1
|
Uygun ZO, Tasoglu S. Impedimetric antimicrobial peptide biosensor for the detection of human immunodeficiency virus envelope protein gp120. iScience 2024; 27:109190. [PMID: 38414859 PMCID: PMC10897921 DOI: 10.1016/j.isci.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
This study presents the design and implementation of an antimicrobial peptide-based electrochemical impedance spectroscopy (EIS) based biosensor system. The biosensor consists of a gold coated carbon electrode with MXene and silver nanoparticles (AgNPs) for the label-free detection of the human immunodeficiency virus (HIV) envelope protein gp120. Scanning electron microscopy was used to confirm the presence and distribution of MXene and AgNPs on the biosensor surface. The employment of the antimicrobial peptide on the electrode surface minimized the denaturation of the biorecognition receptor to ensure reliable and stable performance. The biosensor exhibited a linear range of 10-4000 pg mL-1 for gp120 detection, demonstrating good repeatability in real samples. The limit of detection (LOD) and limit of quantification (LOQ) were also calculated as 0.05 pg mL-1 and 0.14 pg mL-1, respectively. This biosensing platform has promising applications in the detection of HIV in clinical and point-of-care settings.
Collapse
Affiliation(s)
- Zihni Onur Uygun
- Kafkas University, Faculty of Medicine, Department of Medical Biochemistry, Kars 36100, Türkiye
- Koç University, Koç University Translational Medicine Research Center (KUTTAM), Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Koç University, Koç University Translational Medicine Research Center (KUTTAM), Istanbul 34450, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
- Koç University, Engineering Faculty, Department of Mechanical Engineering, Istanbul 34450, Türkiye
- Boğaziçi University, Boğaziçi Institute of Biomedical Engineering, Istanbul 34684, Türkiye
| |
Collapse
|
2
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
3
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
4
|
Singhal A, Parihar A, Kumar N, Khan R. High throughput molecularly imprinted polymers based electrochemical nanosensors for point-of-care diagnostics of COVID-19. MATERIALS LETTERS 2022; 306:130898. [PMID: 34566219 PMCID: PMC8450140 DOI: 10.1016/j.matlet.2021.130898] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
The importance of early diagnosis of infectious disease has been revealed well by the COVID-19 pandemic. The current methods for testing SARS-CoV-2 mainly utilize biorecognition elements. The process of production of these biorecognition elements is not only tedious, time-consuming but also costly. The molecularly imprinted polymers recently have gained considerable attention as they are stable and also offer high selectivity and specificity than conventional labels. The present review discussed the MIPs-based electrochemical nano-sensors diagnostic of SARS-CoV-2.
Collapse
Affiliation(s)
- Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal-462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal-462026, MP, India
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal-462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal-462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Ma Y, Li J, Wang L. Porous carbon derived from ZIF-8 modified molecularly imprinted electrochemical sensor for the detection of tert-butyl hydroquinone (TBHQ) in edible oil. Food Chem 2021; 365:130462. [PMID: 34218113 DOI: 10.1016/j.foodchem.2021.130462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
In this manuscript, ZIF-8 derived nanoporous carbon material (ZC) was prepared and used as modification material to construct a molecularly imprinted electrochemical sensor for the direct detection of tert-butyl hydroquinone (TBHQ) in edible oil. Electrochemical characterizations, scanning electron microscopy and X-ray diffraction show that ZC has excellent conductivity, high electrochemical active area and stable porous framework structure. Using TBHQ as template and o-phenylenediamine as functional monomer, the sensor was constructed. Experimental parameters such as the number of polymerization cycle, polymerization speed, and pH of the measured solution, removal and rebinding time were studied. Under optimized conditions, the prepared sensor showed a wider linear range from 1.0 μmol L-1 to 75.0 μmol L-1 with the detection limit of 0.42 μmol L-1 (S/N = 3). Meanwhile, the sensor also expressed good selectivity, repeatability, reproducibility, stability and successfully applied for the determination of TBHQ in real edible oil, giving satisfactory results.
Collapse
Affiliation(s)
- Ya Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Jiayong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Ma Y, Wang L. High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology. Biosens Bioelectron 2021; 178:113056. [DOI: 10.1016/j.bios.2021.113056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
|
7
|
Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. MATERIALS 2021; 14:ma14061369. [PMID: 33799893 PMCID: PMC7999878 DOI: 10.3390/ma14061369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Conjugated polymers are widely used in the development of sensors, but even though they are sensitive and robust, they typically show limited selectivity, being cross-sensitive to many substances. In turn, molecular imprinting is a method involving modification of the microstructure of the surface to incorporate cavities, whose shape matches that of the “template”—the analyte to be detected, resulting in high selectivity. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to sensors utilising molecularly imprinted polypyrrole layers and their applications, particularly regarding the detection of bioactive substances. The key approaches to depositing such layers and the most relevant types of analytes are highlighted, and the various trends in the development of this type of sensors are explored.
Collapse
|
8
|
A nanospherical conjugated microporous polymer-graphene nanosheets modified molecularly imprinted electrochemical sensor for high sensitivity detection of α-Synuclein. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
10
|
Flexible HIV-1 Biosensor Based on the Au/MoS 2 Nanoparticles/Au Nanolayer on the PET Substrate. NANOMATERIALS 2019; 9:nano9081076. [PMID: 31357466 PMCID: PMC6723525 DOI: 10.3390/nano9081076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
Abstract
An electrochemical flexible biosensor composed of gold (Au), molybdenum disulfide nanoparticles (MoS2 NPs), and Au (Au/MoS2/Au nanolayer) on the polyethylene terephthalate (PET) substrate is developed to detect envelope glycoprotein GP120 (gp120), the surface protein of HIV-1. To fabricate the nanolayer on the PET substrate, Au is sputter coated on the flexible PET substrate and MoS2 NPs are spin coated on Au, which is sputter coated once again with Au. The gp120 antibody is then immobilized on this flexible electrode through cysteamine (Cys) modified on the surface of the Au/MoS2/Au nanolayer. Fabrication of the biosensor is verified by atomic force microscopy, scanning electron microscopy, and cyclic voltammetry. A flexibility test is done using a micro-fatigue tester. Detection of the gp120 is measured by square wave voltammetry. The results indicate that the prepared biosensor detects 0.1 pg/mL of gp120, which is comparable with previously reported gp120 biosensors prepared even without flexibility. Therefore, the proposed biosensor supports the development of a nanomaterial-based flexible sensing platform for highly sensitive biosensors with flexibility for wearable device application.
Collapse
|