1
|
Qian Z, Jiang C, Liu C, Liu X, Zhang X, Leng Y, Li K, Chen Z. A dual-channel sensor array for discrimination of biothiols based on manganese dioxide nanosheets. Mikrochim Acta 2023; 190:294. [PMID: 37458860 DOI: 10.1007/s00604-023-05883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
A dual-signal sensor array for highly sensitive identification of biothiols is reported based on different optical responses of MnO2/curcumin (CUR) system to different biothiols. The addition of MnO2 nanosheets (MnO2 NSs) quenches the fluorescence of CUR, and the color of the mixture changes from yellow to brown. In the presence of reductive biothiols, MnO2 NSs are etched and lose their fluorescence quenching ability, resulting in an increase in the fluorescence intensity of CUR at 540 nm and a decrease in the absorbance at 430 nm. The sensor array generates specific response modes based on the varying reduction abilities of different biothiols, which can be distinguished by linear discriminant analysis (LDA). The sensor array successfully distinguished five biothiols (glutathione (GSH), dithiothreitol (DTT), cysteine (Cys), mercaptoethanol (ME), and homocysteine (Hcy)) across a wide concentration range (1 μM-100 μM) and biothiol mixtures with varing molar ratios.
Collapse
Affiliation(s)
- Zhenni Qian
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chenyue Jiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chang Liu
- College of Chemistry, University of California, CA, 94720, Berkeley, Berkeley, USA
| | - Xinyu Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xinyu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yumin Leng
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Zhu J, Miao C, Wang X. Designing a turn-on ultrasensitive fluorescent probe based on ICT-FRET for detection and bioimaging of Hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122546. [PMID: 36848857 DOI: 10.1016/j.saa.2023.122546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Hypochlorous acid (HClO) plays an essential role in biological systems. The characteristics of potent oxidization and short lifetime make it challenging to detect specifically from other reactive oxygen species (ROS) at cellular levels. Therefore, its detection and imaging with high selectivity and sensitivity are of great significance. Herein a turn-on HClO fluorescent probe (named RNB-OCl) with boronate ester as the recognition site was designed and synthesized. The RNB-OCl displayed good selective and ultrasensitive to HClO with a low detection limit of 1.36 nM by the intramolecular charge transfer (ICT)-fluorescence resonance energy transfer (FRET) dual mechanism in reducing the fluorescence background and improving the sensitivity. In addition, the role of the ICT-FRET was further demonstrated by time-dependent density functional theory (TD-DFT) calculations. Furthermore, the probe RNB-OCl was successfully employed for imaging HClO in living cells.
Collapse
Affiliation(s)
- Jihua Zhu
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai 810008, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, Qinghai 810008, P. R. China
| | - Congcong Miao
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai 810008, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xicun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
3
|
Ma W, Sun M, Huang D, Chu C, Hedtke T, Wang X, Zhao Y, Kim JH, Elimelech M. Catalytic Membrane with Copper Single-Atom Catalysts for Effective Hydrogen Peroxide Activation and Pollutant Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8733-8745. [PMID: 35537210 DOI: 10.1021/acs.est.1c08937] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The superior catalytic property of single-atom catalysts (SACs) renders them highly desirable in the energy and environmental fields. However, using SACs for water decontamination is hindered by their limited spatial distribution and density on engineered surfaces and low stability in complex aqueous environments. Herein, we present copper SACs (Cu1) anchored on a thiol-doped reactive membrane for water purification. We demonstrate that the fabricated Cu1 features a Cu-S2 coordination─one copper atom is bridged by two thiolate sulfur atoms, resulting in high-density Cu-SACs on the membrane (2.1 ± 0.3 Cu atoms per nm2). The Cu-SACs activate peroxide to generate hydroxyl radicals, exhibiting fast kinetics, which are 40-fold higher than those of nanoparticulate Cu catalysts. The Cu1-functionalized membrane oxidatively removes organic pollutants from feedwater in the presence of peroxide, achieving efficient water purification. We provide evidence that a dual-site cascade mechanism is responsible for in situ regeneration of Cu1. Specifically, one of the two linked sulfur atoms detaches the oxidized Cu1 while donating one electron, and an adjacent free thiol rebinds the reduced Cu(I)-S pair, retrieving the Cu-S2 coordination on the reactive membrane. This work presents a universal, facile approach for engineering robust SACs on water-treatment membranes and broadens the application of SACs to real-world environmental problems.
Collapse
Affiliation(s)
- Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dahong Huang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tayler Hedtke
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
4
|
Pei Q, Han Q, Tang F, Wu J, Xu S, Zhang M, Ding A. Gallic‐Acid‐Modified Naphthalimide Containing Disulfide Bond as Reduction‐Responsive Supramolecular Organogelator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Pei
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Qingqing Han
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Fang Tang
- Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jinjin Wu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Shijie Xu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Mengyao Zhang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Aixiang Ding
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
5
|
Bujaldón R, Puigdollers J, Velasco D. Towards the Bisbenzothienocarbazole Core: A Route of Sulfurated Carbazole Derivatives with Assorted Optoelectronic Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3487. [PMID: 34201516 PMCID: PMC8269540 DOI: 10.3390/ma14133487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Ladder-type molecules, which possess an extended aromatic backbone, are particularly sought within the optoelectronic field. In view of the potential of the 14H-bis[1]benzothieno[3,2-b:2',3'-h]carbazole core as a p-type semiconductor, herein we studied a set of two derivatives featuring a different alkylation patterning. The followed synthetic route, involving various sulfurated carbazole-based molecules, also resulted in a source of fluorophores with different emitting behaviors. Surprisingly, the sulfoxide-containing fluorophores substantially increased their blue fluorescence with respect to the nearly non-emitting sulfur counterparts. On this basis, we could shed light on the relationship between their chemical structure and their emission as an approach for future applications. Considering the performance in organic thin-film transistors, both bisbenzothienocarbazole derivatives displayed p-type characteristics, with hole mobility values up to 1.1 × 10-3 cm2 V-1 s-1 and considerable air stability. Moreover, the role of the structural design has been correlated with the device performance by means of X-ray analysis and the elucidation of the corresponding single crystal structures.
Collapse
Affiliation(s)
- Roger Bujaldón
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona, Spain;
| | - Joaquim Puigdollers
- Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, E-08034 Barcelona, Spain;
| | - Dolores Velasco
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona, Spain;
| |
Collapse
|
6
|
Mehmood AH, Dong B, Lu Y, Song W, Sun Y, Lin W. The development of an endoplasmic reticulum-targeting fluorescent probe for the imaging of 1,4-dithiothreitol (DTT) in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2204-2208. [PMID: 33904541 DOI: 10.1039/d0ay00443j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
1,4-Dithiothreitol (DTT) is a robust reducing agent that contributes significantly to the folding process of proteins and maintaining endoplasmic reticulum (ER) homeostasis. Abnormally high levels of DTT can lead to severe endoplasmic reticulum stress (ERS), which induces cell death. In addition, DTT can also hinder cell growth and enhance reactive oxygen species (ROS) production in the ER. Herein, an effective turn-on ER-targeting fluorescent probe, ER-DTT, was designed to image DTT for the first time. The probe ER-DTT was based upon naphthalimide as a fluorophore, p-toluenesulfonamide as an exceptional unit for ER-targeting, and sulfoxide as a response site for imaging DTT based on an intramolecular charge transfer (ICT) mechanism. Optical-response experiments showed that the probe ER-DTT had good selectivity and sensitivity for DTT. Furthermore, confocal microscopy indicated that ER-DTT was suitable for selectively targeting ER in living cells and could be implemented to recognize cellular DTT.
Collapse
Affiliation(s)
- Abdul Hadi Mehmood
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | | | |
Collapse
|
7
|
Duan X, Li N, Wang G, Su X. High sensitive ratiometric fluorescence analysis of trypsin and dithiothreitol based on WS2 QDs. Talanta 2020; 219:121171. [DOI: 10.1016/j.talanta.2020.121171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
|
8
|
Xia L, Tong Y, Li L, Cui M, Gu Y, Wang P. A selective fluorescent turn-on probe for imaging peroxynitrite in living cells and drug-damaged liver tissues. Talanta 2019; 204:431-437. [DOI: 10.1016/j.talanta.2019.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 11/24/2022]
|