1
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
2
|
Hojnik N, Shvalya V, Zavašnik J, Šribar J, Križaj I, Walsh JL. Combatting the antigenicity of common ragweed pollen and its primary allergen Amb a 1 with cold atmospheric pressure air plasma. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135640. [PMID: 39208626 DOI: 10.1016/j.jhazmat.2024.135640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Airborne allergens, especially those originating from various types of pollen, significantly compromise the health and well-being of individuals on a global scale. Here, cold atmospheric pressure plasma (CAP) created in ambient air was used to treat highly allergenic and invasive Ambrosia artemisiifolia pollen. Immunoassays were used to evaluate the impact of CAP on the principal A. artemisiifolia allergen Amb a 1, demonstrating that > 90 % reduction in antigenicity could be achieved. Chemical analyses using Fourier Transform infrared revealed that CAP induced significant alterations to proteins on the surface of pollen grains, resulting in a 43 % increase in the amide I peak area and a 57 % increase in the amide II peak area. These findings were corroborated by Raman and X-ray photoelectron spectroscopy, which indicated that the protein modifications induced by CAP were due to carbonylation and nitration/nitrosylation processes. Beyond protein transformations, CAP also induced notable oxidation and modification of lipid-like compounds, polysaccharides and sporopollenin. Evident transformations at the chemical level translated into morphological changes at the grain surface, manifesting as increased roughness via significant outer-layer etching. These findings underscore the potential of CAP technology as a viable approach for mitigating against the allergenicity of pollen, providing a deeper understanding into the underlying chemical mechanisms.
Collapse
Affiliation(s)
- Nataša Hojnik
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, United Kingdom; Department for Gaseous Electronics (F6), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Vasyl Shvalya
- Department for Gaseous Electronics (F6), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Janez Zavašnik
- Department for Gaseous Electronics (F6), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences (B2), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences (B2), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - James L Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, United Kingdom; York Plasma Institute, School of Physics, Engineering & Technology, University of York, Heslington, York YO10 5DQ, United Kingdom.
| |
Collapse
|
3
|
Li M, Zhang L, Jiang LL, Zhao ZB, Long YH, Chen DM, Bin J, Kang C, Liu YJ. Label-free Raman microspectroscopic imaging with chemometrics for cellular investigation of apple ring rot and nondestructive early recognition using near-infrared reflection spectroscopy with machine learning. Talanta 2024; 267:125212. [PMID: 37741265 DOI: 10.1016/j.talanta.2023.125212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Apple ring rot caused by Botryosphaeria dothidea can cause fruit decay during the growth and storage stages of apple fruit. Understanding the infection process and cellular defense response at the cellular micro-level holds immense importance in the field of prevention and control. Consequently, there is a pressing need to develop suitable chemical imaging analysis methods. Here we proposed a label-free, high-throughput imaging method for cellular investigation of apple fruit ring rot infected by Botryosphaeria dothidea, based on confocal Raman microspectroscopic imaging technology combined with multivariate curve resolution-alternating least squares algorithm (MCR-ALS). We conducted Raman measurements on every apple fruit and obtain an image cube. This cube was then unfolded into an augmented matrix in a column-wise manner. We proceeded with simultaneous MCR-ALS analysis, resolving the single-substance spectrum and concentration profile from the mixed signals. Lastly, the accurate and pure molecular imaging of low methoxyl pectin, high methoxyl pectin, cellulose, lignin, and phenols were realized by refolding the resolved concentration data to construct the composition image. Thereafter, we realized the study of the spatial-temporal changes distribution of the above substances in the cuticle and cell wall of green and red apples at different stages of infection. The imaging method proposed in this paper is expected to provide a chemical imaging strategy for studying pathogen infection process and fruit defense response at the cellular level. In addition, by utilizing a fiber-optic probe near-infrared reflection spectrometer in conjunction with machine learning, we developed a rapid and non-destructive classification method. This method allows for the timely identification of apples exhibiting early infection by Botryosphaeria dothidea. Notably, both principal component analysis-quadratic discriminant analysis and support vector machine achieved a classification accuracy of 100%.
Collapse
Affiliation(s)
- Mei Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Lu Zhang
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - Ling-Li Jiang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhi-Bo Zhao
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - You-Hua Long
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - Dong-Mei Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Jun Bin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Ya-Juan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
5
|
Çobanoğlu DN, Kizilpinar Temizer İ, Candan ED, Yolcu U, Güder A. Evaluation of the nutritional value of bee pollen by palynological, antioxidant, antimicrobial, and elemental characteristics. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kumar B, Smita K, Angulo Y, Debut A, Cumbal L. Honeybee pollen assisted biosynthesis of nanogold and its application as catalyst in reduction of 4-nitrophenol. Heliyon 2022; 8:e10191. [PMID: 36033283 PMCID: PMC9404344 DOI: 10.1016/j.heliyon.2022.e10191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 10/26/2022] Open
Abstract
Nowadays, the exploration of natural materials for the production of nanoparticles is of special interest due to its ecofriendly nature. In this paper, we presented the biosynthesis of gold nanoparticles (AuNPs) in a green route by using water extract of pollen from Andean honeybees. Furthermore, AuNPs have been characterized by various techniques and tested for the catalytic reduction of 4-nitrophenol (4-NP). The biosynthesized AuNPs were analyzed using UV-vis spectroscopy, Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectroscopy to confirm their optical properties, stability, surface morphology, and purity. The synthesized AuNPs proved to be well dispersed, spherical, and triangular in shape, with particle sizes ranging from 7 to 42 nm having λmax at 530 nm. Moreover, FTIR suggests the capping of AuNPs with pollen constituents and XRD confirms the crystalline structure of AuNPs. Additionally, prepared AuNPs were demonstrated to be effective in reducing organic pollutant 4-NP to 4-aminophenol (k = 59.17898 × 10-3 min-1, R2 = 0.994). All of these studies have emphasized that AuNPs production can be scale up by using naturally available pollen grains and open up a new perspective for beekeepers.
Collapse
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, 833202, Jharkhand, India
- Centro de Nanociencia y Nanotecnologia (CENCINAT), Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/n, Sangolqui, P.O. BOX 171-5-231B, Ecuador
| | - Kumari Smita
- Centro de Nanociencia y Nanotecnologia (CENCINAT), Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/n, Sangolqui, P.O. BOX 171-5-231B, Ecuador
| | - Yolanda Angulo
- Centro de Nanociencia y Nanotecnologia (CENCINAT), Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/n, Sangolqui, P.O. BOX 171-5-231B, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnologia (CENCINAT), Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/n, Sangolqui, P.O. BOX 171-5-231B, Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia (CENCINAT), Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/n, Sangolqui, P.O. BOX 171-5-231B, Ecuador
| |
Collapse
|
7
|
Mazurek S, Włodarczyk M, Pielorz S, Okińczyc P, Kuś PM, Długosz G, Vidal-Yañez D, Szostak R. Quantification of Salicylates and Flavonoids in Poplar Bark and Leaves Based on IR, NIR, and Raman Spectra. Molecules 2022; 27:3954. [PMID: 35745076 PMCID: PMC9229158 DOI: 10.3390/molecules27123954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Poplar bark and leaves can be an attractive source of salicylates and other biologically active compounds used in medicine. However, the biochemical variability of poplar material requires a standardization prior to processing. The official analytical protocols used in the pharmaceutical industry rely on the extraction of active compounds, which makes their determination long and costly. An analysis of plant materials in their native state can be performed using vibrational spectroscopy. This paper presents for the first time a comparison of diffuse reflectance in the near- and mid-infrared regions, attenuated total reflection, and Raman spectroscopy used for the simultaneous determination of salicylates and flavonoids in poplar bark and leaves. Based on 185 spectra of various poplar species and hybrid powdered samples, partial least squares regression models, characterized by the relative standard errors of prediction in the 4.5-9.9% range for both calibration and validation sets, were developed. These models allow for fast and precise quantification of the studied active compounds in poplar bark and leaves without any chemical sample treatment.
Collapse
Affiliation(s)
- Sylwester Mazurek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland; (S.P.); (R.S.)
| | - Maciej Włodarczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Sonia Pielorz
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland; (S.P.); (R.S.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Piotr M. Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Gabriela Długosz
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Diana Vidal-Yañez
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
- Faculty of Pharmacy, University of Barcelona, Joan XXIII, 27-31, 08014 Barcelona, Spain
| | - Roman Szostak
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland; (S.P.); (R.S.)
| |
Collapse
|
8
|
Kumar B, Smita K, Angulo Y, Debut A, Cumbal L. Single-step biogenic synthesis of silver nanoparticles using honeybee-collected pollen. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Brajesh Kumar
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, Jharkhand, India
| | - Kumari Smita
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
| | - Yolanda Angulo
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
| |
Collapse
|
9
|
Stiebing C, Post N, Schindler C, Göhrig B, Lux H, Popp J, Heutelbeck A, Schie IW. Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging. Int J Mol Sci 2022; 23:ijms23095112. [PMID: 35563504 PMCID: PMC9101400 DOI: 10.3390/ijms23095112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The investigation of the biochemical composition of pollen grains is of the utmost interest for several environmental aspects, such as their allergenic potential and their changes in growth conditions due to climatic factors. In order to fully understand the composition of pollen grains, not only is an in-depth analysis of their molecular components necessary but also spatial information of, e.g., the thickness of the outer shell, should be recorded. However, there is a lack of studies using molecular imaging methods for a spatially resolved biochemical composition on a single-grain level. In this study, Raman spectroscopy was implemented as an analytical tool to investigate birch pollen by imaging single pollen grains and analyzing their spectral profiles. The imaging modality allowed us to reveal the layered structure of pollen grains based on the biochemical information of the recorded Raman spectra. Seven different birch pollen species collected at two different locations in Germany were investigated and compared. Using chemometric algorithms such as hierarchical cluster analysis and multiple-curve resolution, several components of the grain wall, such as sporopollenin, as well as the inner core presenting high starch concentrations, were identified and quantified. Differences in the concentrations of, e.g., sporopollenin, lipids and proteins in the pollen species at the two different collection sites were found, and are discussed in connection with germination and other growth processes.
Collapse
Affiliation(s)
- Clara Stiebing
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany; (C.S.); (J.P.)
| | - Nele Post
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany;
| | - Claudia Schindler
- Institute of Occupational, Social and Environmental Medicine, Jena University Hospital, Erlanger Allee 103, 07747 Jena, Germany; (C.S.); (B.G.); (H.L.); (A.H.)
| | - Bianca Göhrig
- Institute of Occupational, Social and Environmental Medicine, Jena University Hospital, Erlanger Allee 103, 07747 Jena, Germany; (C.S.); (B.G.); (H.L.); (A.H.)
| | - Harald Lux
- Institute of Occupational, Social and Environmental Medicine, Jena University Hospital, Erlanger Allee 103, 07747 Jena, Germany; (C.S.); (B.G.); (H.L.); (A.H.)
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany; (C.S.); (J.P.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Astrid Heutelbeck
- Institute of Occupational, Social and Environmental Medicine, Jena University Hospital, Erlanger Allee 103, 07747 Jena, Germany; (C.S.); (B.G.); (H.L.); (A.H.)
| | - Iwan W. Schie
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany; (C.S.); (J.P.)
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany;
- Correspondence:
| |
Collapse
|
10
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-Safi I, Mechchate H, Lyoussi B. Bee Bread as a Promising Source of Bioactive Molecules and Functional Properties: An Up-To-Date Review. Antibiotics (Basel) 2022; 11:203. [PMID: 35203806 PMCID: PMC8868279 DOI: 10.3390/antibiotics11020203] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Bee bread is a natural product obtained from the fermentation of bee pollen mixed with bee saliva and flower nectar inside the honeycomb cells of a hive. Bee bread is considered a functional product, having several nutritional virtues and various bioactive molecules with curative or preventive effects. This paper aims to review current knowledge regarding the chemical composition and medicinal properties of bee bread, evaluated in vitro and in vivo, and to highlight the benefits of the diet supplementation of bee bread for human health. Bee bread extracts (distilled water, ethanol, methanol, diethyl ether, and ethyl acetate) have been proven to have antioxidant, antifungal, antibacterial, and antitumoral activities, and they can also inhibit α-amylase and angiotensin I-converting enzyme in vitro. More than 300 compounds have been identified in bee bread from different countries around the world, such as free amino acids, sugars, fatty acids, minerals, organic acids, polyphenols, and vitamins. In vivo studies have revealed the efficiency of bee bread in relieving several pathological cases, such as hyperglycemia, hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-Safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
11
|
Wang L, Li X, Wang Y, Ren X, Liu X, Dong Y, Ma J, Song R, Wei J, Yu AX, Fan Q, Shan D, Yao J, She G. Rapid discrimination and screening of volatile markers for varietal recognition of Curcumae Radix using ATR-FTIR and HS-GC-MS combined with chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114422. [PMID: 34274441 DOI: 10.1016/j.jep.2021.114422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Radix (Yujin) has a long medicinal use history in China, which is used to cure diseases like jaundice, cholelithiasis caused by dampness-heat of gallbladder and liver, and so on. It comes from the dried tuberous roots of C. kwangsiensis (Guiyujin), C. longa (Huangyujin), C. phaeocaulis (Lvyujin) and C. wenyujin (Wenyujin). Though there are differences in chemical compositions and pharmacological activities among the four species of Yujin, they have not been differentiated well in clinical application due to their similar morphological characterizations. AIM OF THE STUDY In this study, the four species of Yujin were rapidly and accurately discriminated. The potential volatile markers for varietal recognition were identified. MATERIALS AND METHODS Attenuated total reflection fourier transformed infrared (ATR-FTIR) spectroscopy combined with chemometrics was used to rapidly discriminate the four species of Yujin. Headspace-gas chromatography-mass spectrometry (HS-GC-MS) technology coupled with chemometrics was employed to characterize volatile profiling, differentiate species and select potential markers for varietal recognition of Yujin. RESULTS By applying PCA (principal components analysis) and HCA (hierarchical cluster analysis), HS-GC-MS realized complete differentiation of the four species of Yujin, while ATR-FTIR only recognized Guiyuijin. Back propagation neural network (BP-NN), KNN (K-nearest neighbor) and LDA (linear discriminant analysis) models based on spectral data achieved 100% discriminant accuracies. Support vector machines (SVM), KNN and PLS-DA (partial least square discriminant analysis) models based on volatile compounds also realized 100% discriminant accuracies. Additionally, the potential volatile markers for varietal recognition of Yujin were screened using PLS-DA, including 2 for Guiyujin, 6 for Lvyujin, 9 for Wenyujin and 13 for Huangyujin. CONCLUSIONS The present study developed reliable methods for the varietal discrimination and volatile compounds characterization of Yujin, which will provide references for its quality control and clinical efficacy.
Collapse
Affiliation(s)
- Le Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China; School of Pharmacy, Minzu University of China, 27 Zhongguancun South Avenue, Beijing, China.
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - AXiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| |
Collapse
|
12
|
Pauliuc D, Ciursă P, Ropciuc S, Dranca F, Oroian M. Physicochemical parameters prediction and authentication of different monofloral honeys based on FTIR spectra. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Modeling of Antioxidant Activity, Polyphenols and Macronutrients Content of Bee Pollen Applying Solid-State 13C NMR Spectra. Antioxidants (Basel) 2021; 10:antiox10071123. [PMID: 34356356 PMCID: PMC8301116 DOI: 10.3390/antiox10071123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
An application of solid 13C nuclear magnetic resonance (NMR) spectroscopy for the determination of macronutrients, total polyphenols content, antioxidant activity, N C S elements, and pH in commercially available bee pollens is reported herein. Solid-state 13C NMR spectra were recorded for homogenized pollen granules without chemical treatment or dissolution of samples. By combining spectral data with the results of reference analyses, partial least squares models were constructed and validated separately for each of the studied parameters. To characterize and compare the models’ quality, the relative standard errors of prediction (RSEP) were calculated for calibration and validation sets. In the case of the analysis of protein, fat and reducing sugars, these errors were in the 1.8–2.5% range. Modeling the elemental composition of bee pollen on the basis of 13C NMR spectra resulted in RSEPcal/RSEPval values of 0.3/0.6% for the sum of NHCS elements, 0.3/0.4% for C, 1.8/1.9% for N, and 4.2/6.1% for S quantification. Analyses of total phenolics and ABTS antioxidant activity resulted in RSEP values in the 2.7–3.5% and 2.8–3.8% ranges, respectively, whereas they were 1.4–2.1% for pH. The obtained results demonstrate the usefulness of 13C solid-state NMR spectroscopy for direct determination of various important physiochemical parameters of bee pollen.
Collapse
|
14
|
Ong P, Chen S, Tsai CY, Chuang YK. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119657. [PMID: 33744842 DOI: 10.1016/j.saa.2021.119657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In this study, near-infrared (NIR) spectroscopy was exploited for non-destructive determination of theanine content of oolong tea. The NIR spectral data (400-2500 nm) were correlated with the theanine level of 161 tea samples using partial least squares regression (PLSR) with different wavelengths selection methods, including the regression coefficient-based selection, uninformative variable elimination, variable importance in projection, selectivity ratio and flower pollination algorithm (FPA). The potential of using the FPA to select the discriminative wavelengths for PLSR was examined for the first time. The analysis showed that the PLSR with FPA method achieved better predictive results than the PLSR with full spectrum (PLSR-full). The developed simplified model using on FPA based on 12 latent variables and 89 selected wavelengths produced R-squared (R2) value and root mean squared error (RMSE) of 0.9542, 0.8794 and 0.2045, 0.3219 for calibration and prediction, respectively. For PLSR-full, the R2 values of 0.9068, 0.8412 and RMSEs of 0.2916, 0.3693, were achieved for calibration and prediction. Also, the optimized model using FPA outperformed other wavelengths selection methods considered in this study. The obtained results indicated the feasibility of FPA to improve the predictability of the PLSR and reduce the model complexity. The nonlinear regression models of support vector machine regression and Gaussian process regression (GPR) were further utilized to evaluate the superiority of using the FPA in the wavelength selection. The results demonstrated that utilizing the wavelength selection method of FPA and nonlinear regression model of GPR could improve the predictive performance.
Collapse
Affiliation(s)
- Pauline Ong
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan; Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
| | - Suming Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Chao-Yin Tsai
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Kun Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Pan Q, Xie J, Lin L, Hong MS, Wang XC, Sun SQ, Xu CH. Direct identification and quantitation of fluorescent whitening agent in wheat flour based on multi-molecular infrared (MM-IR) spectroscopy and stereomicroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119353. [PMID: 33422880 DOI: 10.1016/j.saa.2020.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent brighteners, illegally used to whitening wheat flour, are detrimental to people health. The aim was to establish a rapid and direct method to identify and quantify fluorescent whitening agent OB-1 (FWA OB-1) in wheat flour by using multi-molecular infrared (MM-IR) spectroscopy combined with stereomicroscopy. Characteristic peak profile of FWA OB-1 used as a judgment basis was spatially revealed by stereomicroscopy with group-peak matching of MM-IR at 1614 cm-1, 1501 cm-1 and 893 cm-1 and were further unveiled by the second derivative infrared spectroscopy (SD-IR) and its two-dimensional correlation infrared (SD-2DCOS IR) spectroscopy for higher resolution, and were validated by high-performance liquid chromatography (HPLC). Moreover, a quantitative prediction model based on IR spectra was established by partial least squares 1 (PLS1) (R2, 98.361; SEE, 5.032; SEP, 5.581). The developed method was applicable for rapid and direct analysis of FWA OB-1 (low to 10 ppm) in flour with relative standard deviation (RSD) of 5%. The capabilities of MM-IR with spectral qualitative and quantitative analysis would be applicable to direct identification and quantitation of fluorescent whitening agents or other IR-active compounds in powder objects.
Collapse
Affiliation(s)
- Qiannan Pan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, PR China
| | - Jun Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, PR China
| | - Ling Lin
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou 362018, PR China
| | - Miao-Si Hong
- Shanghai Sixty People's Hospital East, Shanghai 201306, PR China
| | - Xi-Chang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, PR China
| | - Su-Qin Sun
- Analysis Center, Tsinghua University, Beijing 10084, PR China.
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, PR China.
| |
Collapse
|
16
|
Investigation of microwave drying on quality attributes, sensory properties and surface structure of bee pollen grains by scanning electron microscopy. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-020-00088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Martinello M, Mutinelli F. Antioxidant Activity in Bee Products: A Review. Antioxidants (Basel) 2021; 10:antiox10010071. [PMID: 33430511 PMCID: PMC7827872 DOI: 10.3390/antiox10010071] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Bee products have been used since ancient times both for their nutritional value and for a broad spectrum of therapeutic purposes. They are deemed to be a potential source of natural antioxidants that can counteract the effects of oxidative stress underlying the pathogenesis of many diseases. In view of the growing interest in using bioactive substances from natural sources to promote health and reduce the risk of developing certain illnesses, this review aims to update the current state of knowledge on the antioxidant capacity of bee products such as honey, pollen, propolis, beeswax, royal jelly and bee venom, and on the analytical methods used. The complex, variable composition of these products and the multitude of analytical methods used to study their antioxidant activities are responsible for the wide range of results reported by a plethora of available studies. This suggests the need to establish standardized methods to more efficiently evaluate the intrinsic antioxidant characteristics of these products and make the data obtained more comparable.
Collapse
|
18
|
Classification of Bee Pollen and Prediction of Sensory and Colorimetric Attributes-A Sensometric Fusion Approach by e-Nose, e-Tongue and NIR. SENSORS 2020; 20:s20236768. [PMID: 33256130 PMCID: PMC7730699 DOI: 10.3390/s20236768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023]
Abstract
The chemical composition of bee pollens differs greatly and depends primarily on the botanical origin of the product. Therefore, it is a crucially important task to discriminate pollens of different plant species. In our work, we aim to determine the applicability of microscopic pollen analysis, spectral colour measurement, sensory, NIR spectroscopy, e-nose and e-tongue methods for the classification of bee pollen of five different botanical origins. Chemometric methods (PCA, LDA) were used to classify bee pollen loads by analysing the statistical pattern of the samples and to determine the independent and combined effects of the above-mentioned methods. The results of the microscopic analysis identified 100% of sunflower, red clover, rapeseed and two polyfloral pollens mainly containing lakeshore bulrush and spiny plumeless thistle. The colour profiles of the samples were different for the five different samples. E-nose and NIR provided 100% classification accuracy, while e-tongue > 94% classification accuracy for the botanical origin identification using LDA. Partial least square regression (PLS) results built to regress on the sensory and spectral colour attributes using the fused data of NIR spectroscopy, e-nose and e-tongue showed higher than 0.8 R2 during the validation except for one attribute, which was much higher compared to the independent models built for instruments.
Collapse
|
19
|
Wang Z, Chen X, Wan J, Cao X. Study of Microbial Transglutaminase Partitioning in Thermo-pH–Responsive Aqueous Two-Phase Systems. Appl Biochem Biotechnol 2020; 192:1176-1190. [DOI: 10.1007/s12010-020-03394-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
|