1
|
Sleumer B, van Faassen M, Vos MJ, den Besten G, Kema IP, van de Merbel NC. Simultaneous quantification of the 22-kDa isoforms of human growth hormone 1 and 2 in human plasma by multiplexed immunocapture and LC-MS/MS. Clin Chim Acta 2024; 554:117736. [PMID: 38142804 DOI: 10.1016/j.cca.2023.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
An LC-MS/MS method is presented for the simultaneous quantification of two structurally closely related protein biomarker isoforms, the 22-kDa isoforms of human growth hormone 1 and human growth hormone 2, in human plasma. It is based on multiplexed immunocapture using two monoclonal antibodies immobilized on magnetic beads, tryptic digestion and quantification of two specific signature peptides plus an additional peptide for estimation of total growth hormone related concentrations. A full validation according to international guidelines was performed across the clinically relevant concentration ranges of 0.5 to 50 ng/mL for growth hormone 1, and 2 to 50 ng/mL for growth hormone 2 and demonstrated satisfactory method performance in terms of accuracy, precision, stability and absence of interference. The method's applicability for routine analysis and its ability to effectively distinguish between GH1 and GH2 was demonstrated by the analysis of plasma samples from pregnant individuals to study the changes in growth hormone levels during pregnancy.
Collapse
Affiliation(s)
- Bas Sleumer
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, the Netherlands; Department of Analytical Biochemistry University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Michel J Vos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Gijs den Besten
- Department of Clinical Chemistry, Isala, Dr. Van Heesweg 2, 8025 AB Zwolle, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Nico C van de Merbel
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, the Netherlands; Department of Analytical Biochemistry University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Sleumer B, Kema IP, van de Merbel NC. Quantitative bioanalysis of proteins by digestion and LC-MS/MS: the use of multiple signature peptides. Bioanalysis 2023; 15:1203-1216. [PMID: 37724471 DOI: 10.4155/bio-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
The use of multiple signature peptides for the quantification of proteins by digestion and LC-MS/MS is reviewed and evaluated here. A distinction is made based on the purpose of the use of multiple peptides: confirmation of the protein concentration, discrimination between different protein forms or species and in vivo biotransformation. Most reports that describe methods with at least two peptides use these for confirmation, but it is not always mentioned how the peptides are used and how possible differences in concentration between the peptides are handled. Differences in concentration are often reported in the case of monitoring different protein forms or in vivo biotransformation, and this offers insight into the biological fate of the protein.
Collapse
Affiliation(s)
- Bas Sleumer
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK, Assen, The Netherlands
- Department of Analytical Biochemistry, University of Groningen, A Deusinglaan 1, 9700 AV Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Nico C van de Merbel
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK, Assen, The Netherlands
- Department of Analytical Biochemistry, University of Groningen, A Deusinglaan 1, 9700 AV Groningen, The Netherlands
| |
Collapse
|
3
|
Abstract
Advanced glycation end products (AGEs), by-products of glucose metabolism, have been linked to the emergence of cardiovascular disorders (CVD). AGEs can cause tissue damage in four different ways: (1) by altering protein function, (2) by crosslinking proteins, which makes tissue stiffer, (3) by causing the generation of free radicals, and (4) by activating an inflammatory response after binding particular AGE receptors, such as the receptor for advanced glycation end products (RAGE). It is suggested that the soluble form of RAGE (sRAGE) blocks ligand-mediated pro-inflammatory and oxidant activities by serving as a decoy. Therefore, several studies have investigated the possible anti-inflammatory and anti-oxidant characteristics of sRAGE, which may help lower the risk of CVD. According to the results of various studies, the relationship between circulating sRAGE, cRAGE, and esRAGE and CVD is inconsistent. To establish the potential function of sRAGE as a therapeutic target in the treatment of cardiovascular illnesses, additional studies are required to better understand the relationship between sRAGE and CVD. In this review, we explored the potential function of sRAGE in different CVD, highlighting unanswered concerns and outlining the possibilities for further investigation.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
4
|
Quantification of Proteins in Blood by Absorptive Microtiter Plate-Based Affinity Purification Coupled to Liquid Chromatography-Mass Spectrometry. Methods Mol Biol 2023; 2628:221-233. [PMID: 36781789 DOI: 10.1007/978-1-0716-2978-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Liquid chromatography (LC) coupled to mass spectrometry (MS) is increasingly used for quantification of proteins in blood. This development is prompted by ongoing improvements in detection sensitivities of LC-MS instruments and corresponding sample preparation workflows. The combination of immunoaffinity enrichment and targeted LC-MS detection is a notable analytical platform in this regard as it allows for the quantification of low abundance proteins in biological matrices like plasma and serum. Here, we describe such hybrid methods which are based on the enrichment of proteins with antibodies or affimers coupled to adsorptive microtiter plates, the proteolytic digestion of enriched proteins to release protein-specific peptides, and the detection of these peptides by microflow LC coupled to selected reaction monitoring MS.
Collapse
|
5
|
Large molecule bioanalysis by LC-MS: beyond simply quantifying. Bioanalysis 2022; 14:397-400. [PMID: 35249374 DOI: 10.4155/bio-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Klont F, Horvatovich P, Bowler RP, van Rikxoort E, Charbonnier JP, Kwiatkowski M, Lynch DA, Humphries S, Bischoff R, Ten Hacken NHT, Pouwels SD. Plasma sRAGE levels strongly associate with centrilobular emphysema assessed by HRCT scans. Respir Res 2022; 23:15. [PMID: 35073932 PMCID: PMC8785488 DOI: 10.1186/s12931-022-01934-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
Background There is a strong need for biomarkers to better characterize individuals with COPD and to take into account the heterogeneity of COPD. The blood protein sRAGE has been put forward as promising biomarker for COPD in general and emphysema in particular. Here, we measured plasma sRAGE levels using quantitative LC–MS and assessed whether the plasma sRAGE levels associate with (changes in) lung function, radiological emphysema parameters, and radiological subtypes of emphysema. Methods Three hundred and twenty-four COPD patients (mean FEV1: 63%predicted) and 185 healthy controls from the COPDGene study were selected. Plasma sRAGE was measured by immunoprecipitation in 96-well plate methodology to enrich sRAGE, followed by targeted quantitative liquid chromatography-mass spectrometry. Spirometry and HRCT scans (inspiration and expiration) with a 5-year follow-up were used; both subjected to high quality control standards. Results Lower sRAGE values significantly associated with the presence of COPD, the severity of airflow obstruction, the severity of emphysema on HRCT, the heterogeneous distribution of emphysema, centrilobular emphysema, and 5-year progression of emphysema. However, sRAGE values did not associate with airway wall thickness or paraseptal emphysema. Conclusions Rather than being a general COPD biomarker, sRAGE is especially a promising biomarker for centrilobular emphysema. Follow-up studies should elucidate whether sRAGE can be used as a biomarker for other COPD phenotypes as well.
Collapse
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eva van Rikxoort
- Thirona, Nijmegen, The Netherlands.,Diagnostic Image Analysis Group, Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Marcel Kwiatkowski
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | - David A Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA
| | - Stephen Humphries
- Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Simon D Pouwels
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands. .,Department of Pulmonary Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands. .,Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Klont F, Hopfgartner G. Mass spectrometry based approaches and strategies in bioanalysis for qualitative and quantitative analysis of pharmaceutically relevant molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:64-68. [PMID: 34916025 DOI: 10.1016/j.ddtec.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Mass spectrometry plays an essential role in qualitative and quantitative analysis of pharmaceutically relevant molecules. The present review summarizes some the most common applications of LC-MS for the characterization of therapeutic low-molecular-weight compounds, peptides and proteins, and oligonucleotides using low-resolution and high-resolution tandem mass spectrometry. In addition, the benefit of multistage MS, differential ion mobility, and data independent acquisition is emphasized. At last, the potential of coupling MS with novel interfaces for high-throughput analysis is discussed.
Collapse
Affiliation(s)
- Frank Klont
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 24, 1211 Geneva, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 24, 1211 Geneva, Switzerland.
| |
Collapse
|
8
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
9
|
Klont F, Kwiatkowski M, Faiz A, van den Bosch T, Pouwels SD, Dekker FJ, Ten Hacken NHT, Horvatovich P, Bischoff R. Adsorptive Microtiter Plates As Solid Supports in Affinity Purification Workflows. J Proteome Res 2021; 20:5218-5221. [PMID: 34669399 PMCID: PMC8576839 DOI: 10.1021/acs.jproteome.1c00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Affinity ligands
such as antibodies are widely used in (bio)medical
research for purifying proteins from complex biological samples. These
ligands are generally immobilized onto solid supports which facilitate
the separation of a captured protein from the sample matrix. Adsorptive
microtiter plates are commonly used as solid supports prior to immunochemical
detection (e.g., immunoassays) but hardly ever prior to liquid chromatography–mass
spectrometry (LC-MS-)-based detection. Here, we describe the use of
adsorptive microtiter plates for protein enrichment prior to LC-MS
detection, and we discuss opportunities and challenges of corresponding
workflows, based on examples of targeted (i.e., soluble receptor for
advanced glycation end-products (sRAGE) in human serum) and discovery-based
workflows (i.e., transcription factor p65 (NF-κB) in lysed murine
RAW 264.7 macrophages and peptidyl-prolyl cis–trans isomerase
FKBP5 (FKBP5) in lysed human A549 alveolar basal epithelial cells).
Thereby, we aim to highlight the potential usefulness of adsorptive
microtiter plates in affinity purification workflows prior to LC-MS
detection, which could increase their usage in mass spectrometry-based
protein research.
Collapse
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Marcel Kwiatkowski
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands.,Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Alen Faiz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Thea van den Bosch
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Simon D Pouwels
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AB Groningen, The Netherlands
| |
Collapse
|
10
|
Güzel C, van Sten-Van't Hoff J, de Kok IMCM, Govorukhina NI, Boychenko A, Luider TM, Bischoff R. Molecular markers for cervical cancer screening. Expert Rev Proteomics 2021; 18:675-691. [PMID: 34551656 DOI: 10.1080/14789450.2021.1980387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cervical cancer remains a significant healthcare problem, notably in low- to middle-income countries. While a negative test for hrHPV has a predictive value of more than 99.5%, its positive predictive value is less than 10% for CIN2+ stages. This makes the use of a so-called triage test indispensable for population-based screening to avoid referring women, that are ultimately at low risk of developing cervical cancer, to a gynecologist. This review will give an overview of tests that are based on epigenetic marker panels and protein markers. AREAS COVERED There is a medical need for molecular markers with a better predictive value to discriminate hrHPV-positive women that are at risk of developing cervical cancer from those that are not. Areas covered are epigenetic and protein markers as well as health economic considerations in view of the fact that most cases of cervical cancer arise in low-to-middle-income countries. EXPERT OPINION While there are biomarker assays based on changes at the nucleic acid (DNA methylation patterns, miRNAs) and at the protein level, they are not widely used in population screening. Combining nucleic acid-based and protein-based tests could improve the overall specificity for discriminating CIN2+ lesions that carry a low risk of progressing to cervical cancer within the screening interval from those that carry an elevated risk. The challenge is to reduce unnecessary referrals without an undesired increase in false-negative diagnoses resulting in cases of cervical cancer that could have been prevented. A further challenge is to develop tests for low-and middle-income countries, which is critical to reduce the worldwide burden of cervical cancer.
Collapse
Affiliation(s)
- Coşkun Güzel
- Erasmus MC, Department of Neurology, University of Groningen, Rotterdam, The Netherlands
| | | | | | - Natalia I Govorukhina
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | | | - Theo M Luider
- Erasmus MC, Department of Neurology, University of Groningen, Rotterdam, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Klont F, Horvatovich P, Ten Hacken NHT, Bischoff R. Cigarette smoking prior to blood sampling acutely affects serum levels of the chronic obstructive pulmonary disease biomarker surfactant protein D. Clin Chem Lab Med 2021; 58:e138-e141. [PMID: 32145054 DOI: 10.1515/cclm-2019-1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Faiz A, Rathnayake SNH, Ten Hacken NHT, Guryev V, van den Berge M, Pouwels SD. Single-nucleotide polymorphism rs2070600 regulates AGER splicing and the sputum levels of the COPD biomarker soluble receptor for advanced glycation end-products. ERJ Open Res 2021; 7:00947-2020. [PMID: 34195255 PMCID: PMC8236754 DOI: 10.1183/23120541.00947-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/24/2021] [Indexed: 11/05/2022] Open
Abstract
The COPD susceptibility SNP rs2070600 affects the levels of the COPD biomarker sRAGE in sputum as well as splicing of AGER. Moreover, @PouwelsScience et al. demonstrate large differences in sRAGE levels between serum and sputum. https://bit.ly/3t0pJtK.
Collapse
Affiliation(s)
- Alen Faiz
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology Sydney, Sydney, Australia
| | - Senani N H Rathnayake
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology Sydney, Sydney, Australia
| | - Nick H T Ten Hacken
- Dept of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, Groningen, The Netherlands
| | - Maarten van den Berge
- Dept of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Simon D Pouwels
- Dept of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Development of an antibody-free ID-LC MS method for the quantification of procalcitonin in human serum at sub-microgram per liter level using a peptide-based calibration. Anal Bioanal Chem 2021; 413:4707-4725. [PMID: 33987701 DOI: 10.1007/s00216-021-03361-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
The quantification of low abundant proteins in complex matrices by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains challenging. A measurement procedure based on optimized antibody-free sample preparation and isotope dilution coupled to LC-MS/MS was developed to quantify procalcitonin (PCT) in human serum at sub-microgram per liter level. A combination of sodium deoxycholate-assisted protein precipitation with acetonitrile, solid-phase extraction, and trypsin digestion assisted with Tween-20 enhanced the method sensitivity. Linearity was established through peptide-based calibration curves in the serum matrix (0.092-5.222 μg/L of PCT) with a good linear fit (R2 ≥ 0.999). Quality control materials spiked with known amounts of protein-based standards were used to evaluate the method's accuracy. The bias ranged from -2.6 to +4.3%, and the intra-day and inter-day coefficients of variations (CVs) were below 2.2% for peptide-based quality controls. A well-characterized correction factor was determined and applied to compensate for digestion incompleteness and material loss before the internal standards spike. Results with metrological traceability to the SI units were established using standard peptide of well-characterized purity determined by peptide impurity corrected amino acid analysis. The validated method enables accurate quantification of PCT in human serum at a limit of quantification down to 0.245 μg/L (bias -1.9%, precision 9.1%). The method was successfully applied to serum samples obtained from patients with sepsis. Interestingly, the PCT concentration reported implementing the isotope dilution LC-MS/MS method was twofold lower than the concentration provided by an immunoassay.
Collapse
|
14
|
Pratte KA, Curtis JL, Kechris K, Couper D, Cho MH, Silverman EK, DeMeo DL, Sciurba FC, Zhang Y, Ortega VE, O’Neal WK, Gillenwater LA, Lynch DA, Hoffman EA, Newell JD, Comellas AP, Castaldi PJ, Miller BE, Pouwels SD, Hacken NHTT, Bischoff R, Klont F, Woodruff PG, Paine R, Barr RG, Hoidal J, Doerschuk CM, Charbonnier JP, Sung R, Locantore N, Yonchuk JG, Jacobson S, Tal-singer R, Merrill D, Bowler RP. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respir Res 2021; 22:127. [PMID: 33906653 PMCID: PMC8076883 DOI: 10.1186/s12931-021-01686-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Soluble receptor for advanced glycation end products (sRAGE) is a proposed emphysema and airflow obstruction biomarker; however, previous publications have shown inconsistent associations and only one study has investigate the association between sRAGE and emphysema. No cohorts have examined the association between sRAGE and progressive decline of lung function. There have also been no evaluation of assay compatibility, receiver operating characteristics, and little examination of the effect of genetic variability in non-white population. This manuscript addresses these deficiencies and introduces novel data from Pittsburgh COPD SCCOR and as well as novel work on airflow obstruction. A meta-analysis is used to quantify sRAGE associations with clinical phenotypes. METHODS sRAGE was measured in four independent longitudinal cohorts on different analytic assays: COPDGene (n = 1443); SPIROMICS (n = 1623); ECLIPSE (n = 2349); Pittsburgh COPD SCCOR (n = 399). We constructed adjusted linear mixed models to determine associations of sRAGE with baseline and follow up forced expiratory volume at one second (FEV1) and emphysema by quantitative high-resolution CT lung density at the 15th percentile (adjusted for total lung capacity). RESULTS Lower plasma or serum sRAGE values were associated with a COPD diagnosis (P < 0.001), reduced FEV1 (P < 0.001), and emphysema severity (P < 0.001). In an inverse-variance weighted meta-analysis, one SD lower log10-transformed sRAGE was associated with 105 ± 22 mL lower FEV1 and 4.14 ± 0.55 g/L lower adjusted lung density. After adjusting for covariates, lower sRAGE at baseline was associated with greater FEV1 decline and emphysema progression only in the ECLIPSE cohort. Non-Hispanic white subjects carrying the rs2070600 minor allele (A) and non-Hispanic African Americans carrying the rs2071288 minor allele (A) had lower sRAGE measurements compare to those with the major allele, but their emphysema-sRAGE regression slopes were similar. CONCLUSIONS Lower blood sRAGE is associated with more severe airflow obstruction and emphysema, but associations with progression are inconsistent in the cohorts analyzed. In these cohorts, genotype influenced sRAGE measurements and strengthened variance modelling. Thus, genotype should be included in sRAGE evaluations.
Collapse
Affiliation(s)
| | - Jeffrey L. Curtis
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI USA
- Medical Service, Ann Arbor Healthcare System, Ann Arbor, MI USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - David Couper
- Department of Biostatistics, Collaborative Studies Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Dawn L. DeMeo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Frank C. Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Victor E. Ortega
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Wanda K. O’Neal
- Marsico Lung Institute (CF Research Center), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lucas A. Gillenwater
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, CO USA
| | - Eric A. Hoffman
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA USA
| | - John D. Newell
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA USA
| | - Alejandro P. Comellas
- Department of Internal Medicine, College of Medicine, University of Iowa Carver, Iowa City, IA USA
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | | | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, Groningen, Netherlands
| | - Nick H. T. ten Hacken
- Department of Pathology and Medical Biology, University of Groningen, Groningen, Netherlands
| | - Rainer Bischoff
- Department of
Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Frank Klont
- Department of
Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California-San Francisco, San Francisco, CA USA
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA USA
| | - Robert Paine
- Division of Pulmonary and Critical Care, University of Utah, Salt Lake City, UT USA
| | - R. Graham Barr
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University, New York, NY USA
| | - John Hoidal
- Division of Pulmonary and Critical Care, University of Utah, Salt Lake City, UT USA
| | - Claire M. Doerschuk
- Marsico Lung Institute (CF Research Center), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | | | - Ruby Sung
- Research and Development, GlaxoSmithKline, Collegeville, PA USA
| | | | - John G. Yonchuk
- Research and Development, GlaxoSmithKline, Collegeville, PA USA
| | - Sean Jacobson
- Department of Genetics, National Jewish Health, Denver, CO USA
| | | | | | - Russell P. Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| |
Collapse
|
15
|
The cardiovascular complications of diabetes: a striking link through protein glycation. ACTA ACUST UNITED AC 2020; 58:188-198. [PMID: 32759408 DOI: 10.2478/rjim-2020-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is a predominant cause of mortality and morbidity worldwide. One of its serious health problems is cardiovascular complications. Advanced glycation end products (AGEs) are a group of heterogeneous toxic oxidant compounds that are formed after a non-enzymatic reaction between monosaccharides and free amino groups of proteins, compound lipids, and nucleic acids. AGE interacts with various types of cells through a receptor for AGE (RAGE). The interaction between AGE and RAGE is responsible for a cascade of inflammation, oxidative stress, and disruption of calcium homeostasis in cardiac cells of diabetic patients. There is striking evidence that the AGE/RAGE axis with its consequences on inflammation and oxidative stress plays a major role in the development of cardiovascular complications. Therefore, considering AGE as a therapeutic target with foreseeable results would be a wise direction for future research. Interestingly, several studies on nutraceutical, pharmaceutical, and natural products have begun to reveal promising therapeutic results, and this could lead to better health outcomes for many diabetic patients worldwide. This article discusses the current literature addressing the connection between protein glycation and diabetes cardiovascular complications and suggests future avenues of research.
Collapse
|
16
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|
17
|
Klont F, Pouwels SD, Bults P, van de Merbel NC, ten Hacken NH, Horvatovich P, Bischoff R. Quantification of surfactant protein D (SPD) in human serum by liquid chromatography-mass spectrometry (LC-MS). Talanta 2019; 202:507-513. [DOI: 10.1016/j.talanta.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
|
18
|
Pouwels SD, Klont F, Kwiatkowski M, Wiersma VR, Faiz A, van den Berge M, Horvatovich P, Bischoff R, Ten Hacken NHT. Reply to Biswas: Acute and Chronic Effects of Cigarette Smoking on sRAGE. Am J Respir Crit Care Med 2019; 199:806-807. [PMID: 30589564 PMCID: PMC6423096 DOI: 10.1164/rccm.201812-2257le] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Frank Klont
- 1 University of Groningen Groningen, the Netherlands and
| | | | | | - Alen Faiz
- 1 University of Groningen Groningen, the Netherlands and.,2 University of Technology Sydney Sydney, Australia
| | | | | | | | | |
Collapse
|
19
|
Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:155-167. [DOI: 10.1016/j.jchromb.2019.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
20
|
Kontostathi G, Makridakis M, Bitsika V, Tsolakos N, Vlahou A, Zoidakis J. Development and Validation of Multiple Reaction Monitoring (MRM) Assays for Clinical Applications. Methods Mol Biol 2019; 1959:205-223. [PMID: 30852825 DOI: 10.1007/978-1-4939-9164-8_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selected/multiple reaction monitoring-mass spectrometry (SRM/MRM) is an analytical method that is frequently combined to the use of stable isotope-labeled standard (SIS) peptides for absolute protein quantification. The application of SRM/MRM is a relatively recent development in the proteomics field for analysis of biological samples (plasma, urine, cell/tissue lysates) targeting to a large extent biomarker validation. Although MRM generally by-passes the use of antibodies (being linked to sub-optimal assay specificity in many cases), bioanalytical validation of MRM protocols has not been robustly applied because of sensitivity issues, in contrary to antibody-based methods. In this chapter, we will discuss the points that should be addressed for MRM method development in clinical proteomics applications.
Collapse
Affiliation(s)
| | | | - Vasiliki Bitsika
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation Academy of Athens, Athens, Greece.
| |
Collapse
|
21
|
Pouwels SD, Klont F, Kwiatkowski M, Wiersma VR, Faiz A, van den Berge M, Horvatovich P, Bischoff R, ten Hacken NHT. Cigarette Smoking Acutely Decreases Serum Levels of the Chronic Obstructive Pulmonary Disease Biomarker sRAGE. Am J Respir Crit Care Med 2018; 198:1456-1458. [DOI: 10.1164/rccm.201807-1249le] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Frank Klont
- University of GroningenGroningen, the Netherlands
| | | | | | - Alen Faiz
- University of GroningenGroningen, the Netherlands
| | | | | | | | | |
Collapse
|
22
|
Perspectives on potentiating immunocapture-LC-MS for the bioanalysis of biotherapeutics and biomarkers. Bioanalysis 2018; 10:1679-1690. [PMID: 30371100 DOI: 10.4155/bio-2018-0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The integration of ligand-binding assay and LC-MS/MS (immunocapture-LC-MS) has unleashed the combined advantages of both powerful techniques for addressing the ever increasing bioanalytical challenges for biotherapeutics and biomarker assays. The highly specific, selective and sensitive characteristics of the immunocapture-LC-MS-based assays have enabled the determination of biotherapeutics and biomarkers in biomatrices with ease of method development, less requirements on key reagents as well as structural specificity for endogenous and engineered biomolecules. In addition, the versatile immunocapture-LC-MS technology has expanded into many challenging areas to enhance mechanistic studies of drug interactions with their targets. This paper intends to summarize our perspectives on enhancing the use of immunocapture-LC-MS in drug discovery and development for emerging new modalities.
Collapse
|
23
|
Klont F, Joosten MR, Ten Hacken NHT, Horvatovich P, Bischoff R. Quantification of the soluble Receptor of Advanced Glycation End-Products (sRAGE) by LC-MS after enrichment by strong cation exchange (SCX) solid-phase extraction (SPE) at the protein level. Anal Chim Acta 2018; 1043:45-51. [PMID: 30392668 DOI: 10.1016/j.aca.2018.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/26/2022]
Abstract
The study of low abundant proteins contributes to increasing our knowledge about (patho)physiological processes and may lead to the identification and clinical application of disease markers. However, studying these proteins is challenging as high-abundant proteins complicate their analysis. Antibodies are often used to enrich proteins from biological matrices prior to their analysis, though antibody-free approaches have been described for some proteins as well. Here we report an antibody-free workflow on the basis of strong cation exchange (SCX) enrichment and liquid chromatography-mass spectrometry (LC-MS) for quantification of the soluble Receptor of Advanced Glycation End-products (sRAGE), a promising biomarker in chronic obstructive pulmonary disease (COPD). sRAGE was quantified in serum at clinically relevant low to sub ng mL-1 levels. The method was validated according to U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines and was compared to an antibody-based LC-MS sRAGE method. The SCX-based method builds upon the bipolar charge distribution of sRAGE, which has a highly basic N-terminal part and an acidic C-terminal part resulting in an overall neutral isoelectric point (pI). The highly basic N-terminal part (pIcalculated = 10.3) allowed for sRAGE to be enriched by SCX at pH 10, a pH at which most serum proteins do not bind. This study shows that ion exchange-based enrichment is a viable approach for the LC-MS analysis of several low abundant proteins following a thorough analysis of their physical-chemical properties.
Collapse
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Marc R Joosten
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
24
|
Klont F, Hadderingh M, Horvatovich P, Ten Hacken NHT, Bischoff R. Affimers as an Alternative to Antibodies in an Affinity LC-MS Assay for Quantification of the Soluble Receptor of Advanced Glycation End-Products (sRAGE) in Human Serum. J Proteome Res 2018; 17:2892-2899. [PMID: 30005571 PMCID: PMC6079930 DOI: 10.1021/acs.jproteome.8b00414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Antibodies are indispensable tools
in biomedical research, but
their size, complexity, and sometimes lack of reproducibility created
a need for the development of alternative binders to overcome these
limitations. Affimers are a novel class of affinity binders based
on a structurally robust protease inhibitor scaffold (i.e., Cystatin
A), which are selected by phage display and produced in a rapid and
simple E. coli protein expression system. These binders
have a defined amino acid sequence with defined binding regions and
are versatile, thereby allowing for easy engineering. Here we present
an affimer-based liquid chromatography–mass spectrometry (LC–MS)
method for quantification of the soluble Receptor of Advanced Glycation
End-products (sRAGE), a promising biomarker for chronic obstructive
pulmonary disease. The method was validated according to European
Medicines Agency and U.S. Food and Drug Administration guidelines
and enabled quantitation of serum sRAGE between 0.2 and 10 ng/mL.
Comparison between the affimer-based method and a previously developed,
validated antibody-based method showed good correlation (R2 = 0.88) and indicated that 25% lower sRAGE levels are
reported by the affimer-based assay. In conclusion, we show the first-time
application of affimers in a quantitative LC–MS method, which
supports the potential of affimers as robust alternatives to antibodies.
Collapse
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Marrit Hadderingh
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University Medical Center Groningen , University of Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| |
Collapse
|