1
|
Guo W, Bai D, He Y, Ma Y, Ji T, Yang R, Dong W. A single excitation dual emission semi-salamo type multi-functional probe for sensitive pH and Cu 2+ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124386. [PMID: 38763017 DOI: 10.1016/j.saa.2024.124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
pH and Cu2+ ion concentration changes are linked to disorders like Alzheimer's and cancer. Rapid detection of pH and Cu2+ ions is critical for public health and environmental concerns. The semi-salamo-type probe (E)-2-hydroxy-1-naphthaldehyde O-(2-(aminooxy)ethyl) oxime (NSS) demonstrated substantial dual-functional performance, sensing pH change and Cu2+ ions. A single excitation and double emission characteristic on the probe NSS made it distinctive. Probe NSS exhibits pH-dependent excited state intramolecular proton transfer (ESIPT), and its optical properties vary based on the pH environment. Probe NSS detects pH changes from 2 to 11 by changing the "off-on-off" of the excited state intra-molecular proton transfer (ESIPT) mechanism, exhibiting rapid, reversible, and selective responses. In addition, the luminescent salamo-like naphthalene-based probe NSS can coordinate with Cu2+ ions, achieving great selectivity and sensitivity to identify Cu2+ ions with a detection limit of 0.84 ppb (13.2 nM) Probe NSS can detect Cu2+ ions in actual water samples such as tap water and yellow river water. The test strip loaded with probe NSS enabled quick and accurate detection of Cu2+ ions in water samples. Consequently, the versatile salamo-type probe NSS lays the foundation for developing high sensitivity and fast-response dual-mode pH meters as well as Cu2+ sensing.
Collapse
Affiliation(s)
- Wenting Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Dongzhen Bai
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yunzhao He
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yan Ma
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Tongxin Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Rui Yang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wenkui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
2
|
Gui R, Jin H. Organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH for biosensing, bioimaging and biotherapeutics applications. Talanta 2024; 275:126171. [PMID: 38703479 DOI: 10.1016/j.talanta.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China
| |
Collapse
|
3
|
Huang Y, Cao X, Deng Y, Ji X, Sun W, Xia S, Wan S, Zhang H, Xing R, Ding J, Ren C. An overview on recent advances of reversible fluorescent probes and their biological applications. Talanta 2024; 268:125275. [PMID: 37839322 DOI: 10.1016/j.talanta.2023.125275] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Due to the simplicity and low detection limit, fluorescent probes are widely used in both analytical sensing and optical imaging. Compared to conventional fluorescent probes, reversibility endows the reversible fluorescent probe outstanding advantages and special properties, making reversible fluorescent probes with capable of quantitative, repetitive or circulatory. Reversible fluorescent probes can also monitor the concentration dynamics of target analytes in real time, such as metal ions, proteins and enzymes, as well as intracellular redox processes, which have been widely applied in various fields. This review summarized the types and excellent properties of reversible fluorescent probes designed and developed in recent years. It also summarized the applications of reversible fluorescent probe in fluorescence imaging, biological testing, monitoring redox cycles, and proposed the remaining challenges and future development directions of the reversible fluorescent probe. This review provided comprehensive overview of reversible fluorescent probe, which may provide valuable references for the design and fabrication of the reversible fluorescent probe.
Collapse
Affiliation(s)
- Yanan Huang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xuebin Cao
- China State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo315832, Zhejiang, China; Yantai Jinghai Marine Fisheries Co., LTD, Yantai, 264000, Shandong, China
| | - Yawen Deng
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xingyu Ji
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Weina Sun
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shiyu Xia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shuo Wan
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongxia Zhang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Ronglian Xing
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| | - Jun Ding
- Dalian Ocean University, Dalian, 116000, Liaoning, China
| | - Chunguang Ren
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
4
|
Yu C, Lu G, Yan C, Xu J, Zhang F. Preparation and pH Detection Performance of Rosin-Based Fluorescent Polyurethane Microspheres. J Fluoresc 2023:10.1007/s10895-023-03160-z. [PMID: 36790631 DOI: 10.1007/s10895-023-03160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Rosin-based fluorescent polyurethane emulsion (FPU) was prepared using isophorone diisocyanate, ester of acrylic rosin and glycidyl methacrylate, 1,5-dihydroxy naphthalene (1,5-DN), and 1,4-butanediol as the raw materials. Then, rosin-based fluorescent polyurethane microspheres (FPUMs) were successfully prepared by suspension polymerization method using FPU as the main material, azodiisobutyronitrile as the initiator, and gelatin as the dispersant. FPUMs were characterized by Fourier transform infrared spectra, thermogravimetric analysis, optical microscopy, scanning electron microscopy and fluorescence spectra, and the response performance of FPUMs to pH was studied. The results showed that FPUMs were successfully prepared. With the increase of the level of 1,5-DN, the particle size of FPUMs increased gradually, and the fluorescence intensity increased first and then decreased. When the level of 1,5-DN was 3 wt.%, the average particle size was 49.3 μm, the particle distribution index (PDI) was 1.05, and the fluorescence intensity was the largest (3662 a.u.). The fluorescence intensity of FPUMs increased linearly with the decrease of pH, which can be used for pH detection in solution. Furthermore, the FPUMs exhibited good thermal stability, anti-interference and recoverability.
Collapse
Affiliation(s)
- Caili Yu
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guangjie Lu
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Chengfei Yan
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jianben Xu
- College of Materials Science and Engineering, Guilin University of Technology, No 12, Jiangan Road, Guilin, 541004, People's Republic of China.
| | - Faai Zhang
- College of Materials Science and Engineering, Guilin University of Technology, No 12, Jiangan Road, Guilin, 541004, People's Republic of China.
| |
Collapse
|
5
|
Filho MS, Moraes ES, da Luz LC, da Silveira Santos F, Martin AR, Benhida R, Duarte LGTA, Rodembusch FS. Synthesis, photophysics, and theoretical calculations of styryl-based fluorophores harboring substituted benzothiazole acceptors. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Yao W, Zhu D, Ye Y, Wang B, Xie W, Ren A. A novel colorimetric and ratiometric fluorescent probe for detection of Cu2+ with large Stokes shift in complete aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Ultra-fast pH determination with a new colorimetric pH-sensing hydrogel for biomedical and environmental applications. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
9
|
Satyanarayana N, Sathish K, Nagaraju S, Pawar R, Faizan M, Arumugavel M, Shirisha T, Kashinath D. Metal-free, one-pot synthesis of 2-styrylquinolines via Friedländer annulation and sp3 C–H activation using 1,3-dimethylurea and l-tartaric acid (3 : 1) as a deep eutectic solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj00132a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functionalized 2-styrylquinolines are prepared using DMU + l-(+)-tartaric acid as deep eutectic solvent. DFT calculations supported the experimental results on role of DES as catalyst. The absorption-emission spectra indicating that these compounds can be useful as fluorescent probes.
Collapse
Affiliation(s)
- Neeli Satyanarayana
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Kota Sathish
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Sakkani Nagaraju
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Ravinder Pawar
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Mohmmad Faizan
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Murgan Arumugavel
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | | | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| |
Collapse
|
10
|
Hande PE, Shelke YG, Datta A, Gharpure SJ. Recent Advances in Small Molecule-Based Intracellular pH Probes. Chembiochem 2021; 23:e202100448. [PMID: 34695287 DOI: 10.1002/cbic.202100448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Intracellular pH plays an important role in many biological and pathological processes. Small-molecule based pH probes are found to be the most effective for pH sensing because of ease of preparation, high sensitivity, and quick response. They have many advantages such as small perturbation to the functions of the target, functional adaptability, cellular component-specific localization, etc. The present review highlights the flurry of recent activity in the development of such probes. The probes are categorized based on the type of fluorophore used like quinoline, coumarin, BODIPY, rhodamine, indolium, naphthalimide, etc., and their analytical performance is discussed.
Collapse
Affiliation(s)
- Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Yogesh G Shelke
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Zhu D, Jiang S, Zhao W, Yan X, Xie W, Xiong Y, Wang S, Cai W, Gao Y, Ren A. A novel ratiometric fluorescent probe for sensitive and selective detection of Cu2+ based on Boranil derivatives. Inorganica Chim Acta 2021; 524:120438. [DOI: 10.1016/j.ica.2021.120438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Guria S, Ghosh A, Mishra T, Das MK, Adhikary A, Adhikari S. X-ray structurally characterized quinoline based fluorescent probes for pH sensing: Application in intracellular pH imaging; DFT calculations and fluorescent labelling. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Wang JT, Pei YY, Yan MY, Li YG, Yang GG, Qu CH, Luo W, Wang J, Li QF. A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Iacopini D, Moscardini A, Lessi F, Di Bussolo V, Di Pietro S, Signore G. Coumarin-based fluorescent biosensor with large linear range for ratiometric measurement of intracellular pH. Bioorg Chem 2020; 105:104372. [DOI: 10.1016/j.bioorg.2020.104372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
|
15
|
Lei X, Fu Y, Wu Y, Chen L, Liang J. A ratiometric fluorescent probe for pH detection based on Ag 2S quantum dots-carbon dots nanohybrids. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200482. [PMID: 32874645 PMCID: PMC7428231 DOI: 10.1098/rsos.200482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel ratiometric fluorescent nanoprobe for pH monitoring has been developed by synthesizing red fluorescent Ag2S quantum dots (Ag2S QDs) and green fluorescent carbon dots (CDs) nanohybrids (Ag2S CDs) in one pot using CDs as templates. The nanoprobe exhibits dual-emission peaks at 500 and 670 nm under a single-excitation wavelength of 450 nm. The red fluorescence can be selectively quenched by increasing pH, while the green fluorescence is an internal reference. Therefore, the change of the relative fluorescence intensity (I500/I670) in the ratiometric Ag2S CDs probes can be used for pH sensing. The results revealed that I500/I670 of Ag2S CDs probes was linearly related to pH variation between pH 5.4 and 6.8. Meanwhile, the Ag2S CDs probes possessed a good reversibility along with pH changing between 5.0 and 7.0 without any interruption from common metal ions, proteins and other interferences.
Collapse
Affiliation(s)
| | | | - Yuan Wu
- Authors for correspondence: Yuan Wu e-mail:
| | - Lu Chen
- Authors for correspondence: Lu Chen e-mail:
| | | |
Collapse
|
16
|
Li S, Cao D, Ma W, Hu Z, Meng X, Li Z, Yuan C, Zhou T, Han X. A simple fluorescent probe for detection of Ag + and Cd 2+ and its Cd 2+ complex for sequential recognition of S 2. RSC Adv 2020; 10:18434-18439. [PMID: 35517219 PMCID: PMC9053719 DOI: 10.1039/d0ra01768j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we designed and synthesized a simple probe 2-(8-((8-methoxyquinolin-2-yl)methoxy)quinolin-2-yl)benzo[d]thiazole (DQT) for detection of Ag+ and Cd2+ in a CH3OH/HEPES (9 : 1 v/v, pH = 7.30) buffer system. Its structure was characterized by NMR, ESI-HR-MS and DFT calculations, and its fluorescence performance was also investigated. Probe DQT showed fluorescence quenching in response to Ag+ and Cd2+ with low detection limits of 0.42 μM and 0.26 μM, respectively. Importantly, the complexation of the probe with Cd2+ resulted in a red shift from blue to green, making it possible to detect Ag+ and Cd2+ by the naked eye under an ultraviolet lamp. The DQT-Cd2+ complex could be used for sequential recognition of S2-. The recovery response could be repeated 3 times by alternate addition of Cd2+ and S2-. A filter paper strip test further demonstrated the potential of probe DQT as a convenient and rapid assay.
Collapse
Affiliation(s)
- Shengling Li
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Duanlin Cao
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Wenbing Ma
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China .,National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education, North University of China Taiyuan 030051 P.R. China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China .,National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education, North University of China Taiyuan 030051 P.R. China
| | - Xianjiao Meng
- College of Arts and Sciences, Shanxi Agricultural University Taigu Shanxi 030801 P.R. China
| | - Zhichun Li
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Changchun Yuan
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Tao Zhou
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China .,National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education, North University of China Taiyuan 030051 P.R. China
| |
Collapse
|
17
|
The fluorescent markers based on oxazolopyridine unit for imaging organelles. Bioorg Med Chem Lett 2020; 30:126996. [PMID: 32033852 DOI: 10.1016/j.bmcl.2020.126996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/01/2020] [Accepted: 01/24/2020] [Indexed: 01/23/2023]
Abstract
Bioactive oxazolopyridine unit was used in the synthesis of fluorescent markers for specific organelles in this paper. The compounds 1a-c are linked with double bond between oxazolopyridine ring and photogenic precursors (3a-c). Compound 1a showed higher fluorescence yield (0.86 in THF), compounds 1b-c showed larger stokes shifts in DMSO. In lipid vesicles environment, they also showed good optical properties. In addition, the three compounds are biomarkers with lower cytotoxicity. Among them, compound 1a based on oxazolopyridine and coumarin unit is a dual targetable fluorescent marker for mitochondria and lipid droplets; while the other two compounds 1b-c are only biomarkers for lipid droplets.
Collapse
|
18
|
Wu F, Luo X, Yang J, Ren M, Wei X, Yan Z. A Dual‐Mode Colorimetric/Fluorescent Sensor Comprising Rhodamine B and Piperazine: Response to Acidic pH Values and Investigation of Recognition Mechanism. ChemistrySelect 2020. [DOI: 10.1002/slct.202000140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fang‐hui Wu
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Xiang‐rui Luo
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Jun‐qing Yang
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Mei‐juan Ren
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Xian‐wen Wei
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Zhengquan Yan
- School of Chemistry and Chemical EngineeringQufu Normal University Jining Shi, Qufu 273165 China
| |
Collapse
|
19
|
Wang ZG, Wang Y, Ding XJ, Sun YX, Liu HB, Xie CZ, Qian J, Li QZ, Xu JY. A highly selective colorimetric and fluorescent probe for quantitative detection of Cu 2+/Co 2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117763. [PMID: 31718979 DOI: 10.1016/j.saa.2019.117763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Identifying and detecting similar target cations through combining "turn on" and "turn off" fluorescence mechanism is effective and challenging. Now a new colorimetric and ON-OFF-ON fluorescent probe N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)-3-hydroxy-2-naphthohydrazide (L) was reported, which could detect Cu2+ and Co2+ in phosphate buffered CH3CH2OH-H2O solvent system. With the assistance of glutathione and pH adjustment, a unique ON-OFF-ON fluorescence detection strategy could be achieved for distinguishing Cu2+ and Co2+. The emission of probe could recover from the L-Cu2+ and L-Co2+ system by addition of GSH or adjusting pH value to 4, respectively, which is due to the abolishment of paramagnetic Cu2+/Co2+. Based on fluorescence titration experiments, the limit of detection was determined as 3.84 × 10-9 M and 4.55 × 10-9 M for Cu2+ and Co2+, respectively. Meanwhile, the detection limit reached 6.21 × 10-8 M for Cu2+ and 6.96 × 10-8 M for Co2+ according to absorbance signal output. Fast recognition of Cu2+/Co2+ can be achieved by obvious color changes from green to colorless under UV light, as well as from yellow to orange-red in room light. The binding mode of L toward Cu2+ and Co2+ have been systematically studied by Job's plot analysis, ESI-MS, IR and density functional theory calculations. Most strikingly, further practical applications of the probe L in fluorescence imaging were investigated in MCF-7 cells and zebrafish due to its low cytotoxicity and good optical properties, suggesting that L could serve as a fluorescent sensor for tracking Cu2+ and Co2+in vivo.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Xiao-Jing Ding
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yu-Xuan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China.
| | - Jing Qian
- College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
20
|
Wang L, Zhou Y, Zhang Y, Zhang G, Zhang C, He Y, Dong C, Shuang S. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells. Talanta 2020; 209:120436. [PMID: 31892062 DOI: 10.1016/j.talanta.2019.120436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
pH regulates the function of many organelles and plays a pivotal role in requiring multitud cellular behaviors. Compared with single fluorescent probes, ratio fluorescent probes have higher sensitivity and immunity to interference. Herein, a novel Janus ratio nanoprobe was developed for intracellular pH detection. Modified rhodamine B probe and fluorescein isothiocyanate (FITC) were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via Pickering emulsion. Moreover, it exhibits a satasified ratiometric detection of pH compared to the previous core-shell structure and organic small molecule probe. Accordingly, the Janus nanoprobe possesses many important features as an attractive sensor, including high anti-jamming capability, excellent stability, good reversibility and low cytotoxicity. Variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor, which can respond to wide range of pH values from 3 to 8. To be more specific, with a single excitation wavelength of 488 nm, there are dual emission bands centered at 538 nm and 590 nm. Also the Janus nanoprobe displays a excellent linear relationship in the physiologically relevant pH range of 4.0-6.0. Consequently, detecting of pH and imaging was successfully achieved in living cells, which provides a simple and reliable method for detecting intracelluar pH and other similar substances.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yujian He
- College of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
21
|
Li NN, Bi CF, Zhang X, Xu CG, Fan CB, Gao WS, Zong ZA, Zuo SS, Niu CF, Fan YH. A bifunctional probe based on naphthalene derivative for absorbance-ratiometic detection of Ag+ and fluorescence “turn-on” sensing of Zn2+ and its practical application in water samples, walnut and living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Abel AS, Averin AD, Cheprakov AV, Roznyatovsky VA, Denat F, Bessmertnykh-Lemeune A, Beletskaya IP. 6-Polyamino-substituted quinolines: synthesis and multiple metal (Cu II, Hg II and Zn II) monitoring in aqueous media. Org Biomol Chem 2019; 17:4243-4260. [PMID: 30860543 DOI: 10.1039/c9ob00259f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective palladium-catalyzed arylation of polyamines with 6-bromoquinoline has been explored to prepare chelators for the detection of metal cations in aqueous media. The introduction of a single aromatic moiety into non-protected polyamine molecules was achieved using the commercially available Pd(dba)2/BINAP precatalyst to afford nitrogen chelators, in which the aromatic signalling unit is directly attached to the polyamine residue. Water-soluble receptors were then synthesized using N-alkylation of these polyamines by hydrophilic coordinating residues. By combining rich photophysical properties of the 6-aminoquinoline unit with a high coordination affinity of chelating polyamines and a hydrophilic character of carboxamido-substituted phosphonic acid diesters in a single molecular device, we synthesized chemosensor 5 for selective double-channel (UV-vis and fluorescence spectroscopies) detection of CuII ions in aqueous media at physiological levels. This receptor is suitable for the analysis of drinking water and fabrication of paper test strips for the naked-eye detection of CuII ions under UV-light. By increasing the number of donor sites we also obtained chemosensor 6 which is efficient for the detection of HgII ions. Moreover, chemosensor 6 is also suitable for multiple detection of metal ions because it chelates not only HgII but also CuII and ZnII ions displaying different responses of emission in the presence of these three cations.
Collapse
Affiliation(s)
- Anton S Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection. Talanta 2019; 205:120021. [DOI: 10.1016/j.talanta.2019.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
|
24
|
Yang YZ, Xiao N, Liu SG, Han L, Li NB, Luo HQ. pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110401. [PMID: 31923930 DOI: 10.1016/j.msec.2019.110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
Intracellular pH level plays an important role in physiological and pathological processes. The development of nanoprobes for detecting in vivo pH levels is especially important for early diagnosis of disease. Therefore, we develop a hydrophilic carbon points (CDs) using quercetin and ethylenediamine as precursors to monitor intracellular pH. Under optimized conditions, the prepared CDs not only have uniform particle size and morphology, but also possess strong green fluorescence, photostability, and photoreversibility in water medium. The CDs exhibit pH-sensitive fluorescence effect under acidic and alkaline conditions, which is used to achieve "off-on-off" detection pH (from 3.5 to 13.5). Meanwhile, the pH-dependent mechanism is further investigated and explained, which is the fluorescence quenching caused by the pH-induced aggregation. Based on the pH-sensitive characteristics of CDs, it has been applied to the detection of aspartic acid and glutamic acid. More importantly, when applied to live cells, the pH-probe exhibits low cytotoxicity and high sensitivity, and is successfully used in intracellular pH fluorescence imaging. Consequently, this nanoprobe is expected to be used for real-time monitoring of intracellular pH level.
Collapse
Affiliation(s)
- Yu Zhu Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Na Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shi Gang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Construction of NaYF4:Eu@carbon dots nanocomposites for multifunctional applications. J Colloid Interface Sci 2019; 543:156-163. [DOI: 10.1016/j.jcis.2019.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
|
26
|
Chao JB, Li M, Zhang YB, Yin CX, Huo FJ. A simple fluorescent pH probe and its application in cells. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00699-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|