1
|
Mendes F, Machado BO, Castro BB, Sousa MJ, Chaves SR. Harnessing the power of biosensors for environmental monitoring of pesticides in water. Appl Microbiol Biotechnol 2025; 109:92. [PMID: 40216649 PMCID: PMC11991957 DOI: 10.1007/s00253-025-13461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
The current strong reliance on synthetic chemicals, namely pesticides, is far from environmentally sustainable. These xenobiotics contribute significantly to global change and to the current biodiversity crisis, but have been overlooked when compared to other agents (e.g., climate change). Aquatic ecosystems are particularly vulnerable to pesticides, making monitoring programs essential to preserve ecosystem health, safeguard biodiversity, ensure water quality, and mitigate potential human health risks associated with contaminated water sources. Biosensors show great potential as time/cost-effective and disposable systems for the high-throughput detection (and quantification) of these pollutants. In this mini-review, we provide an overview of biosensors specifically developed for environmental water monitoring, covering different pesticide classes (and active ingredients), and types of biosensors (according to the bio-recognition element) and transducers, as well as the nature of sample matrices analyzed. We highlight the variety of biosensors that have been developed and successfully applied to detection of pesticides in aqueous samples, including enzymatic biosensors, immunosensors, aptasensors, and whole cell-based biosensors. While most biosensors have been designed to detect insecticides, expanding their compound target range could significantly streamline monitoring of environmental contaminants. Despite limitations related to stability, reproducibility, and interference from environmental factors, biosensors represent a promising and sustainable technology for pesticide monitoring in the aquatic environments, offering sensitivity and specificity, as well as portability and real-time results. We propose that biosensors would be most effective as an initial screening step in a tiered assessment, complementing conventional methods. KEY POINTS: • Pesticides harm aquatic ecosystems and biodiversity, requiring better monitoring • Biosensors offer cost-effective solutions to detect pesticides in water samples • Biosensors complement conventional methods as a sustainable tool for initial screens.
Collapse
Affiliation(s)
- Filipa Mendes
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Beatriz O Machado
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Bruno B Castro
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
2
|
Cho YK, Choi Y, Kim S, Kim H, Chow KF, Shin IS, Park JH, Lee H. Scalable electrochemical system for rapid on-site detection of food allergens. Biosens Bioelectron 2025; 273:117142. [PMID: 39832405 PMCID: PMC11788024 DOI: 10.1016/j.bios.2025.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Food allergies affect millions of individuals worldwide, significantly impacting personal health and the economy. While avoiding allergenic foods remains the primary management strategy, consumers lack reliable means for immediate allergen detection in everyday dining settings. Here, we present iEAT2 (integrated Exogenous Allergen Test 2), an advanced electrochemical sensing system for rapid, on-site food allergen detection. Building upon our previous assay system, the iEAT2 features technical breakthroughs: i) a complete kit for sample processing, including a torsion device for food grinding, and ii) a new strategy for multi-electrode measurements, which enables the simultaneous detection of multiple allergens in a simplified electronic architecture. We designed a compact iEAT2 prototype capable of 16 electrochemical reactions. Experimental validation confirmed the independent electrochemical measurements in a simultaneous operation. Furthermore, the entire testing protocol was completed within 15 min, from allergen extraction to detection. The platform detected three common food allergens (gliadin, Ara h1, and ovalbumin) at concentrations below established allergic reaction thresholds. It also effectively identified cross-contamination events in real-world food samples. This technology may empower consumers to monitor food safety and improve its management.
Collapse
Affiliation(s)
- Young Kwan Cho
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Yoonjeong Choi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Soohyun Kim
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hyunho Kim
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kwok-Fan Chow
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ik-Soo Shin
- Department of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, South Korea.
| | - Jay Hoon Park
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Li B, Wang J, Zhang C, Li G, Wang Y. Identification of phoxim and omethoate using α-hemolysin nanopore and aptamers. Food Chem 2025; 463:141142. [PMID: 39305573 DOI: 10.1016/j.foodchem.2024.141142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024]
Abstract
Contamination with pesticides has inflicted substantial harm on human health; therefore, developing rapid, ultra-sensitive, and non-labelling simultaneous detection methods for multiple pesticides is necessary. In this study, we demonstrated that α-hemolysin (α-HL) nanopore sensor can detect and discriminate organophosphorus pesticides of phoxim and omethoate in a single nanopore without requiring labels of the probes or purification of the pesticides in real samples. Aptamers specifically recognise and bind pesticides to obtain pesticide-aptamer complexes that produce characteristic current signals while passing through the nanopore. Phoxim and omethoate were accurately distinguished by a portable instrument within minutes, and their detection sensitivity was up to the femtomole level, whether detected alone or simultaneously. The detection limits of phoxim and omethoate were 8.13 × 10-16 M and 4.16 × 10-15 M. The recoveries of phoxim and omethoate from pear, tomato, and cucumber samples were 82.0-107.0 % and 81.9-118.3 % respectively, with coefficient of variable below 8.0 %.
Collapse
Affiliation(s)
- Bin Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, China
| | - Junxiao Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, China
| | - Chengling Zhang
- Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
| | - Guangyue Li
- Shandong Dingyi Ecological Agriculture Co. LTD, Linyi 276005, China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, China; Shandong Dingyi Ecological Agriculture Co. LTD, Linyi 276005, China.
| |
Collapse
|
4
|
Kumar P, Chugh P, Ali SS, Chawla W, Sushmita S, Kumar R, Raval AV, Shamim S, Bhatia A, Kumar R. Trends of Nanobiosensors in Modern Agriculture Systems. Appl Biochem Biotechnol 2025; 197:667-690. [PMID: 39136915 DOI: 10.1007/s12010-024-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Sustainable agriculture and the provision of food for all become dependent on the availability of efficient diagnostic techniques for the prompt identification of plant diseases. Current scientific findings suggest that nanotechnology can positively affect the agrifood industry by reducing the adverse effects of agricultural practices on human health and the environment, increasing food security and productivity, and fostering social and economic justice. Nanomaterials' unique physical and chemical characteristics have made it possible to employ them as cutting-edge, effective diagnostic instruments for various plant infections and other significant disease biomarkers. By creating diagnostic instruments and methods, nanobiosensors significantly contribute to the revolution of farming. In real time, nanobiosensors can detect infections, metabolites, pesticides, nutrient levels, soil moisture, and temperature. This helps with precision farming techniques and maximises resource use. To better address agricultural concerns, we have included the most recent research on the concept, types, applications, commercial aspects, and future scope of nanobiosensors in this review.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| | - Priya Chugh
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Greater Noida, 201306, Uttar Pradesh, India
| | - Wineet Chawla
- School of Agriculture Sciences and Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathind, 151001, Punjab, India
| | - Sushmita Sushmita
- Department of Commerce, Punjabi University, Patiala, 147002, Punjab, India
| | - Ram Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | | | - Shamim Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, 250001, Uttar Pradesh, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
5
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
6
|
Shen Y, Zhao S, Chen F, Lv Y, Fu L. Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. BIOSENSORS 2024; 14:496. [PMID: 39451709 PMCID: PMC11505628 DOI: 10.3390/bios14100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental principles of electrochemical immunosensors and explore innovative approaches to improve their performance. These include the utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled miniaturization and automation, while screen-printed and disposable electrodes have facilitated on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and the stability of biological recognition elements. Emerging trends such as the application of artificial intelligence for data interpretation and the development of aptamer-based sensors are highlighted. The review also considers the potential for commercialization and the hurdles that must be overcome for widespread adoption. Future research directions are identified, including the development of multi-analyte detection platforms and the integration of sensors with emerging technologies like the Internet of Things. This comprehensive overview provides insights into the current state of the field and outlines promising avenues for future development in organophosphate pesticide detection.
Collapse
Affiliation(s)
| | | | | | | | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.S.); (S.Z.); (F.C.); (Y.L.)
| |
Collapse
|
7
|
Zhang C, Li Y, Yang N, You M, Hao J, Wang J, Li J, Zhang M. Electrochemical sensors of neonicotinoid insecticides residues in food samples: From structure to analysis. Talanta 2024; 267:125254. [PMID: 37801927 DOI: 10.1016/j.talanta.2023.125254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Most food samples are detected positive for neonicotinoid insecticides, posing a severe threat to human health. Electrochemical sensors have been proven effective for monitoring the residues to guarantee food safety, but there needs to be more review to conclude the development status comprehensively. On the other hand, various modified materials were emphasized to improve the performance of electrochemical sensors in relevant reviews, rather than the reasons why they were selected. Therefore, this paper reviewed the electrochemical sensors of neonicotinoid insecticides according to bases and strategies. The fundamental basis is the molecular structure of neonicotinoid insecticides, which was disassembled into four functional groups: nitro group, saturated nitrogen ring system, aromatic heterocycle and chlorine substituent. Their relationships were established with strategies including direct sensing, enzyme sensors, aptasensors, immunosensors, and sample pretreatment, respectively. It is hoped to provide a reference for the effective design of electrochemical sensors for small molecule compounds.
Collapse
Affiliation(s)
- Changqiu Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yanqing Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Ningxia Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Minghui You
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jinhua Hao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jiacheng Wang
- Medical College, Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu, 225009, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Chen Z, Liu Z, Liu J, Xiao X. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors. Biotechnol Bioeng 2023; 120:3501-3517. [PMID: 37723667 DOI: 10.1002/bit.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.
Collapse
Affiliation(s)
- Zijie Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Zhen Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, the People's Republic of China
| |
Collapse
|
10
|
Chang TW, Wang SH, Chin IS, Li PZ, Lo SC, Hsieh SY, Lin JH, Wei PK. Biomimetic affinity sensor for the ultrasensitive detection of neonicotinoids. Biosens Bioelectron 2023; 239:115630. [PMID: 37634420 DOI: 10.1016/j.bios.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Multiple pesticides are often used in combination to protect crops from pests. This makes rapid on-site detection of pesticide contamination challenging. Herein, we describe a method for simultaneous detection of diverse neonicotinoid pesticides using a sensor that combines neonicotinoid-specific odorant-binding protein 2 (OBP2), which was cloned from an insect chemical sensing protein and modified gold nanoparticles with local surface plasmon resonance (LSPR)-based digital nanoplasmonometry (DiNM). When neonicotinoid pesticides bind to OBP2 on gold nanoparticles, the induced LSPR shift peak wavelength is too small to be measured using conventional LSPR immunoassays. DiNM records and compares the scattered image intensity in two adjacent wavelength bands, A and B, centered on the LSPR peak. It considers both the peak shift and the relative intensity change in these two bands, resulting in a significant LSPR signal enhancement. Then the spectral-image contrast was computed as the signal response. Using this approach, we obtained excellent limits of detection (LODs) of 1.4, 1.5, and 4.5 ppb for the neonicotinoids imidacloprid, acetamiprid, and dinotefuran, respectively. Blind tests demonstrated high positive and negative rates for teas, approximately 85 and 100%, respectively. Recombinant OBP2 produced in E. coli offers several advantages over antibodies, including high yield, time savings, and cost effectiveness. Moreover, this method is highly selective and sensitive to neonicotinoids, making it practical for field use.
Collapse
Affiliation(s)
- Ting-Wei Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Iuan-Sheau Chin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Zhen Li
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Cheng Lo
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Yi Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Hsin Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
11
|
Shu H, Lai T, Yang Z, Xiao X, Chen X, Wang Y. High sensitivity electrochemical detection of ultra-trace imidacloprid in fruits and vegetables using a Fe-rich FeCoNi-MOF. Food Chem 2023; 408:135221. [PMID: 36535183 DOI: 10.1016/j.foodchem.2022.135221] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
High sensitivity and ultra-trace detection of imidacloprid are important and challenging in the field of food. In this study, we prepared a Fe-rich FeCoNi-MOF in-situ modified nickel foam working electrode by one-step hydrothermal method, and achieved a highly sensitive detection of the imidacloprid. The characterization techniques confirmed that Fe-rich FeCoNi-MOF had excellent crystallinity, tighter structure, and exposed rich active sites. The detection results showed that Fe-rich FeCoNi-MOF electrochemical sensor had a minimum detection limit of 0.04 pmol/L (100 times lower than that of the bioelectrochemical sensors), a wide response range (1 pmol/L-120 μmol/L), and high sensitivity (124 μA pmol/L-1 cm-2). These advantages of the electrochemical sensor were revealed theoretically by the valence change of active metal and the first principle calculation. Lastly, the Fe-rich FeCoNi-MOF electrochemical sensor was applied to detect imidacloprid in apple, fresh tea leaves, tomato, cucumber, and had an excellent recovery of 98-102.8 %.
Collapse
Affiliation(s)
- Hui Shu
- NationalCenter for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Tingrun Lai
- NationalCenter for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Zhichao Yang
- NationalCenter for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Xuechun Xiao
- NationalCenter for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China.
| | - Xiumin Chen
- Kunming University of Science and Technology, National Engineering Research Center for Vacuum Metallurgy, 650093 Kunming, People's Republic of China.
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 650504 Kunming, People's Republic of China.
| |
Collapse
|
12
|
Zhai R, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Xu D, Abd El-Aty AM. Comparison of Chemiluminescence Enzyme Immunoassay (Cl-ELISA) with Colorimetric Enzyme Immunoassay (Co-ELISA) for Imidacloprid Detection in Vegetables. Foods 2023; 12:foods12010196. [PMID: 36613412 PMCID: PMC9818176 DOI: 10.3390/foods12010196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Imidacloprid is one of the most commonly used insecticides for managing pests, thus, improving the quality and yield of vegetables. The abuse/misuse of imidacloprid contaminates the environment and threatens human health. To reduce the risk, a colorimetric enzyme-linked immunoassay assay (Co-ELISA) and chemiluminescence enzyme-linked immunoassay assay (Cl-ELISA) were established to detect imidacloprid residues in vegetables. The linear range of Co-ELISA ranged between 1.56 μg/L and 200 μg/L with a limit of detection (LOD) of 1.56 μg/L. The values for Cl-ELISA were 0.19 μg/L to 25 μg/L with an LOD of 0.19 μg/L, which are lower than those of Co-ELISA. Fortifying Chinese cabbage, cucumber, and zucchini with imidacloprid at 10, 50, and 100 μg/L yielded recoveries between 81.7 and 117.6% for Co-ELISA and at 5, 10, and 20 µg/L yielded recoveries range from 69.7 to 120.6% for Cl-ELISA. These results indicate that Cl-ELISA has a high sensitivity and a rapid detection time, saving cost (antigen and antibody concentrations) and serving as a more efficient model for the rapid detection of imidacloprid residue.
Collapse
Affiliation(s)
- Rongqi Zhai
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanguo Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: ; Tel.: +86-10-8210-6963
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
13
|
de Souza Freire L, Ruzo CM, Salgado BB, Gandarilla AMD, Romaguera-Barcelay Y, Tavares APM, Sales MGF, Cordeiro I, Lalwani JDB, Matos R, Fonseca Filho H, Astolfi-Filho S, Ţălu Ş, Lalwani P, Brito WR. An Electrochemical Immunosensor Based on Carboxylated Graphene/SPCE for IgG-SARS-CoV-2 Nucleocapsid Determination. BIOSENSORS 2022; 12:1161. [PMID: 36551128 PMCID: PMC9775996 DOI: 10.3390/bios12121161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 05/14/2023]
Abstract
The COVID-19 pandemic has emphasized the importance and urgent need for rapid and accurate diagnostic tests for detecting and screening this infection. Our proposal was to develop a biosensor based on an ELISA immunoassay for monitoring antibodies against SARS-CoV-2 in human serum samples. The nucleocapsid protein (N protein) from SARS-CoV-2 was employed as a specific receptor for the detection of SARS-CoV-2 nucleocapsid immunoglobulin G. N protein was immobilized on the surface of a screen-printed carbon electrode (SPCE) modified with carboxylated graphene (CG). The percentage of IgG-SARS-CoV-2 nucleocapsid present was quantified using a secondary antibody labeled with horseradish peroxidase (HRP) (anti-IgG-HRP) catalyzed using 3,3',5,5'-tetramethylbenzidine (TMB) mediator by chronoamperometry. A linear response was obtained in the range of 1:1000-1:200 v/v in phosphate buffer solution (PBS), and the detection limit calculated was 1:4947 v/v. The chronoamperometric method showed electrical signals directly proportional to antibody concentrations due to antigen-antibody (Ag-Ab) specific and stable binding reaction.
Collapse
Affiliation(s)
- Luciana de Souza Freire
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | - Camila Macena Ruzo
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | | | - Ariamna María Dip Gandarilla
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | - Yonny Romaguera-Barcelay
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana P. M. Tavares
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Goreti Ferreira Sales
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Isabelle Cordeiro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | | | - Robert Matos
- Amazonian Materials Group, Federal University of Amapá (UNIFAP), Macapá 49100-000, AP, Brazil
| | - Henrique Fonseca Filho
- Laboratory of Nanomaterials Synthesis and Nanoscopy (LSNN), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Spartaco Astolfi-Filho
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
- PPGBIOTEC, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), The Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, 400020 Cluj-Napoca, Romania
| | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus 69067-005, AM, Brazil
| | - Walter Ricardo Brito
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
- PPGBIOTEC, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| |
Collapse
|
14
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
15
|
Suresh I, Nesakumar N, Jegadeesan GB, Jeyaprakash B, Rayappan JBB, Kulandaiswamy AJ. Real-time detection of imidacloprid residues in water using f-MWCNT/EDTA as energetically suitable electrode interface. Anal Chim Acta 2022; 1235:340560. [DOI: 10.1016/j.aca.2022.340560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/01/2022]
|
16
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
17
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
18
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
20
|
Coherently designed sustainable SERS active substrate of Ag/TiO2 hybrid nanostructures for excellent ultrasensitive detection of chlorpyrifos pesticide on the surface of grapes and tomatoes. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Parra-Arroyo L, González-González RB, Castillo-Zacarías C, Melchor Martínez EM, Sosa-Hernández JE, Bilal M, Iqbal HMN, Barceló D, Parra-Saldívar R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151879. [PMID: 34826476 DOI: 10.1016/j.scitotenv.2021.151879] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The pervasive manifestation and toxicological influence of hazardous pesticides pose adverse consequences on various environmental matrices and humans, directly via bioaccumulation or indirectly through the food chain. Due to pesticide residues' continuous presence above permissible levels in multiple forms, much attention has been given to re-evaluating to regulate their usage practices without harming or affecting the environment. However, there are regulations in place banning the use of multiple hazardous pesticides in the environment. Thus, efforts must be made to achieve robust detection and complete mitigation of pesticides, possibly through a combination of new and conventional methods. The complex nature of pesticides helps them to react differently across different environmental matrices. Therefore, highly hazardous pesticides are a risk to human well-being and the environment through enzymatic inhibition and the induction of oxidative stress. Consequently, developing fast, sensitive sensing strategies is essential to detect and quantify multiple pesticides and remove the pesticides present in the specific matrix without creating harmful derivatives. Additionally, the technology should be available worldwide to eliminate pesticide residuals from the environment. There are regulations, in practice, that limit the selling, storage, use of pesticides, and their concentration in the environment, although such regulations must be revised. However, the existing literature lacks regulatory, analytical detection, and mitigation considerations for pesticide remediation. Furthermore, the enforcement of such regulations and strict monitoring of pesticides in developing countries are needed. This review spotlights various analytical detection, regulatory, and mitigation considerations for efficiently removing hazardous pesticides.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H(2)O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | | |
Collapse
|
22
|
Xie W, Ju Y, Zhang J, Yang Y, Zeng Y, Wang H, Li L. Highly sensitive and specific determination of imidacloprid pesticide by a novel Fe3O4@SiO2@MIPIL fluorescent sensor. Anal Chim Acta 2022; 1195:339449. [DOI: 10.1016/j.aca.2022.339449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/01/2022]
|
23
|
Hu J, Zou Y, Sun B, Yu X, Shang Z, Huang J, Jin S, Liang P. Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120366. [PMID: 34509888 DOI: 10.1016/j.saa.2021.120366] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide detection is of tremendous importance in agriculture, and Raman spectroscopy/Surface-Enhanced Raman Scattering (SERS) has proven extremely effective as a stand-alone method to detect pesticide residues. Machine learning may be able to automate such detection, but conventional algorithms require a complete database of Raman spectra, which is not feasible. To bypass this problem, the present study describes a transfer learning method that improves the algorithm's accuracy and speed to extract features and classify Raman spectra. The transfer learning model described here was developed through the following steps: (1) the classification model was pre-trained using an open-source Raman spectroscopy database; (2) the feature extraction layer was saved after training; and (3) the training model for the Raman spectroscopy database was re-established while using self-tested pesticides and keeping the feature extraction layer unchanged. Three models were evaluated with or without transfer learning: CNN-1D, Resnet-1D, and Inception-1D, and they have improved the accuracy of spectrum classification by 6%, 2%, and 3%, with reduced training time and increased curve smoothness. These results suggest that transfer learning can improve the feature extraction capability and therefore accuracy of Raman spectroscopy models, expanding the range of Raman-based applications where transfer learning model can be used to identify the spectra of different substances.
Collapse
Affiliation(s)
- Jiaqi Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China; Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanqiu Zou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, 300000 Tianjin, China
| | - Xinyao Yu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Ziyang Shang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China.
| |
Collapse
|
24
|
Wang X, Zhang Z, Wu G, Xu C, Wu J, Zhang X, Liu J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:7-16. [PMID: 34877580 DOI: 10.1039/d1ay01570b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Guolin Wu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Chunxia Xu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jianping Wu
- Department of Clinical Laboratory, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xingguo Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
25
|
Zeng L, Xu X, Guo L, Wang Z, Ding H, Song S, Xu L, Kuang H, Liu L, Xu C. An immunochromatographic sensor for ultrasensitive and direct detection of histamine in fish. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126533. [PMID: 34323714 DOI: 10.1016/j.jhazmat.2021.126533] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
To ensure food quality and prevent histamine (HA) toxicity, a rapid and direct method of detecting HA is required. In this work, we prepared a monoclonal antibody (mAb) against HA using a hapten produced by the introduction of a phenyl-containing linker. The novel mAb exhibited high sensitivity against HA as determined by ELISA, with a half-maximal inhibitory concentration of 21.51 ng/mL. A gold nanoparticle-based immunosensor was fabricated for rapid detection of HA in fish samples. After optimizing the immunosensor, a visual limit of detection (LOD) and a calculated LOD were 0.25 mg/kg and 10.48 μg/kg for HA, respectively. Recovery rates from the spiked fish samples ranged from 87.33% to 104.67% with the coefficient of variation below 10.82%. Concurrently, the whole process in testing real sample was completed within 15 min, and all results were well confirmed and comparable by liquid chromatography-mass spectrometry and the commercial test strip. These data revealed that the proposed immunosensor could be used as a monitoring tool for the rapid and direct detection of HA in fish samples.
Collapse
Affiliation(s)
- Lu Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hongliu Ding
- Suzhou Product Quality Supervision Inspection, 1368 Wuzhong Avenue, Suzhou 215104, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
26
|
Asav E. Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone. Turk J Chem 2021; 45:819-834. [PMID: 34385869 PMCID: PMC8329345 DOI: 10.3906/kim-2012-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Thyroid-stimulating hormone (TSH), which regulates the synthesis of thyroid gland hormones affecting the whole metabolism, is a pituitary hormone. Determination of TSH is crucial for monitoring thyroid gland-related disorders and some metabolic diseases.In this study, a nonlabeled immunosensor based on covalent immobilization of anti-TSH antibody by using the formation of self-assembled monolayers (SAM) of 4-mercaptophenylacetic acid (4-MPA) and functionalization of carboxyl ends with 1-ethyl-3-(3-dimetilaminopropil) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) was fabricated for detection of TSH. Immobilization steps including the concentration of 4-MPA, the concentration of anti-TSH antibody, and duration of anti-TSH antibody incubation were optimized by utilizing electrochemical impedance spectroscopy. Under optimal conditions, a sensitive, rapid, and accurate determination of TSH at a concentration range between 0.7 and 3.5 mIU/L was accomplished with a notable linearity and LOD value of 0.034 mIU/L, as well as reproducibility and repeatability. Moreover, for comparison, linear range experiments were also carried out by using other electrochemical methods, including linear sweep voltammetry, cyclic voltammetry, and capacitance spectroscopy. Finally, the constructed immunosensor was used for analyzing TSH levels spiked in the artificial serum samples.
Collapse
Affiliation(s)
- Engin Asav
- Department of Nutrition and Dietetics, School of Health, Kırklareli University Turkey
| |
Collapse
|
27
|
Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021; 232:122397. [PMID: 34074393 DOI: 10.1016/j.talanta.2021.122397] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
The utilization of pesticides has been increased in recent years due to population growth and increasing urbanization. The constant use of pesticides has resulted in contamination of the environment and agricultural products with serious human health concerns associated with their use. Therefore, detection and quantification of pesticides by sensitive and selective methods is highly required in food safety management. Traditional detection methods cannot realize highly sensitive, selective and on-site detection, which limits their application. (Bio)sensors and (bio)assays are emerging tools with unique properties such as rapid, sensitive, efficient and portable detection. Among them, enzyme-based biosensors have been widely developed and some have even been commercialized. However, they suffer from some limitations such as instability and low reproducibility that originate from the nature of enzyme. Non-enzymatic (bio)sensors overcome the current limitations of enzyme-based detection methods and provide great potential for efficient, highly sensitive and low-cost detection assays using smart and miniaturized devices. In this study, we provide an overview of recent advances and new trends in optical and electrochemical non-enzymatic (bio)sensors for the detection of pesticides by focusing on antibody, aptamer and molecularly imprinted polymer (MIP) as recognition elements. Performance, advantages and drawbacks of the developed (bio)sensors are discussed well. The main advantage these recognition elements is their stability over an extended period of time compared to the enzymes. Furthermore, the combination of nanomaterials in these (bio)sensors can significantly improve their performance.
Collapse
|
28
|
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:213-239. [PMID: 33447834 DOI: 10.1039/d0em00404a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern agricultural practices have triggered the process of agricultural pollution. This process can cause the degradation of eco-systems, land, and environment owing to the modern-day by-products of agriculture. The substantial use of chemical fertilizers, pesticides, and, contaminated water for irrigation cause further damage to agriculture. The current scenario of the agriculture and food sector has therefore become unsustainable. Nanotechnology has provided innovative and resourceful frontiers to the agriculture sector by contributing practical applications in conventional agricultural ways and practices. There is a large possibility that agri-nanotechnology can have a significant impact on the sustainable agriculture and crop growth. Recent research has shown the potential of nanotechnology in improving the agriculture sector by enhancing the efficiency of agricultural inputs and providing solutions to agricultural problems for improving food productivity and security. The prospective use of nanoscale agrochemicals such as nanofertilizers, nanopesticides, nanosensors, and nanoformulations in agriculture has transformed traditional agro-practices, making them more sustainable and efficient. However, the application of these nano-products in real field situations raises concern about nanomaterial safety, exposure levels, and toxicological repercussions to the environment and human health. The present review gives an insight into recent advancements in nanotechnology-based agrochemicals that have revolutionized the agriculture sector. Further, the implementation barriers related to the nanomaterial use in agriculture, their commercialization potential, and the need for policy regulations to assess possible nano-agricultural risks are also discussed.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Archita Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sanjeev K Bhardwaj
- Amesys India, Cross Road No. 4, Near Geeta Gopal Bhawan, Ambala Cantt-133001, Haryana, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
29
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
30
|
Garkani Nejad F, Tajik S, Beitollahi H, Sheikhshoaie I. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Talanta 2021; 228:122075. [PMID: 33773704 DOI: 10.1016/j.talanta.2020.122075] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023]
Abstract
It is widely accepted that nanotechnology attracted more interest because of various values that nanomaterial applications offers in different fields. Recently, researchers have proposed nanomaterials based electrochemical sensors and biosensors as one of the potent alternatives or supplementary analytical tools to the conventional detection procedures that consumes a lot of time. Among different nanomaterials, researchers largely considered magnetic nanomaterials (MNMs) for developing and fabricating the electrochemical (bio)sensors for numerous utilizations. Among several factors, healthier and higher quality foods are the most important preferences of consumers and manufacturers. For this reason, developing new techniques for rapid, precise as well as sensitive determination of components or contaminants of foods is very important. Therefore, developing the new electrochemical (bio)sensors in food analysis is one of the key and effervescent research fields. In this review, firstly, we presented the properties and synthesis strategies of MNMs. Then, we summarized some of the recently developed MNMs-based electrochemical (bio)sensors for food analysis including detecting the antioxidants, synthetic food colorants, pesticides, heavy metal ions, antibiotics and other analytes (bisphenol A, nitrite and aflatoxins) from 2010 to 2020. Finally, the present review described advantages, challenges as well as future directions in this field.
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| |
Collapse
|
31
|
Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2020; 44:585-594. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs-Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP-Abs-PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20-IC80: 1.82 × 10-3-3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.
Collapse
|
32
|
Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
El-Akaad S, Mohamed MA, Abdelwahab NS, Abdelaleem EA, De Saeger S, Beloglazova N. Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water. Sci Rep 2020; 10:14479. [PMID: 32879399 PMCID: PMC7468110 DOI: 10.1038/s41598-020-71325-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
This manuscript reports on the development of a capacitive sensor for the detection of imidacloprid (IMD) in water samples based on molecularly imprinted polymers (MIPs). MIPs used as recognition elements were synthesized via a photo-initiated emulsion polymerization. The particles were carefully washed using a methanol (MeOH) /acetic acid mixture to ensure complete template removal and were then dried. The average size of the obtained particles was less than 1 µm. The imprinting factor (IF) for IMD was 6 and the selectivity factor (α) for acetamiprid, clothianidin, thiacloprid and thiamethoxam were 14.8, 6.8, 7.1 and 8.2, respectively. The particles were immobilized on the surface of a gold electrode by electropolymerization. The immobilized electrode could be spontaneously regenerated using a mixture of MeOH/10 mM of phosphate buffer (pH = 7.2)/triethylamine before each measurement and could be reused for 32 times. This is the first-time that automated regeneration was introduced as part of a sensing platform for IMD detection. The developed sensor was validated by the analysis of artificially spiked water samples. Under the optimal conditions, the linearity was in the range of 5-100 µM, with a limit of detection (LOD) of 4.61 µM.
Collapse
Affiliation(s)
- Suzan El-Akaad
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt.
| | - Mona A Mohamed
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nada S Abdelwahab
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Beni-Suef University, Benisuef, Egypt
| | - Eglal A Abdelaleem
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Beni-Suef University, Benisuef, Egypt
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk, Russia
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya, Saratov, Russia
| |
Collapse
|
34
|
Fang L, Liao X, Jia B, Shi L, Kang L, Zhou L, Kong W. Recent progress in immunosensors for pesticides. Biosens Bioelectron 2020; 164:112255. [DOI: 10.1016/j.bios.2020.112255] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
35
|
Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs. Molecules 2020; 25:molecules25163590. [PMID: 32784605 PMCID: PMC7464912 DOI: 10.3390/molecules25163590] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/11/2023] Open
Abstract
The excessive use or abuse of pesticides and veterinary drugs leads to residues in food, which can threaten human health. Therefore, there is an extremely urgent need for multi-analyte analysis techniques for the detection of pesticide and veterinary drug residues, which can be applied as screening techniques for food safety monitoring and detection. Recent developments related to rapid multi-residue detection methods for pesticide and veterinary drug residues are reviewed herein. Methods based on different recognition elements or the inherent characteristics of pesticides and veterinary drugs are described in detail. The preparation and application of three broadly specific recognition elements-antibodies, aptamers, and molecular imprinted polymers-are summarized. Furthermore, enzymatic inhibition-based sensors, near-infrared spectroscopy, and SERS spectroscopy based on the inherent characteristics are also discussed. The aim of this review is to provide a useful reference for the further development of rapid multi-analyte analysis of pesticide and veterinary drug residues.
Collapse
|
36
|
Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosens Bioelectron 2020; 165:112382. [PMID: 32729507 DOI: 10.1016/j.bios.2020.112382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
The increasing level of pesticides and herbicides in food and water sources is a growing threat to human health and the environment. The development of portable, sensitive, specific, simple, and cost-effective sensors is hence in high demand to avoid exposure or consumption of these chemicals through efficient monitoring of their levels in food as well as water samples. The use of nanomaterials (NMs) for the construction of an immunosensing system was demonstrated to be an efficient and effective option to realize selective sensing against pesticides/herbicides. The potential of such applications has hence been demonstrated for a variety of NMs including graphene, carbon nanotubes (CNTs), metal nanoparticles, and nano-polymers either in pristine or composite forms based on diverse sensing principles (e.g., electrochemical, optical, and quartz crystal microbalance (QCM)). This article evaluates the development, applicability, and performances of NM-based immunosensors for the measurement of pesticides and herbicides in water, food, and soil samples. The performance of all the surveyed sensors has been evaluated on the basis of key parameters, e.g., detection limit (DL), sensing range, and response time.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
37
|
Pérez-Fernández B, Costa-García A, Muñiz ADLE. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. BIOSENSORS 2020; 10:E32. [PMID: 32252430 PMCID: PMC7236603 DOI: 10.3390/bios10040032] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Pesticides are among the most important contaminants in food, leading to important global health problems. While conventional techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) have traditionally been utilized for the detection of such food contaminants, they are relatively expensive, time-consuming and labor intensive, limiting their use for point-of-care (POC) applications. Electrochemical (bio)sensors are emerging devices meeting such expectations, since they represent reliable, simple, cheap, portable, selective and easy to use analytical tools that can be used outside the laboratories by non-specialized personnel. Screen-printed electrodes (SPEs) stand out from the variety of transducers used in electrochemical (bio)sensing because of their small size, high integration, low cost and ability to measure in few microliters of sample. In this context, in this review article, we summarize and discuss about the use of SPEs as analytical tools in the development of (bio)sensors for pesticides of interest for food control. Finally, aspects related to the analytical performance of the developed (bio)sensors together with prospects for future improvements are discussed.
Collapse
Affiliation(s)
| | | | - Alfredo de la Escosura- Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|