ions from aqueous media. To characterize the sorbent, scanning electron microscopy-energy dispersive X-ray spectrometer and Fourier transform infrared spectrometer analysis were used. The optimum preconcentration conditions such as pH, eluent type, sample volume, sample flow rate and foreign ions effect were determined. The mean recovery and relative standard deviation values were found to be 100.7 ± 1.5 and 4.01% for Cd(II) ions. The capacity of the sorbent was obtained 277.8 mg g-1 from the Langmuir isotherm model. The limit of detection was calculated as 0.216 µg L-1 (P.F:40). In order to test the accuracy and applicability of the method, certified reference material and spiked water samples were analyzed. The results demonstrated good agreement with the certified values (relative error < 10%).
Collapse
Affiliation(s)
- Rukiye Saygili Canlidinç
- Department of Chemistry, Science and Art Faculty, Kütahya Dumlupınar University, 43100, Kutahya, Turkey.
| |
Collapse
|
7
|
Rahmi R, Lelifajri L, Iqbal M, Fathurrahmi F, Jalaluddin J, Sembiring R, Farida M, Iqhrammullah M. Preparation, Characterization and Adsorption Study of PEDGE-Cross-linked Magnetic Chitosan (PEDGE-MCh) Microspheres for Cd2+ Removal. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06786-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Liosis C, Papadopoulou A, Karvelas E, Karakasidis TE, Sarris IE. Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7500. [PMID: 34947096 PMCID: PMC8707578 DOI: 10.3390/ma14247500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Research on contamination of groundwater and drinking water is of major importance. Due to the rapid and significant progress in the last decade in nanotechnology and its potential applications to water purification, such as adsorption of heavy metal ion from contaminated water, a wide number of articles have been published. An evaluating frame of the main findings of recent research on heavy metal removal using magnetic nanoparticles, with emphasis on water quality and method applicability, is presented. A large number of articles have been studied with a focus on the synthesis and characterization procedures for bare and modified magnetic nanoparticles as well as on their adsorption capacity and the corresponding desorption process of the methods are presented. The present review analysis shows that the experimental procedures demonstrate high adsorption capacity for pollutants from aquatic solutions. Moreover, reuse of the employed nanoparticles up to five times leads to an efficiency up to 90%. We must mention also that in some rare occasions, nanoparticles have been reused up to 22 times.
Collapse
Affiliation(s)
- Christos Liosis
- Department of Civil Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Athina Papadopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Evangelos Karvelas
- Department of Mechanical Engineering, University of West Attica, 12243 Athens, Greece; (E.K.); (I.E.S.)
- Condensed Matter Physics Lab, Department of Physics, University of Thessaly, 35100 Lamia, Greece
| | - Theodoros E. Karakasidis
- Condensed Matter Physics Lab, Department of Physics, University of Thessaly, 35100 Lamia, Greece
| | - Ioannis E. Sarris
- Department of Mechanical Engineering, University of West Attica, 12243 Athens, Greece; (E.K.); (I.E.S.)
| |
Collapse
|
9
|
Özkalkan H, Saygili Canlidinç R. Investigation of the Conditions for Preconcentration of Cadmium Ions by Solid Phase Extraction Method Using Modified Juglans regia L. Shells. J AOAC Int 2021; 104:1246-1254. [PMID: 33757120 DOI: 10.1093/jaoacint/qsab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Juglans regia L. shells as agricultural waste can be considered as alternative sorbents to minimize the problems associated with heavy metal pollution. OBJECTIVE In this study, J. regia shells (JRS) and JRS modified with hydrazine hydrate (JRS-HH) were used as sorbents and compared for the preconcentration of Cd(II) ions from aqueous solution. METHODS For the characterization of sorbents, scanning electron microscopy and energy dispersive X-ray (SEM/EDX) analysis and Fourier transform infrared (FTIR) spectroscopy were used. For preconcentration, the solid phase extraction (SPE) technique was used. Preconcentration studies were performed by column method and pH, eluent type and concentration, sample volume, flow rate, and interfering ions effect were studied to determine the optimum column parameters. RESULTS The limit of detection (LOD) of the sorbents (JRS and JRS-HH) are 0.31 and 0.18 µg/L, respectively. According to the Langmuir isotherm model for both sorbents, for JRS KL = 0.030 L/mg, R2 = 0.992, 0.016 L/mg, and for JRS-HH KL = 0.016 L/mg, R2 = 0.998 and maximum adsorption capacities of the sorbents were found to be as 29.6 and 65.7 mg/g, respectively. The mean recoveries and RSD values at a 95% confidence level (N = 6) for Cd(II) were 100.9% and 3.42, and 100.6% and 3.79, for the JRS and JRS-HH sorbents, respectively. CONCLUSIONS Using this method good results were obtained when compared with those in the literature and the proposed method was successfully applied to the analysis of the certificated reference material (NIST 1640). HIGHLIGHTS JRS are an effective and inexpensive sorbent for the preconcentration of metal ions when modified. Thus, low-cost agricultural wastes are both recovered and have an economic value.
Collapse
Affiliation(s)
- Hüsna Özkalkan
- Kütahya Dumlupınar University, Science and Art Faculty, Department of Chemistry, 43100 Kütahya, Turkey
| | - Rukiye Saygili Canlidinç
- Kütahya Dumlupınar University, Science and Art Faculty, Department of Chemistry, 43100 Kütahya, Turkey
| |
Collapse
|
10
|
Saeed AAH, Harun NY, Sufian S, Bilad MR, Zakaria ZY, Jagaba AH, Ghaleb AAS, Mohammed HG. Pristine and Magnetic Kenaf Fiber Biochar for Cd 2+ Adsorption from Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7949. [PMID: 34360240 PMCID: PMC8345446 DOI: 10.3390/ijerph18157949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.
Collapse
Affiliation(s)
- Anwar Ameen Hezam Saeed
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Suriati Sufian
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Zaki Yamani Zakaria
- School of Chemical & Energy Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Aiban Abdulhakim Saeed Ghaleb
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Haetham G. Mohammed
- Department of Mechanical Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| |
Collapse
|
11
|
Li WT, Hu ZJ, Meng J, Zhang X, Gao W, Chen ML, Wang JH. Zn-based metal organic framework-covalent organic framework composites for trace lead extraction and fluorescence detection of TNP. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125021. [PMID: 33476910 DOI: 10.1016/j.jhazmat.2020.125021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
A novel dual functional composite (MOFL-TpBD) was prepared through solvothermal methods, with excellent Pb2+ ions separation and stable 2,4,6-Trinitrophenol (TNP) fluorescence detection performance. MOFL-TpBD was characterized by FTIR, XRD, XPS, SEM and TGA et al. The prepared material was used to extract Pb2+ ions, with an adsorption capacity of 21.74 mg g-1 calculated by Langmuir isotherm model. The limit of detection was 0.32 μg L-1, along with a linear range from 0.7 to 12 μg L-1 and a precision of 5.4% (1 μg L-1, n = 9), respectively, where MOFL-TpBD was adopted as adsorbent for Pb2+ ions preconcentration. The practical samples and reference water sample were measured by the provided method, with the satisfactory recoveries (91-110%) and reliable analytical results. MOFL-TpBD was capable of fluorescent sensing of TNP, with a linear range from 0.01 to 1 mM and a limit of detection of 3.52 μM, respectively, and a precision of 3.29% was obtained (0.2 mM, n = 11). Meanwhile, the recoveries ranged from 91% to 108% in analysis of TNP for the practical samples. The designed material provided a potential candidate material for the detection of heavy metal ions and explosives in environmental water samples.
Collapse
Affiliation(s)
- Wei-Tao Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Jie Meng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Wei Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China; Analytical and Testing Center, Northeastern University, P.O. Box 106, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China.
| |
Collapse
|
12
|
Renewable column on-line magnetic preconcentration of Cd(II) using Fe3O4 nanoparticles functionalized with l-glutamine for determination by flame atomic absorption spectrometry. Talanta 2021; 222:121519. [DOI: 10.1016/j.talanta.2020.121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
13
|
Ayouch I, Barrak I, Kassab Z, El Achaby M, Barhoun A, Draoui K. Improved recovery of cadmium from aqueous medium by alginate composite beads filled by bentonite and phosphate washing sludge. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Nyaba L, Nomngongo PN. Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chem 2020; 322:126749. [DOI: 10.1016/j.foodchem.2020.126749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
|
15
|
Yang M, Li PH, Chen SH, Xiao XY, Tang XH, Lin CH, Huang XJ, Liu WQ. Nanometal Oxides with Special Surface Physicochemical Properties to Promote Electrochemical Detection of Heavy Metal Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001035. [PMID: 32406188 DOI: 10.1002/smll.202001035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal ions (HMIs) are one of the major environmental pollution problems currently faced. To monitor and control HMIs, rapid and reliable detection is required. Electrochemical analysis is one of the promising methods for on-site detection and monitoring due to high sensitivity, short response time, etc. Recently, nanometal oxides with special surface physicochemical properties have been widely used as electrode modifiers to enhance sensitivity and selectivity for HMIs detection. In this work, recent advances in the electrochemical detection of HMIs using nanometal oxides, which are attributed to specific crystal facets and phases, surficial defects and vacancies, and oxidation state cycle, are comprehensively summarized and discussed in aspects of synthesis, characterization, electroanalysis application, and mechanism. Moreover, the challenges and opportunities for the development and application of nanometal oxides with functional surface physicochemical properties in electrochemical determination of HMIs are presented.
Collapse
Affiliation(s)
- Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Hu Tang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Chu-Hong Lin
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wen-Qing Liu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
16
|
Khan ZH, Gao M, Qiu W, Islam MS, Song Z. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. CHEMOSPHERE 2020; 246:125701. [PMID: 31891847 DOI: 10.1016/j.chemosphere.2019.125701] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
There is a demand to develop techniques for the continuous removal/immobilization of heavy metals from contaminated soil and water bodies. In this study, a unique biochar preparation method was developed for the removal of cadmium. First, conventional biochars of corn straw were produced by pyrolysis at two temperatures and then treated using one-step synthesis at different ferric nitrate ratios and different calcination temperatures to produce magnetic biochars. Second, the prepared biochars were used as adsorbents for Cd(II) removal from a solution, and the best one was selected for further evaluation. Various techniques were used to characterize the adsorbents and determine the main adsorption mechanism. The results indicated that the biochars successfully carried iron particles within, which improved the specific surface area, formed inner-sphere complexes with oxygen-containing groups, and increased the number of oxygen-containing groups. The adsorption experiments revealed that MBC800-0.6300 had a higher affinity for Cd(II) than the other adsorbents. Batch adsorption experiments were performed to explore the influence of the kinetics, isotherm, pH, thermodynamics, ionic strength, and humic acid on Cd(II) adsorption. The results indicated that the Langmuir model fit the Cd(II) adsorption best with MBC800-0.6300 having the highest adsorption capacity (46.90 mg g-1). The sorption kinetics of Cd(II) on the adsorbent follows a pseudo-second-order kinetics model. Because MBC800-0.6300 is loaded with metal ions, it can be conveniently collected by a magnet. Thus, biochar modification methods with ferric nitrate impregnation provide an excellent approach to eliminating Cd(II) from aqueous solutions. The possible adsorption mechanisms include chemisorption, electrostatic interaction, and monolayer adsorption.
Collapse
Affiliation(s)
- Zulqarnain Haider Khan
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China; Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Md Shafiqul Islam
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
17
|
Li YK, Yang T, Chen ML, Wang JH. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Crit Rev Anal Chem 2020; 51:353-372. [PMID: 32182101 DOI: 10.1080/10408347.2020.1736505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an effort to achieve high sensitivity analysis methods for ultra-trace levels of heavy metals, numerous new nanomaterials are explored for the application in preconcentration processes and sensing systems. Nanomaterial-based methods have proven to be effective for selective analysis and speciation of heavy metals in combination with spectrometric techniques. This review outlined the different types of nanomaterials applied in the field of heavy metal analysis, and concentrated on the latest developments in various new materials. In particular, the functionalization of traditional materials and the exploitation of bio-functional materials could increase the specificity to target metals. The hybridization of multiple materials could improve material properties, to build novel sensor system or achieve detection-removal integration. Finally, we discussed the future perspectives of nanomaterials in the heavy metal preconcentration and sensor design, as well as their respective advantages and challenges. Despite impressive progress and widespread attention, the development of new nanomaterials and nanotechnology is still hampered by numerous challenges, particularly in the specificity to the target and the anti-interference performance in complex matrices.
Collapse
Affiliation(s)
- Yi-Kun Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China.,Analytical and Testing Center, Northeastern University, Shenyang, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
18
|
Preparation of "Ion-Imprinting" Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions. SENSORS 2020; 20:s20040995. [PMID: 32069777 PMCID: PMC7071096 DOI: 10.3390/s20040995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022]
Abstract
In this work, we have fabricated a novel difunctional magnetic fluorescent nanohybrid (DMFN) for the determination of cadmium ions (Cd2+) in water samples, where the “off-on” model and “ion-imprinting” technique were incorporated simultaneously. The DMFN were composed of CdTe/CdS core-shell quantum dots (QD) covalently linked onto the surface of polystyrene magnetic microspheres (PMM) and characterized using ultraviolet-visible spectroscopy (UV-Vis), fluorescence spectroscopy, and transmission electron microscopy (TEM). Based on the favorable magnetic and fluorescent properties of the DMFN, the chemical etching of ethylene diamine tetraacetic acid (EDTA) at the surface produced specific Cd2+ recognition sites and quenched the red fluorescence of outer CdTe/CdS QD. Under optimal determination conditions, such as EDTA concentration, pH, and interfering ions, the working curve of determining Cd2+ was obtained; the equation was obtained Y = 34,759X + 254,894 (R = 0.9863) with a line range 0.05–8 μM, and the detection limit was 0.01 μM. Results showed that synthesized magnetic fluorescent microspheres had high sensitivity, selectivity, and reusability in detection. Moreover, they have significant potential value in fields such as biomedicine, analytical chemistry, ion detection, and fluorescence labeling.
Collapse
|
19
|
Li YK, Wang XY, Liu X, Yang T, Chen ML, Wang JH. Ensuring high selectivity for preconcentration and detection of ultra-trace cadmium using a phage-functionalized metal–organic framework. Analyst 2020; 145:5280-5288. [DOI: 10.1039/d0an00944j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A phage functionalized metal–organic framework for selective preconcentration and detection of trace cadmium.
Collapse
Affiliation(s)
- Yi-Kun Li
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xiao-Yan Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xun Liu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Ting Yang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Ming-Li Chen
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| |
Collapse
|
20
|
Chen M, Tao X, Wang D, Xu Z, Xu X, Hu X, Xu N, Cao X. Facilitated transport of cadmium by biochar-Fe 3O 4 nanocomposites in water-saturated natural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:265-275. [PMID: 31153073 DOI: 10.1016/j.scitotenv.2019.05.326] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Herein we explored the co-transport behaviors of cadmium (Cd2+) with biochar-Fe3O4 nanocomposites (BFNCs) (and biochar-alone for comparison) in water-saturated natural soil (paddy soil and red soil) packed columns. The BFNCs promoted the transport of Cd2+ (Cd2+ mass recovery = 2.71-10.5%) by 2.5-times in soils, compared to the biochar-alone (Cd2+ mass recovery = 1.28-4.07%). Greater interplays via electrostatic attraction, complexation with hydroxyls, and π-π interaction with the aromatic complexes altogether contributed to the higher adsorption capacity and transport potential towards Cd2+ by the BFNCs (vs. biochar-alone). The BFNCs greatly increased (27.1-95.5 times) Cd2+ transport in soils mainly through BFNC-Cd2+ complexes, compared to the negligible transport of Cd2+ in soils without presence of BFNCs. Higher mobility of BFNCs and BFNC-Cd2+ complex occurred in the red soil than in the paddy soil due to the lower contents of Fe/Al oxides in the red soil. Greater enhancement effect (~2.5 times) on Cd2+ was observed by BFNCs derived from wheat straw than wood chip, due to the stronger sorption ability of wheat straw biochar towards Cd2+, likely stemming from more mineral composition such as CaCO3. Our findings suggest that the potential co-transport risks should not be simply ignored particularly when the next-generation of multifunctional biochar‑iron oxide nanocomposites are employed for in-situ remediation of soils contaminated with organic/inorganic contaminants like Cd2+.
Collapse
Affiliation(s)
- Ming Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Tao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dengjun Wang
- National Research Council Resident Research Associate, United States Environmental Protection Agency, Ada, OK 74820, USA
| | - Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofang Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Xu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Zhang H, Tan X, Qiu T, Zhou L, Li R, Deng Z. A novel and biocompatible Fe 3O 4 loaded chitosan polyelectrolyte nanoparticles for the removal of Cd 2+ ion. Int J Biol Macromol 2019; 141:1165-1174. [PMID: 31499115 DOI: 10.1016/j.ijbiomac.2019.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/24/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
In this work, Fe3O4 loaded chitosan (CS) nanoparticles (NPs) and microparticles (MPs) were synthesized based on ionic gelation technology for the removal of Cd2+ ion. The influencing parameters including initial concentration, pH, contact time and recycling was evaluated and optimized. The results showed that particle size of Fe3O4 loaded CS NPs and MPs was in the range of 164.05-768.69 nm, and the former showed relatively higher adsorption capacities (97.86 mg/g) on Cd2+ ion than the latter after 90 min at pH 5.0 for the solutions with initial Cd2+ ion of 100 mg/L, respectively. Brunauer, Emmett and Teller (BET) test illustrated 61.48 m2/g of specific surface area, 0.0274 cm3/g of pore volume and 6.03 nm average pore size. The results of FT-IR, TEM, EDS and XRD indicated that Fe3O4 was well incorporated into CS NPs and MPs. Moreover, the adsorption equilibrium data fitted well with Langmuir isotherm model and adsorption process followed the pseudo-second-order model. The adsorption mechanisms could be well explained though coordination and electrostatic attraction. Findings of this work highlighted the potential using Fe3O4 loaded CS NPs as an effective and recyclable adsorbent for the removal of heavy metal ions in industrial wastewater treatment.
Collapse
Affiliation(s)
- Hongcai Zhang
- Laboratory of Aquatic Products Quality & Safety Risk Assessment (Shanghai) at China Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| | - Xiao Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Tingting Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Lisha Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Ruonan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Application of Sodium Dodecyl Sulfate/Activated Carbon onto the Preconcentration of Cadmium Ions in Solid-Phase Extraction Flow System. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3030067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, activated carbon (AC) surface modified with sodium dodecyl sulfate (SDS), written as SDS/AC, was applied as an adsorbent for preconcentration and determination of trace amount of cadmium ions in environmental sample waters. The SDS modification on AC was performed at the same time, while cadmium ions were concentrated in the flow system as solid-phase extraction. After the separation and preconcentration steps, cadmium retained on SDS/AC was eluted with HNO3 and was subsequently determined by flame atomic absorption spectrometry (FAAS). The analytical parameters that influence the quantitative determination of trace cadmium, such as SDS concentration, pH and volume of sample solution, eluent conditions, and interference, were optimized. At the optimum conditions, the general matrix elements had little interference on the proposed procedure. The detection limits was 17 ng·L−1, and the relative standard deviation (RSD) for 12 experiments at 10 µg·L−1 cadmium solutions was 2.8%. The developed method was applied into the analysis of environmental samples spiked cadmium.
Collapse
|
23
|
Wang D, Xu Y, Xiao D, Qiao Q, Yin P, Yang Z, Li J, Winchester W, Wang Z, Hayat T. Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:83-93. [PMID: 30849574 PMCID: PMC6759232 DOI: 10.1016/j.jhazmat.2019.02.091] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 02/25/2019] [Indexed: 05/06/2023]
Abstract
In this study, the ultra-thin iron phosphate Fe7(PO4)6 nanosheets (FP1) with fine-controlled morphology, has been designed as a new two-dimensional (2D) material for uranium adsorption. Due to its unique high accessible 2D structure, atom-dispersed phosphate/iron anchor groups and high specific surface area (27.77 m2⋅g-1), FP1 shows an extreme-high U(VI) adsorption capacity (704.23 mg·g-1 at 298 K, pH = 5.0 ± 0.1), which is about 27 times of conventional 3D Fe7(PO4)6 (24.51 mg·g-1 -sample FP2) and higher than most 2D absorbent materials, showing a great value in the treatment of radioactive wastewater. According to the adsorption results, the sorption between U(VI) and FP1 is spontaneous and endothermic, and can be conformed to single molecular layer adsorption. Based on the analyses of FESEM, EDS, Mapping, FT-IR and XRD after adsorption, the possibile adsorption mechanism can be described as a Monolayer Surface Complexation and Stacking mode (MSCS-Mode). Additionally, the research not only provide a novel preparing method for 2D phosphate materials but also pave a new pathway to study other two-dimensional adsorption materials.
Collapse
Affiliation(s)
- De Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| | - Difei Xiao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Qingan Qiao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Ping Yin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zhenglong Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Jiaxing Li
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China.
| | - William Winchester
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Zhe Wang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| | - Tasawar Hayat
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Li Y, Yang Z, Chen Y, Huang L. Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17321-17332. [PMID: 31020528 DOI: 10.1007/s11356-019-05081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Adsorption plays an important role in removing cadmium (Cd2+) from water, and magnetic adsorbents are increasingly being used due to their ease of separation and recovery. Magnetic Fe3O4-coated hydroxyapatite (HAP) nanoparticles (nHAP-Fe3O4) were developed by co-precipitation and then used for the removal of Cd2+ from water. The properties of these nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and magnetization curves. Experiments were conducted to investigate the effects of adsorption and mechanisms. Results illustrated that kinetic data were well fitted by a pseudo-second-order model. The adsorption capacity of nHAP-Fe3O4 was 62.14 mg/g. The mechanisms for the adsorption of Cd2+ on nHAP-Fe3O4 included rapid surface adsorption, intraparticle diffusion, and internal particle bonding, with the ion exchange with Ca2+ and chemical complexation being the most dominant. The regeneration efficiency and recovery rate of nHAP-Fe3O4 eluted by EDTA-Na2 after the fifth cycle were 63.04% and 40.2%, respectively. Results revealed that the feasibility of nHAP-Fe3O4 as an adsorbent of Cd2+ and its environmental friendliness make it an ideal focus for future research.
Collapse
Affiliation(s)
- Yujiao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, No. 2 Tiansheng Road Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Engineering Research Center of Rural Cleaning, Chongqing, 400716, People's Republic of China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, No. 2 Tiansheng Road Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Engineering Research Center of Rural Cleaning, Chongqing, 400716, People's Republic of China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, No. 2 Tiansheng Road Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Engineering Research Center of Rural Cleaning, Chongqing, 400716, People's Republic of China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, No. 2 Tiansheng Road Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Engineering Research Center of Rural Cleaning, Chongqing, 400716, People's Republic of China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
25
|
de S. Dias F, Guarino MEP, Costa Pereira AL, Pedra PP, de A. Bezerra M, Marchetti SG. Optimization of magnetic solid phase microextraction with CoFe2O4 nanoparticles unmodified for preconcentration of cadmium in environmental samples by flame atomic absorption spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Abstract
Heavy metals are very toxic water pollutant. Their presence not only affect human beings but also animals and vegetation because of their mobility in aqueous ecosystem, toxicity and non-biodegradability [1].in the aim of removing heavy metals from aqueous solutions, an eco-friendly biosorbent was prepared from lagoon sludge by a humification process. The biosorption of Cd2+ and Al3+ ions from aqueous solutions was investigated as a function of initial pH,contact time, initial metal ions concentration, and temperature. Langmuir and Freundlich models were used to determine the sorption isotherm. Optimum pH for the removal of cadmium and aluminum was found respectively to be around 6 and 4 [2] . The equilibrium was obtained in 60 min with the pseudo-second-order kinetic model. The Langmuir model was a better fit with the experimental data for both cadmium and aluminum adsorption with a regression coefficient up to 0.99 and Qmax of 100 and 142 mg.g-1 respectively for Cd2+and Al3+.
Collapse
|
27
|
Comparison of Cd(II) preconcentrations by using magnetized Pleurotus erygnii and Coprinus micaceus and its determination in real samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|