1
|
Antonio M, Alcaraz MR, Culzoni MJ. Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products - A critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50012-50035. [PMID: 39088175 DOI: 10.1007/s11356-024-34525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina.
| |
Collapse
|
2
|
Li W, Chen J, Chen X, Linli F, Yang X, Wang L, Zhang K. Universal organophosphate pesticides detection by peptide based fluorescent probes. Talanta 2024; 275:126065. [PMID: 38663061 DOI: 10.1016/j.talanta.2024.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
In practical applications, the rapid and efficient detection of universal organophosphorus pesticides (OPs) can assist inspectors in quickly identifying the presence of OPs in samples. However, this presents a challenge for most well-established methods, typically designed to detect only a specific type of organophosphorus molecule at a time. In this proof-of-concept study, we draw inspiration from the structural similarities among OPs to develop innovative peptide-based fluorescence probes for the first time, which could efficiently detect a broad range of OPs within a mere 3 min. Analysis of fluorescence curve fitting reveals a clear linear correlation between the fluorescent intensity of the peptide probes and the concentration of OPs. Additionally, the selectivity analysis indicates that these peptide fluorescent probes exhibit an excellent response to various OPs while maintaining sufficient selectivity for detecting other pesticide types. Accurate sample analysis has also highlighted the potential of these peptide probes as practical tools for the rapid detection of OPs in actual vegetable samples. In summary, this proof-of-concept study presents an innovative approach to designing and developing ultrafast, universally peptide-based OP probes. These custom-designed peptide probes may facilitate rapid sample screening and offer initial quantification for OPs, potentially saving valuable time and effort in practical OP detection.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Junlong Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xianggui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China.
| | - Fangzhou Linli
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xiao Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Lijun Wang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Kaihui Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| |
Collapse
|
3
|
Li N, Xu K, Huang C, Yang Y, Hu X, Zhou Y, Zhang L, Zhong Y. Construction of logic gate computation for the assay of the nerve agent sarin based on an AChE-based dual-channel sensing system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4066-4073. [PMID: 38881395 DOI: 10.1039/d4ay00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Nerve agents have posed a huge threat to national and human security, and their sensitive detection is crucial. Herein, based on the oxidation of Ce4+ and the aggregation-induced emission (AIE) of glutathione-protected gold nanoclusters (GSH-Au NCs), a cascade reaction was designed to prepare oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) and GSH-Au NCs crosslinked by Ce3+ (Ce3+-GSH-Au NCs). oxTMB had a broad UV-visible absorption range (500-700 nm) and was capable of quenching the fluorescence of Ce3+-GSH-Au NCs at 590 nm through the internal filtration effect (IFE). Thiocholine (TCh), the hydrolysis product of acetylthiocholine chloride (ATCl) catalyzed by acetylcholinesterase (AChE), reduced oxTMB completely, resulting in a decrease in the absorption of oxTMB and the recovery of IFE-quenched fluorescence of Ce3+-GSH-Au NCs. Nerve agent sarin (GB) hindered the production of TCh and the reduction of oxTMB by inhibiting the AChE activity, leading to the fluorescence of Ce3+-GSH-Au NCs being quenched again. The dual-output sensing system (AChE + ATCl + oxTMB + Ce3+-GSH-Au NCs) exhibited a low limit of detection to GB (2.46 nM for colorimetry and 1.18 nM for fluorimetry) and excellent selectivity toward common interferences being unable to inhibit AChE. Moreover, the intelligent logic gate constructed based on the sensing system showed promising applications in the field of smart sensing of nerve agents.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Kexin Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| |
Collapse
|
4
|
Sharma D, Wangoo N, Sharma RK. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu 2+-PPi interaction using bimetallic Au-Ag nanoclusters. Anal Chim Acta 2024; 1305:342584. [PMID: 38677840 DOI: 10.1016/j.aca.2024.342584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Inorganic pyrophosphatase (PPase) is key enzyme playing a key role in biochemical transformations such as biosynthesis of DNA and RNA, bone formation, metabolic pathways associated with lipid, carbohydrate and phosphorous. It has been reported that lung adenocarcinomas, colorectal cancer, and hyperthyroidism disorders can result from abnormal level of PPase. Therefore, it is of notable significance to develop simple and effective real time assay for PPase enzyme activity monitoring for screening of many metabolic pathways as well as for early disease diagnosis. RESULT The fluorometric detection of PPase enzyme in near infrared region-1 (NIR-1) has been carried out using bimetallic nanoclusters (LA@AuAg NCs). The developed sensing strategy was based on quenching of fluorescence intensity of LA@AuAg NCs upon interaction with copper (Cu2+) ions. The off state of LA@AuAg_Cu2+ ensemble was turned on upon addition of pyrophosphate anion (PPi) due to strong binding interaction between PPi and Cu2+. The catalytic conversion of PPi into phosphate anion (Pi) in the presence of PPase led to liberation of Cu2+ ions, and again quenched off state was retrieved due to interaction of free Cu2+ with LA@AuAg NCs. The ultrasensitive detection of PPase was observed in the linear range of 0.06-250 mU/mL with LOD as 0.0025 mU/mL. The designed scheme showed good selectivity towards PPase enzyme in comparison to other bio-substrates, along with good percentage recovery for PPase detection in real human serum samples. SIGNIFICANCE The developed NIR based assay is ultrasensitive, highly selective and robust for PPase enzyme and can be safely employed for other enzymes detection. This highly sensitive nature of biosensor was result of involvement of fluorescence-based technique and synergistic effect of dual metal in NIR based bimetallic NCs. Moreover, owing to the emission in NIR domain, in future, these nanoclusters can be safely employed for many biomedical applications for In vivo studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Pang L, Pi X, Zhao Q, Man C, Yang X, Jiang Y. Optical nanosensors based on noble metal nanoclusters for detecting food contaminants: A review. Compr Rev Food Sci Food Saf 2024; 23:e13295. [PMID: 38284598 DOI: 10.1111/1541-4337.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem 2023; 415:5899-5924. [PMID: 37668672 DOI: 10.1007/s00216-023-04911-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Pesticides, chemical substances extensively employed in agriculture to optimize crop yields, pose potential risks to human and environmental health. Consequently, regulatory frameworks are in place to restrict pesticide residue concentrations in water intended for human consumption. These regulations are implemented to safeguard consumer safety and mitigate any adverse effects on the environment and public health. Although gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS) are highly efficient techniques for pesticide quantification, their use is not suitable for real-time monitoring due to the need for sophisticated laboratory pretreatment of samples prior to analysis. Since they would enable analyte detection with selectivity and sensitivity without sample pretreatment, biosensors appear as a promising alternative. These consist of a bioreceptor allowing for specific recognition of the target and of a detection platform, which translates the biological interaction into a measurable signal. As early detection systems remain urgently needed to promptly alert and act in case of pollution, we review here the biosensors described in the literature for pesticide detection to advance their development for use in the field.
Collapse
Affiliation(s)
| | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
7
|
Liu J, Mo YY, Zhang H, Tang J, Bao H, Wei L, Yang H. Target-Responsive Metal-Organic Framework Nanosystem with Synergetic Sensitive Detection and Controllable Degradation against the Pesticide Triazophos in Contaminated Samples for Environment Assessment and Food Safety. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23783-23791. [PMID: 37145985 DOI: 10.1021/acsami.3c03248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developing sensitive practical sensors for monitoring pesticide residues in edible foods and environmental samples is vital for food safety and environmental protection. Enzyme-inhibited biosensors offer effective alternative sensing strategies by using the inherent characteristics of pesticides. To further improve the degradation function of pesticide sensors, here, a target-triggered porphyrin metal-organic framework (MOF)-based nanosystem was designed with the synergetic bifunction of sensitive detection and controllable degradation of the triazophos pesticide. As a result of triazophos-inhibited glutathione consumption, the MOF collapsed and released the ligand porphyrin, leading to the recovery of fluorescence and photosensitization of the free porphyrin. The fluorescence recovery resulted in a sensitive detection limit of 0.6 ng mL-1 for triazophos, which was also applied for the determination of contaminated samples and bioaccumulation in rice. Furthermore, the target-activated photocatalytic ability of porphyrin endowed the system with the ability to effectively generate reactive oxygen species for degrading triazophos with a removal rate of ∼85%, achieving eco-friendly synergetic detection and photodegradation in a controllable way. Therefore, the intelligent multifunctional MOF system demonstrated the potential of programmable systems for jointly controllable tracking and elimination of pesticide residues in the environment and opened a new avenue for designing a precise mechanism for stimulus-triggered degradation of pesticide residues accompanied by sensitive detection for environmental friendliness and food safety.
Collapse
Affiliation(s)
- Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Yang Mo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heng Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Tang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Bao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuyu Wei
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Liquid crystal-based sensor for real-time detection of paraoxon pesticides based on acetylcholinesterase enzyme inhibition. Mikrochim Acta 2023; 190:122. [PMID: 36890280 DOI: 10.1007/s00604-023-05716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
A liquid crystal-based assay (LC) was developed to monitor paraoxon by incorporating a Cu2+ -coated substrate and the inhibitory effect of paraoxon with acetylcholinesterase (AChE). We observed that thiocholine (TCh), a hydrolysate of AChE and acetylthiocholine (ATCh), interfered with the alignment of 5CB films through a reaction between Cu2+ ions and the thiol moiety of TCh. The catalytic activity of AChE was inhibited in the presence of paraoxon due to the irreversible interaction between TCh and paraoxon; consequently, no TCh molecule was available to interact with Cu2+ on the surface. This resulted in a homeotropic alignment of the liquid crystal. The proposed sensor platform sensitively quantified paraoxon with a detection limit of 2.20 ± 0.11 (n = 3) nM within a range of 6 to 500 nM. The specificity and reliability of the assay were verified by measuring paraoxon in the presence of various suspected interfering substances and spiked samples. As a result, the sensor based on LC can potentially be used as a screening tool for accurate evaluation of paraoxon and other organophosphorus compounds.
Collapse
|
9
|
Wu F, Wang B, Guo H, Kang K, Ji X, Wang L, Guo S, Ren J. Rational design of a novel MOF-based ternary nanocomposite for effectively monitoring harmful organophosphates in foods and the environment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1168-1177. [PMID: 36790872 DOI: 10.1039/d2ay01893d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methyl parathion (MP) is a widely used organophosphate insecticide that is extremely toxic due to its ability to irreversibly inhibit acetylcholinesterase in the body and persistently accumulate in the environment. Timely detection of MP can prevent harmful residue exposure to humans. Therefore, the development of fast, efficient electrochemical methods to detect trace MP has been highly beneficial for monitoring harmful residues in foods and environment to ensure food safety and ecological conservation. Herein, a novel hybrid metal-organic framework (MOF) nanocomposite composed of Pt nanoparticles (PtNPs), multi-walled carbon nanotubes (MWCNTs), and UiO-66-NH2 (PtNPs/UiO-66-NH2/MWCNTs) was rationally designed and prepared by a facile two-step strategy for the sensitive determination of MP. The synergistic effects are illustrated in detail using XRD, XPS, FTIR, TEM, and SEM studies as well as electrochemical technologies such as CV, EIS, and DPV. In addition, the performance of the ternary nanocomposite for detecting MP was investigated by comparing it with the binary-component one. The results showed that the PtNPs/UiO-66-NH2/MWCNT-based electrochemical sensor exhibited outstanding sensitivity of 21.9 μA μM-1 cm-2, satisfactory low detection limit of 0.026 μM and wide linear range of 0.11-227.95 μM for MP analysis. Furthermore, the fabricated sensor delivered distinguished freedom from interferences, outstanding regeneration ability, and adequate recoveries for fresh foods and river water samples. In conclusion, the proposed PtNPs/UiO-66-NH2/MWCNT-based sensor provides a potentially useful analytical tool for determining hazardous residues of OPs in foods and the environment.
Collapse
Affiliation(s)
- Fen Wu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| | - Beibei Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Haiqian Guo
- Shijiazhuang Agricultural Product Quality Testing Center, Shijiazhuang 050021, China
| | - Kai Kang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Lanyue Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| | - Shouxiang Guo
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
10
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Tao K, Tian H, Wang Z, Shang X, Fan J, Megharaj M, Ma J, Jia H, He W. Ecotoxicity of parathion during its dissipation mirrored by soil enzyme activity, microbial biomass and basal respiration. CHEMOSPHERE 2023; 311:137116. [PMID: 36334756 DOI: 10.1016/j.chemosphere.2022.137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The application of parathion (PTH) in agriculture can result in its entry into the soil and threaten the soil environment. Monitoring the PTH residues and assessing toxicity on soil health are of paramount importance to the public. Herein, the dissipation of PTH and concomitant influence on microbial activities [FDA hydrolase (FDA‒H), microbial biomass carbon (MBC) and basal respiration (BR)] in coastal solonchaks were investigated. Results showed that the dissipation of PTH in tested soil declined linearly, and the half-lives varied from 5.6 to 56.8 days, depending on pollutant concentrations. The FDA‒H activity and MBC were negatively affected by PTH pollution and exhibited a significantly positive correlation. Two‒way ANOVA analysis demonstrated that microbial activities were affected not only by PTH dose and incubation time but also by their interactions. The integrated biomarker response (IBR/n) index values on day 120 were between 1.02 and 2.89, larger than those on day 1 during PTH dissipation. This implied that the soil quality did not recover though there was no PTH residue in the soil at the end of the experiment. These findings suggested that microbial activities integrated with IBR/n index could elucidate the hazardous impacts of PTH dissipation on biochemical cycling and microorganisms in soil.
Collapse
Affiliation(s)
- Kelin Tao
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xiaofu Shang
- Tianjin Huankelijia Environmental Remediation Technology Co., Ltd., Tianjin, 300191, China
| | - Jing Fan
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jianli Ma
- Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Deng G, Chen H, Shi Q, Ren L, Liang K, Long W, Lan W, Han X, She Y, Fu H. Colorimetric assay based on peroxidase-like activity of dodecyl trimethylammonium bromide-tetramethyl zinc (4-pyridinyl) porphyrin for detection of organophosphorus pesticides. Mikrochim Acta 2022; 189:375. [PMID: 36074197 DOI: 10.1007/s00604-022-05430-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/08/2022] [Indexed: 10/14/2022]
Abstract
A simple and sensitive colorimetric assay for detecting organophosphorus pesticides (OPs) was developed based on 3,3',5,5'-tetramethylbenzidine (TMB)/hydrogen peroxide (H2O2)/dodecyl trimethylammonium bromide (DTAB)-tetramethyl zinc (4-pyridinyl) porphyrin (ZnTPyP). In this system, based on the peroxidase-like activity of DTAB-ZnTPyP, H2O2 decomposes to produce hydroxyl radicals, which oxidize TMB, resulting in blue oxidation products. The OPs (trichlorfon, dichlorvos, and thimet) were first combined with DTAB-ZnTPyP through electrostatic interactions. The OPs caused a decrease in the peroxidase-like activity of DTAB-ZnTPyP due to spatial site blocking. At the same time, π-interactions occurred between them, and these interactions also inhibited the oxidation of TMB (652 nm), thus making the detection of OPs possible. The limits of detection for trichlorfon, dichlorvos, and thimet were 0.25, 1.02, and 0.66 μg/L, respectively, and the corresponding linear ranges were 1-35, 5-45, and 1-40 μg/L, respectively. Moreover, the assay was successfully used to determine OPs in cabbage, apple, soil, and traditional Chinese medicine samples (the recovery ratios were 91.8-109.8%), showing a great promising potential for detecting OPs also in other complex samples.
Collapse
Affiliation(s)
- Gaoqiong Deng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Qiong Shi
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Lixue Ren
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Ke Liang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xiaole Han
- Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
13
|
Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. BIOSENSORS 2022; 12:bios12080572. [PMID: 36004968 PMCID: PMC9405907 DOI: 10.3390/bios12080572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016–2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.
Collapse
|
14
|
Soni GK, Wangoo N, Cokca C, Peneva K, Sharma RK. Ultrasensitive aptasensor for arsenic detection using quantum dots and guanylated Poly(methacrylamide). Anal Chim Acta 2022; 1209:339854. [DOI: 10.1016/j.aca.2022.339854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
|
15
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens Bioelectron 2021; 194:113601. [PMID: 34530372 DOI: 10.1016/j.bios.2021.113601] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
In this work, a novel electrochemiluminescence (ECL) aptasensor was structured for the detection of four organophosphorus pesticides (OPs). Firstly, multi-walled carbon nanotubes (MWCNTs) were used to create a favorable loading interface for the fixation of tris (2, 2'-bipyridyl) ruthenium (II) (Ru (bpy)32+). At the same time, copper (core)-gold (shell) bimetallic nanoparticles (Cu@Au NPs) were synthesized in the aqueous phase for the sensor construction. Gold nanoparticles (Au NPs) could promote the electrochemiluminescence intensity of Ru (bpy)32+ with high efficiency by catalyzing the oxidation process of tri-n-propylamine (TPrA). Compared with the Au NPs, Cu@Au NPs increased the solid loading of Au NPs by virtue of the large specific surface area of copper nanoparticles (Cu NPs), which could further improve the sensitivity of aptasensor. When OPs were added, the ECL intensity was significantly reduced, and the concentration of OPs could be detected through the ECL intensity. Under the optimum conditions, the aptasensor had a wider dynamic range and ultra-low detection limit for the detection of four pesticides: profenofos, isocarbophos, phorate, and omethoate, and their detection limits were 3 × 10-4 ng/mL, 3 × 10-4 ng/mL, 3 × 10-3 ng/mL, and 3 × 10-2 ng/mL respectively (S/N = 3). The aptasensor had the merits of good stability, reproducibility, and specificity, and had a favorable recovery rate in detecting OPs residues in vegetables. This work provided an effective method for the construction of a simple, rapid, and sensitive biosensor.
Collapse
|
17
|
Aparna A, Sreehari H, Chandran A, Anjali KP, Alex AM, Anuvinda P, Gouthami GB, Pillai NP, Parvathy N, Sadanandan S, Saritha A. Ligand-protected nanoclusters and their role in agriculture, sensing and allied applications. Talanta 2021; 239:123134. [PMID: 34922101 DOI: 10.1016/j.talanta.2021.123134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Nano biotechnology, when coupled with green chemistry, can revolutionize human life because of the vast opportunities and benefits it can offer to the quality of human life. Luminescent metal nanoclusters (NCs) have recently developed as a potential research area with applications in different areas like medical, imaging, sensing etc. Recently these new candidates have proved to be beneficial in the food supply chain enabling controlled release of nutrients, pesticides and as nanosensors for the detection of contaminants and play roles in healthy food storage and maintaining food quality. An assortment of nanomaterials has been employed for these applications and reviews have been published on the use of nanotechnology in agriculture. Ligand-protected metal nanoclusters are a distinctive class of small organic-inorganic nanostructures that garnered immense research interest in recent years owing to their stability at specific "magic size" compositions along with tunable properties that make them promising candidates for a wide range of nanotechnology-based applications. This review tries to consolidate the recent developments in the area of ligand-protected nanoclusters in connection with the detection of pesticides, food contaminants, heavy metal ions and plant growth monitoring for healthy agricultural practices. Its antimicrobial activity to manage the microbial contamination is highlighted. The review also throws light on the various perspectives by which food production and allied areas will be transformed in future.
Collapse
Affiliation(s)
- Asok Aparna
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - H Sreehari
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - K P Anjali
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Ansu Mary Alex
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - P Anuvinda
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - G B Gouthami
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Neeraja P Pillai
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - N Parvathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India.
| |
Collapse
|
18
|
Song W, Zhang XP, Lin B, Shu Y, Wang JH. Sensitivity Dependence on the Crystal Forms of a Fluorescence Quencher for Silicon Quantum Dots and Its Use in Acetylcholinesterase Assay. Anal Chem 2021; 93:14900-14906. [PMID: 34714045 DOI: 10.1021/acs.analchem.1c04091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase (AChE) plays crucial roles in the nervous system, and thus the reliable assay of its activity is of great significance for the diagnosis of nervous diseases. In this work, we report a fluorescent sensing platform with silicon quantum dots (Si-QDs) as a fluorescence oscillator and nano iron oxyhydroxide (α-, β-, and γ-FeOOH) as a quencher for the assay of AChE. FeOOH with α-, β-, and γ-crystal forms quenches the fluorescence of Si-QDs at λex/λem = 350/438 nm, which is retrieved in the presence of AChE and its substrate acetylthiocholine (ATCh) to provide an off-on strategy with a high signal/noise ratio. It is interesting that the sensitivity of AChE sensing is closely related to the crystal forms of FeOOH, with the highest sensitivity by adopting α-FeOOH as the quencher. A linear calibration is achieved within 0.02-1.4 U/L along with a limit of detection of 0.016 U/L. The sensing strategy was demonstrated by the AChE assay in human blood, plasma, and hemocytes.
Collapse
Affiliation(s)
- Wei Song
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Chen L, Cheng Z, Luo M, Wang T, Zhang L, Wei J, Wang Y, Li P. Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34658279 DOI: 10.1080/10408398.2021.1990010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, food safety issues caused by contaminants have aroused great public concern. The development of innovative and efficient sensing techniques for contaminants detection in food matrix is in urgent demand. As fluorescent nanomaterials, noble metal nanoclusters have attracted much attention because of their ease of synthesis, enhanced catalytic activity and biocompatibility, and most importantly, excellent photoluminescence property that provides promising analytical applications. This review comprehensively introduced the synthesis method of noble metal nanoclusters, and summarized the application of metal nanoclusters as fluorescent sensing materials in the detection of pollutants, including pesticides, heavy metal, mycotoxin, food additives, and other contaminants in food. The detection mechanism of pesticide residues mostly relies on the inhibition of natural enzymes. For heavy metals, the detection mechanism is mainly related to the interaction between metal ions and nanoclusters or ligands. It is evidenced that metal nanoclusters have great potential application in the field of food safety monitoring. Moreover, challenges and future trends of nanoclusters were discussed. We hope that this review can provide insights and directions for the application of nanoclusters in contaminants detection.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
20
|
Zhai R, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty A. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. J Adv Res 2021; 37:61-74. [PMID: 35499055 PMCID: PMC9039737 DOI: 10.1016/j.jare.2021.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
The review systematically and completely collated the enzyme inhibition method based on Au nanomaterials for organophosphorus pesticide detection method in the last 20 years. The significance of the optical properties of Au nanomaterials is outlined with different shapes, sizes, and surface modifiers in enzyme inhibition methods. The principles, classification and application of enzyme inhibition methods based on Au nanomaterials are comprehensively summarized from a new perspective in agricultural and environmental samples, including colorimetric method, fluorometric method, electrochemical biosensor method. Unlike traditional enzyme inhibition method, the merits of enzyme inhibition method based on Au nanomaterials were elaborated in this review. Combined with the research progress of enzyme inhibition method, this review predicts the future research direction of enzyme inhibition method, providing a theoretical reference for researchers.
Background Organophosphorus pesticides (OPs), as insecticides or acaricides, are widely used in agricultural products to ensure agricultural production. However, widespread use of OPs leads to environmental contamination and significant negative consequences on biodiversity, food security, and water resources. Therefore, developing a sensitive and rapid method to determine OPs residues in different matrices is necessary. Originally, the enzyme inhibition methods are often used as preliminary screens of OPs in crops. Many studies on the characteristic of Au nanomaterials have constantly been emerging in the past decade. Combined with anisotropic Au nanomaterials, enzyme inhibition methods have the advantages of high sensitivity, durability, and high stability. Aim of Review This review aims to summarize the principles and strategies of gold (Au) nanomaterials in enzyme inhibition methods, including colorimetric (dispersion, particle size of Au nanomaterials) and fluorometric (fluorescence energy transfer, internal filtration effect) detection, and electrochemical sensing system (shape of Au nanomaterials, Au nanomaterials combined with other nanomaterials). The application of enzyme inhibition in agricultural products and research progress was also outlined. Next, this review illustrates the advantages of Au nanomaterial-based enzyme inhibition methods compared with conventional enzyme inhibition methods. The detection limits and linear range of colorimetric and fluorometric detection and electrochemical biosensors have also been provided. At last, key perspectives, trends, gaps, and future research directions are proposed. Key Scientific Concepts of Review Herein, we introduced the technology of enzyme inhibition method based on Au nanomaterials for onsite and infield rapid detection of organophosphorus pesticide.
Collapse
Affiliation(s)
- Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
- Corresponding authors.
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
- Corresponding authors.
| | - A.M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
21
|
Wang TJ, Barveen NR, Liu ZY, Chen CH, Chou MH. Transparent, Flexible Plasmonic Ag NP/PMMA Substrates Using Chemically Patterned Ferroelectric Crystals for Detecting Pesticides on Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34910-34922. [PMID: 34278779 DOI: 10.1021/acsami.1c08233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transparent and flexible surface-enhanced Raman scattering (SERS) substrates have attracted much interest for the detection of probe molecules on the curved surfaces of real samples, but a facile route to fabricate such substrates is still lacking. Herein, we present a rationally designed, high-performance flexible SERS substrate fabricated using a simple drop and peel-off technique for the ultrasensitive detection of pesticides. The proposed SERS substrate consists of a polymethyl methacrylate (PMMA) film anchored with plasmonic silver nanoparticles (Ag NPs), which are photoreduced using chemically patterned ferroelectric templates. The photoreduced Ag NPs extracted onto the PMMA film offer strong electromagnetic enhancement and produce intensive hotspots for the effective enhancement of the Raman signal. They provide superior SERS performance for the detection of parathion (PT) and fenitrothion (FNT) at trace-level concentrations of 10-9 M and 10-10 M with excellent enhancement factors in the order of 108 and 109, respectively. Moreover, the Ag NP/PMMA SERS substrate has good spot-to-spot uniformity and batch-to-batch reproducibility with the reservation of high detection sensitivity even after the mechanical deformation of bending and torsion up to 50 cycles. The multiplex detection ability is also investigated for the simultaneous detection of PT and FNT. To ensure the practical feasibility, the in-situ, real-time detection of PT and FNT on the curved surfaces of tomato and lemon using a fiber-coupled Raman probe is performed with limits of detection of 4.24 × 10-8 M and 2.74 × 10-9 M. The proposed Ag NP/PMMA flexible SERS substrate possesses unique features, such as easy fabrication through a simple, economical, rapid process, and facilitates straightforward implementation of in-situ SERS detection on curved fruit/vegetable surfaces.
Collapse
Affiliation(s)
- Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Zhe-Yuan Liu
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | | | - Mei-Hua Chou
- CL Technology Co., Ltd., New Taipei 24158, Taiwan
| |
Collapse
|
22
|
Zhao G, Zhou B, Wang X, Shen J, Zhao B. Detection of organophosphorus pesticides by nanogold/mercaptomethamidophos multi-residue electrochemical biosensor. Food Chem 2021; 354:129511. [PMID: 33735695 DOI: 10.1016/j.foodchem.2021.129511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Based on the successful synthesis of mercaptomethamidophos as a substrate, a novel nanogold/mercaptomethamidophos multi-residue electrochemical biosensor was designed and fabricated by combining nanoscale effect, strong Au-S bonds as well as interaction between acetylcholinesterase (AChE) and mercaptomethamidophos, which can simultaneously detect 11 kinds of organophosphorus pesticides (OPPs) and total amount of OPPs using indirect competitive method. Electrochemical behavior of the modified electrode was characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The AChE concentration and incubation time were optimized at 37.4 °C to achieve the best detection effect. This biosensor exhibits excellent electrochemical properties with a wider linear range of 0.1 ~ 1500 ng·mL-1, lower detection limit of 0.019 ~ 0.077 ng·mL-1, better stability and repeatability, which realizes the rapid detection of total amount of OPPs, and can simultaneously detect a large class of OPPs rather than one kind of OPP. Two OPPs (trichlorfon, dichlorvos) were detected in actual samples of apple and cabbage and achieved satisfactory test results.
Collapse
Affiliation(s)
- Guozheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemistry and Material Science, College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Binhua Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiuwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
23
|
A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|