1
|
Jain A, De S, Mukherjee D, Haribabu J, Santibanez JF, Barman P. A substituent-modified new salicylaldehyde-diphenyl-azine based AIEgen: A promising skeleton for copper ion sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124824. [PMID: 39029203 DOI: 10.1016/j.saa.2024.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
In this study, we have reported a novel 4-bromo-salicylaldehyde-diphenyl-azine (B-1), a new member of salicylaldehyde-diphenyl-azine (SDPA) family known for its excellent sensing properties. In contrast to the previously reported AIEgens, we found that the bromo-substitution at the 4th position of the salicylaldehyde moiety blue-shifted the emission by 10 and 15 nm as compared to the unsubstituted (Tong et.al 2017) and Bromo at the 5th position (Jain et.al 2023) respectively. Moreover, B-1 crystallizes instantly as the cooling process starts, which was not observed in the previously reported scaffolds. The sensing investigation again demonstrated the precise and ultrasensitive behavior of B-1 for copper ions. B-1 has a very low LOD value i.e. 29.2 x 10-8 M with a high association constant and binds with copper ion in 2:1 mode. This time we also analyzed the practical applicability in the solid phase using cotton swabs and performed the real-time estimation of copper ions in water and biological samples like urine and blood serum. The excellent percentage recovery and the RSD value suggest the precision of the experiments. Further, we also perform the sensing in living cancer HeLa cells. Altogether, we found that the SDPA skeleton is precise and ultrasensitive for copper ions and versatile which can be used variously to detect copper ions in the real world. This research will surely help in developing new specific skeleton-based AIEgens with desirable emission properties and precise applications in the future.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Debanggana Mukherjee
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11029, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago 8370993, Chile
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India.
| |
Collapse
|
2
|
Zhang H, Zhou M, Zhao Y, Yu T, Xv X. New Butterfly-Shaped Naphthalimide-Based AIE Gens: Synthesis and Photophysical Properties. J Fluoresc 2024:10.1007/s10895-024-03800-y. [PMID: 38884826 DOI: 10.1007/s10895-024-03800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Two novel naphthalimide derivatives PTZNI-Cz and PTZNI-TPA were successfully designed and synthesized, in which phenothiazine, triphenylamine and carbazole were used as electron donors and naphthalimide was used as the electron acceptor. Their photophysical, electrochemical, and thermal properties were investigated. These derivatives showed remarkable aggregation-induced emission (AIE) effect. Furthermore, the maximum emission peaks of PTZNI-Cz and PTZNI-TPA in the thin film state are at 610 nm and 623 nm respectively, which is typical of red fluorescent materials.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, China
| | - Meng Zhou
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, China
| | - Yuling Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, China.
| | - Xvyan Xv
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, China
| |
Collapse
|
3
|
Palanisamy J, Rajagopal R, Alfarhan A. D-π-A Carbzazole Based Reactive Cyano-Substituted C = C bond Probe for Selective and Sensitive Detection of Hydrazine in Aqueous Media. J Fluoresc 2024:10.1007/s10895-024-03768-9. [PMID: 38761323 DOI: 10.1007/s10895-024-03768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
This work established a newly designed and synthesized carbazole N-phenyl π-conjugated vinyl malononitrile (CPM) fluorescent sensor, which showed typical and remarkable redshift emission properties with different polarity index solvents. Investigative probe CPM is colorimetric and fluorimetric ultrafast and ultrasensitive detection of hazardous hydrazine in an aqueous medium. Furthermore, CPM showed colorimetric and fluorometric responses to interference tests with other amines and high selectivity for detecting hydrazine without interference with other amines in colorimetric and fluorimetric methods. This probe CPM for hydrazine was as low as the lower detection limit value of 2.21 × 10- 8 M. The probe CPM expects significant attention due to its simplicity and cost-effectiveness in detecting hazardous hydrazine. UV-vis, PL, NMR, and MS spectra confirmed the mechanism of probe CPM detection of hazardous hydrazine. However, making a piece test kit attractive for practical hydrazine vapor leak-detection applications is easy. This study can be applied to many pipeline gas transmission industries and transportation facility sectors.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Palani, Tamilnadu, 624618, India.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Segura C, Ormazabal-Toledo R, García-Beltrán O, Squeo BM, Bachmann C, Flores C, Osorio-Román IO. Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry 2024; 30:e202302940. [PMID: 38078547 DOI: 10.1002/chem.202302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 12/30/2023]
Abstract
Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.
Collapse
Affiliation(s)
- Camilo Segura
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile
| | - Rodrigo Ormazabal-Toledo
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Chile
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Región Metropolitana, Chile
| | - Benedetta M Squeo
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via A. Corti, 20133, Milano, Italy
| | - Cristian Bachmann
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, 509000, Chile
| | - Catalina Flores
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, 509000, Chile
| | - Igor O Osorio-Román
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, 509000, Chile
| |
Collapse
|
5
|
Enbanathan S, Munusamy S, Ponnan S, Jothi D, Manoj Kumar S, Sathiyanarayanan KI. AIE active luminous dye with a triphenylamine attached benzothiazole core as a portable polymer film for sensitively detecting CN- ions in food samples. Talanta 2023; 264:124726. [PMID: 37276676 DOI: 10.1016/j.talanta.2023.124726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Aggregation-induced emission (AIE) active 3-(3-(benzo[d]thiazol-2-yl)-2-hydroxyphenyl)-2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylonitrile (BTPA) has been designed and synthesized herein, with the goal of detecting CN- ions at a low-level in semi-aqueous medium. The deliberate addition of the electron-deficient alkene BTPA increased its sensitivity and selectivity to CN- ions, with a better detection limit of 6.4 nM, unveiling the next-generation approach to creating sophisticated CN- ions selective chemosensors. The ESI-MS and NMR spectra analyses provided strong support for the structures of the chemosensors, while the UV-Vis, photoluminescence, and 1H-NMR titration experiments provided support for the sensing efficiencies. Subsequently, PVDF/BTPA electrospun nanofibers have been effectively produced as functional films. These nanofiber films exhibit outstanding mechanical strength, photo/thermal stability, and optical responsiveness to CN- ions, making them a potential choice for on-field emerging contaminant detection.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sathishkumar Munusamy
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, United States.
| | - Sathiyanathan Ponnan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dhanapal Jothi
- Department of Advanced Organic Materials Science and Engineering, Chungnam National University, South Korea
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | | |
Collapse
|
6
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Ease to Challenges in Achieving Successful Synthesized Schiff Base, Chirality, and Application as Antibacterial Agent. BIOMED RESEARCH INTERNATIONAL 2023. [DOI: 10.1155/2023/1626488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This study reports how to overcome the challenges experienced in achieving successful synthesized Schiff base via types of Schiff base (chiral and achiral), synthesis, nature of products, and its antibacterial applications. Schiff base is a versatile ligand which is useful in asymmetric reactions to prepare chiral catalysts. It is also used in symmetric reactions to prepare achiral compounds. In line with the achiral compounds, conventional (room temperature and refluxing) and microwave irradiation methods are the two main types of methods to synthesize achiral Schiff base as reported in this review. Among various experimental approaches, this study supports the green chemistry microwave approach to synthesize Schiff base because of its benefits environmental sustainability. Problems relating to the nature of products formed from the synthesized Schiff bases were examined and resolved. Herein, the products could either be solid (crystals, powder, and precipitate), oily, or viscous (sticky) products. Some familiar characterization techniques used to identify and confirm the successful syntheses of Schiff bases, such as solubility test, melting point (MP), Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis), and nuclear magnetic resonance (NMR, 1H NMR, and 13C NMR), were discussed. In addition, the antibacterial studies on Schiff base and corresponding metal complexes confirmed their biological relevance to the human.
Collapse
|
8
|
Huang J, Zhou Y, Wang W, Zhu J, Li X, Fang M, Wu Z, Zhu W, Li C. A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122011. [PMID: 36279799 DOI: 10.1016/j.saa.2022.122011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
A fluorescent probe MAM based on triphenylamine scaffold was synthesized. The electron donating group 4-methoxyphenyl and the electron acceptor dicyanoethylene were introduced on the triphenylamine scaffold to form a D-π-A fluorescent probe. The probe MAM exhibited the typical aggregation-induced emission (AIE) and intramolecular charge transfer (ICT) characteristics with the bright orange-red fluorescent emission in high water fraction (fw ≥ 50%) and negligible emission in low water fraction. The probe MAM could detect hydrazine (N2H4) in DMSO-tris-HCl (10 mM, pH7.4, v/v, 3:1) with high selectivity and sensitivity. The specific reaction between MAM and hydrazine and the formation of the hydrazone blocked the ICT process, and the system emitted the cyan fluorescence which could be easily observed by naked eyes. The limit of detection (LOD) was 0.196 μM (6.25 ppb), which is lower than the US Environmental Protection Agency standard (10 ppb). The test strips prepared by the probe MAM could realize the convenient and rapid detection of N2H4 solution and vapor. The application of MAM in actual water samples and cells was investigated, and the results showed that MAM could sense N2H4 in environmental and biological aspects with potential application prospects.
Collapse
Affiliation(s)
- Junjie Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yanhang Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Wenxiang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiamian Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Xinchen Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, PR China.
| | - Zhenyu Wu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China
| | - Cun Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
9
|
Zuo K, Zhang J, Zeng L. A smartphone-adaptable chromogenic and fluorogenic sensor for rapid visual detection of toxic hydrazine in the environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121765. [PMID: 35998425 DOI: 10.1016/j.saa.2022.121765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Hydrazine is an essential chemical in industries, but its high toxicity poses great threats to human health and environmental safety. Hence, it is of great significance to monitor the hydrazine in environment. In this work, we presented a chromogenic and fluorogenic dual-mode sensor RA for the detection of hydrazine based on nucleophilic substitution reaction. A linear relationship was obtained between the fluorescence intensity and the concentrations of N2H4 ranging from 0 to 35 μM (R2 = 0.9936). The sensor can determine hydrazine with fast response (within 12 min), low limit of detection (0.129 μM) and high selectivity. RA was successfully used to detect N2H4 in real water samples with good recoveries and the results corresponded to the standard method. Furthermore, the sensor-coated portable test papers were fabricated, which can visually quantify hydrazine solutions with obvious fluorescence transformation from colorless to red. Moreover, RA-loaded papers were used to create a smartphone-adaptable RGB values analytical method for quantitative N2H4 detection.
Collapse
Affiliation(s)
- Ke Zuo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Chemistry and Materials Science, Hubei Engineering University, Hubei, Xiaogan 432000, China.
| |
Collapse
|
10
|
Diana R, Gentile FS, Carella A, Di Costanzo L, Panunzi B. Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli. Molecules 2022; 27:6060. [PMID: 36144794 PMCID: PMC9504776 DOI: 10.3390/molecules27186060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced chromophoric tools, besides being biologically active, need to meet the expectations of the technological demands including stability, colour retention, and proper solubility for their target. Many coordination compounds of conjugated ligands are antibacterial dyes, able to combine a strong dyeing performance with a useful biological activity. Specifically, palladium (II) complexes of Schiff base ligands are known for their relevant activity against common bacteria. In this article, we report the synthesis and comprehensive experimental and theoretical characterization of two novel Pd(II) chromophore complexes obtained from a cyclopalladated Schiff base as two different chelating azo dyes. The antibacterial response of these two novel complexes was tested against the ubiquitous Escherichia coli bacterium in an aqueous medium and revealed a noteworthy antimicrobial activity, higher than when compared with their uncoordinated biologically active ligands.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| | - Francesco Silvio Gentile
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Antonio Carella
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy
| | - Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| |
Collapse
|
11
|
Ma J, Gu Y, Ma D, Lu W, Qiu J. Insights into AIE materials: A focus on biomedical applications of fluorescence. Front Chem 2022; 10:985578. [PMID: 36186580 PMCID: PMC9521682 DOI: 10.3389/fchem.2022.985578] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregation-induced emission (AIE) molecules have garnered considerable interest since its first appearance in 2001. Recent studies on AIE materials in biological and medical areas have demonstrated that they show their promise as biomaterials for bioimaging and other biomedical applications. Benefiting from significant advantages of their high sensitivity, excellent photostability, and good biocompatibility, AIE-based materials provide dramatically improved analytical capacities for in vivo detection and demonstration of vital biological processes. Herein, we introduce the development history of AIE molecules and recent progress in areas of biotesting and bioimaging. Additionally, this review also offers an outlook for the potential applications of versatile AIE materials for tracing and treating pathological tissues, including overcoming challenges and feasible solutions.
Collapse
Affiliation(s)
- Junchi Ma
- Translational Medicine Research Centre, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanru Gu
- Translational Medicine Research Centre, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Depeng Ma
- Translational Medicine Research Centre, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weizhao Lu
- Translational Medicine Research Centre, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianfeng Qiu
- Translational Medicine Research Centre, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Xu L, Meng Q, Zhang Z, Zhong S, Gao Y, Cui X. Chitosan-salicylide Schiff base with aggregation-induced emission property and its multiple applications. Int J Biol Macromol 2022; 209:1124-1132. [PMID: 35461857 DOI: 10.1016/j.ijbiomac.2022.04.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Aggregation-induced emission (AIE) active compounds are fascinated due to their unique properties of limiting intramolecular rotation, and they have been developed in the biomedical fields. In this work, AIE material based on the Schiff base compound of chitosan (Cs) and salicylaldehyde (SA) was designed and synthesized. Cs-SA emits weak light in dilute aqueous solution, and emits bright light in concentrated solution and solid, showing obvious AIE performance. In addition, Cs-SA can also be used as a biosensor to detect Fe3+, and Cu2+, it has good bioimaging behavior. In addition, it can also be used as biosensor to quantitatively detect gram-positive bacteria and gram-negative bacteria, Moreover, Cs-SA shows excellent broad spectrum antibacterial performance in inhibiting E. coli and S. aureus.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenqian Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Weihai Institute for Bionics, Jilin University, Weihai 264400, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, China; Weihai Institute for Bionics, Jilin University, Weihai 264400, China.
| |
Collapse
|
13
|
Two Schiff-base fluorescent-colorimetric probes based on naphthaldehyde and aminobenzoic acid for selective detection of Al3+, Fe3+ and Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Qi J, Luo Y, Zhou Q, Su G, Zhang X, Nie X, Lv M, Li W. Synthesis, structure and anticancer studies of Cu(Ⅱ) and Ni(Ⅱ) complexes based on 2-hydroxy-1-naphthaldehyde-4-aminoantipyrine Schiff-base. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Recent Advances in Intrinsically Fluorescent Polydopamine Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorescence nanoparticles have gained much attention due to their unique properties in the sensing and imaging fields. Among the very successful candidates are fluorescent polydopamine (FPDA) nanoparticles, attributed to their simplicity in tracing and excellent biocompatibility. This article aims to highlight the recent achievements in FPDA materials, especially on the part of luminescence mechanisms. We focus on the intrinsic fluorescence of PDA and will not discuss fluorescent reaction with a fluorometric reagent or coupling reaction with a fluorophore, which may cause more in vivo interferences. We believe that intrinsic FPDA presents great potential in bioapplications.
Collapse
|
16
|
Karak A, Manna SK, Mahapatra AK. Triphenylamine-based small-molecule fluorescent probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:972-1005. [PMID: 35233590 DOI: 10.1039/d2ay00134a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonia with the three hydrogens substituted by phenyls is known as triphenylamine (TPA), and is one of the most useful compounds because of its vast practical applications. Chemists have produced thousands of TPA derivatives to date. Because of its biocompatibility and structural features, it has been widely used in the fields of molecular recognition, molecular imaging, materials chemistry, and also in biology and medical science. Its strong electron-donating ability encourages scientists to produce different types of probes for molecular recognition. This review is based on recent developments and advances in TPA-based small molecular fluorescent probes within the time period 2010-2021. This extensive review may expedite improvements in more advanced fluorescent probes for vast and stimulating applications in the future.
Collapse
Affiliation(s)
- Anirban Karak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur-721657, Haldia, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
17
|
Li Z, Yang Y, Yin P, Yang Z, Zhang B, Zhang S, Han B, Lv J, Dong F, Ma H. A New Lipid‐Droplets‐Targeted Fluorescence Probe with Dual‐Reactive Sites for Specific Detection of ClO
−
in Living Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhao Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Yuan Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Pei Yin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zengming Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Bo Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Shengjun Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Bingyang Han
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Jiawei Lv
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Fenghao Dong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Hengchang Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
18
|
Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel) 2022; 11:191. [PMID: 35203793 PMCID: PMC8868340 DOI: 10.3390/antibiotics11020191] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Schiff bases (SBs) have extensive applications in different fields such as analytical, inorganic and organic chemistry. They are used as dyes, catalysts, polymer stabilizers, luminescence chemosensors, catalyzers in the fixation of CO2 biolubricant additives and have been suggested for solar energy applications as well. Further, a wide range of pharmacological and biological applications, such as antimalarial, antiproliferative, analgesic, anti-inflammatory, antiviral, antipyretic, antibacterial and antifungal uses, emphasize the need for SB synthesis. Several SBs conjugated with chitosan have been studied in order to enhance the antibacterial activity of chitosan. Moreover, the use of the nanoparticles of SBs may improve their antimicrobial effects. Herein, we provide an analytical overview of the antibacterial and antifungal properties of SBs and chitosan-based SBs as well as SBs-functionalized nanoparticles. The most relevant and recent literature was reviewed for this purpose.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| |
Collapse
|
19
|
Development of phenothiazine-based fluorescent probe with aggregation induced emission (AIE) for detection of hydrazine and its application in imaging of living cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Jiamin T, Yajun Y, Meng G, Yunhui Z, Zilong T, Zhihua Z, Tao G. Design and Synthesis of Novel Aggregation-Induced Luminescence Molecules Based on Isoquinoline. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021; 27:150. [PMID: 35011382 PMCID: PMC8746362 DOI: 10.3390/molecules27010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.
Collapse
Affiliation(s)
| | | | | | - Sheshanath V. Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, India; (G.A.Z.); (R.W.J.); (H.A.M.)
| |
Collapse
|
22
|
Asad M, Wang YJ, Wang S, Dong QG, Li LK, Majeed S, Wang QY, Zang SQ. Hydrazone connected stable luminescent covalent-organic polymer for ultrafast detection of nitro-explosives. RSC Adv 2021; 11:39270-39277. [PMID: 35492474 PMCID: PMC9044423 DOI: 10.1039/d1ra08009a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Developing promising luminescent probes for the selective sensing of nitro-explosives remains a challenging issue. Porous luminescent covalent–organic polymers are one of the excellent sensing probes for trace hazardous materials. Herein, fluorescent monomers 1,1,2,2-tetrakis(4-formyl-(1,1′-biphenyl))ethane (TFBE) and 1,3,5-benzenetricarboxylic acid trihydrazide (BTCH) were selected to build a novel hydrazone connected stable luminescent covalent–organic polymer (H-COP) of high stability by typical Schiff-base reaction. The N2 sorption study, BET surface area analysis, and TGA profile indicate the porosity and stability of this H-COP material. Such properties of the H-COP material enable a unique sensing platform for nitro-explosives with great sensitivity (Ksv ∼ 106 M) and selectivity up to μM. This polymer material shows attractive selectivity and sensitivity towards phenolic nitro-explosives and other common explosives among earlier reported COP-based sensors. A novel H-COP was synthesized through Schiff-base condensation reaction, which shows high sensitivity (Ksv ∼ 106 M−1) and selectivity (μM level) towards nitro-explosives.![]()
Collapse
Affiliation(s)
- Muhammad Asad
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ya-Jie Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Qing-Guo Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
23
|
Zhang YP, Teng Q, Yang YS, Guo HC, Xue JJ. A novel coumarin-based pyrazoline fluorescent probe for detection of Fe3+ and its application in cells. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Zhang YP, Teng Q, Yang YS, Cao JQ, Xue JJ. Aggregation-induced Emission Properties of Triphenylamine Chalcone Compounds. J Fluoresc 2021; 31:807-815. [PMID: 33725275 DOI: 10.1007/s10895-021-02711-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Two triphenylamine chalcone derivatives 1 and 2 were synthesized through the Vilsmeier-Haack reaction and Claisen-Schmidt condensation reaction. Through ultraviolet absorption spectroscopy and fluorescence emission spectroscopy experiments, it was confirmed that these two compounds exhibited good aggregation-induced emission (AIE) behavior in ethanol/water mixtures. The solvent effect test showed with the increase of the orientation polarizability of the solvent, the Stokes shift in the solvent of compound 1 and compound 2 shows a linear change trend. Through solid state fluorescence test and universal density function theory (DFT), the existence of π-π stacking interaction in the solid state of the compound has been studied, resulting in weak fluorescence emission. pH has no effect on the fluorescence intensity of the aggregate state of excited state intramolecular proton transfer (ESIPT) molecules in an acidic environment, but greatly weakens its fluorescence intensity in an alkaline environment. Cyclic voltammetry (CV) test shows that compound 1 was more prone to oxidation reaction than compound 2. The results of thermal stability test show that the thermal stability of compound 1 was better than that of compound 2, indicating that triphenylamine chalcone derivatives can improve the thermal stability of compounds by increasing the number of branches.
Collapse
Affiliation(s)
- Ying-Peng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Qi Teng
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yun-Shang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Jing-Qi Cao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ji-Jun Xue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
25
|
Development of C3 symmetric triaminoguanidine-2-naphthol conjugate: Aggregation induced emission, colorimetric and turn-off fluorimetric detection of Co2+ ion, smartphone and real sample applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Chen M, Ren Y, Liu H, Jiang Q, Zhang J, Zhu M. A Versatile Aggregation-induced Emission Fluorescent Probe for Visible Detection of pH. J Fluoresc 2021; 31:475-485. [PMID: 33433818 DOI: 10.1007/s10895-020-02669-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 01/05/2023]
Abstract
By tactfully structuring a luminescent molecule as an accurate pH probe with aggregation-induced emission (AIE) feature, it is significant to overcome aggregation-caused quenching of emitted light in practice. Herein, we present a simple AIE-active fluorescence probe for pH detection on the basis of intramolecular charge transfer (ICT) with wide response range and high sensitivity reaction. The donor-acceptor-donor (D-A-D) style probe utilized a conjugated structural hybrid of the electron-withdrawing nitrile group and electron-donating hydroxyl as well as dimethylamino groups for fluorescent platform. The AIE-active probe possesses good fluorescence under water fraction up to 90% in mixed MeOH/water system. Furthermore, it can be used in profiling and visualization of pH detection in MeOH/water system at fw = 90% under UV 365 nm lamp. What's more, the probe can be employed to be a broad range test paper of pH detection, paving the way for low-cost practical applications.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Yi Ren
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Huan Liu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Qian Jiang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Jing Zhang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China.
| |
Collapse
|
27
|
Chen S, Chen Q, Luo S, Cao X, Yang G, Zeng X, Wang Z. Progress in Design, Synthesis and Application of Triphenylamine-Based Fluorescent Probes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Wang X, Ding G, Wang Y, Mao S, Wang K, Ge Z, Zhang Y, Li X, Hung CH. Novel application of a fluorescent dye based on triphenylamine: Rapid detection of hydrazine in living cells and in vitro. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
A new aggregation-induced emission active red-emitting fluorescent sensor for ultrarapidly, selectively and sensitively detecting hydrazine and its multiple applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Wang J, Lu L, Wang C, Wang M, Ju J, Zhu J, Sun T. An AIE and PET fluorescent probe for effective Zn(ii) detection and imaging in living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj03667f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A sensitive fluorescent probe L for Zn2+ with aggregation-induced emission (AIE) properties has been synthesized.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| | - Linxia Lu
- School of Textiles and Clothing
- Nantong University
- Nantong 226019
- P. R. China
| | - Chun Wang
- School of Textiles and Clothing
- Nantong University
- Nantong 226019
- P. R. China
| | - Minmin Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| | - Jianfeng Ju
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|