1
|
Malekmohammadi M, Ghanbarzadeh B, Hanifian S, Samadi Kafil H, Gharekhani M, Falcone PM. The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing Salvia officinalis Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger. Foods 2023; 12:3737. [PMID: 37893630 PMCID: PMC10606122 DOI: 10.3390/foods12203737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The current study aims to synthesize the gelatin-coated nanostructured lipid carrier (NLC) to encapsulate sage extract and use this nanoparticle to increase the quality parameters of beef burger samples. NLCs were prepared by formulation of gelatin (as surfactant and coating biopolymer), tallow oil (as solid lipid), rosemary essential oil (as liquid lipid), sage extract (as active material or encapsulant), polyglycerol ester and Tween 80 (as low-molecular emulsifier) through the high-shear homogenization-sonication method. The effects of gelatin concentrations and the solid/liquid ratio on the particle size, polydispersity index (PDI), and encapsulation efficiency (EE%) of sage extract-loaded NLCs were quantitatively investigated and optimized using a combined D-optimal design. Design expert software suggested the optimum formulation with a gelatin concentration of 0.1 g/g suspension and solid/liquid lipid ratio of 60/40 with a particle size of 100.4 nm, PDI of 0.36, and EE% 80%. The morphology, interactions, thermal properties, and crystallinity of obtained NLC formulations were investigated by TEM, FTIR, DSC, and XRD techniques. The optimum sage extract-loaded/gelatin-coated NLC showed significantly higher antioxidant activity than free extract after 30 days of storage. It also indicated a higher inhibitory effect against E. coli and P. aeruginosa than free form in MIC and MBC tests. The optimum sage extract-loaded/gelatin-coated NLC, more than free extract, increased the oxidation stability of the treated beef burger samples during 90 days of storage at 4 and -18 °C (verified by thiobarbituric acid and peroxide values tests). Incorporation of the optimum NLC to beef burgers also effectively decreased total counts of mesophilic bacteria, psychotropic bacteria, S. aureus, coliform, E. coli, molds, and yeasts of treated beef burger samples during 0, 3, and 7 days of storage in comparison to the control sample. These results suggested that the obtained sage extract-loaded NLC can be an effective preservative to extend the shelf life of beef burgers.
Collapse
Affiliation(s)
- Maedeh Malekmohammadi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz P.O. Box 51656-65811, Iran;
| | - Mehdi Gharekhani
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
2
|
Weishaupt AK, Kubens L, Ruecker L, Schwerdtle T, Aschner M, Bornhorst J. A Reliable Method Based on Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Quantification of Neurotransmitters in Caenorhabditis elegans. Molecules 2023; 28:5373. [PMID: 37513246 PMCID: PMC10385323 DOI: 10.3390/molecules28145373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Neurotransmitters like dopamine (DA), serotonin (SRT), γ-aminobutyric acid (GABA) and acetylcholine (ACh) are messenger molecules that play a pivotal role in transmitting excitation between neurons across chemical synapses, thus enabling complex processes in the central nervous system (CNS). Balance in neurotransmitter homeostasis is essential, and altered neurotransmitter levels are associated with various neurological disorders, e.g., loss of dopaminergic neurons (Parkinson's disease) or altered ACh synthesis (Alzheimer's disease). Therefore, it is crucial to possess adequate tools to assess precise neurotransmitter levels, and to apply targeted therapies. An established in vivo model to study neurotoxicity is the model organism Caenorhabditis elegans (C. elegans), as its neurons have been well characterized and functionally are analogous to mammals. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method including a sample preparation assuring neurotransmitter stability, which allows a simultaneous neurotransmitter quantification of DA, SRT, GABA and ACh in C. elegans, but can easily be applied to other matrices. LC-MS/MS combined with isotope-labeled standards is the tool of choice, due to its otherwise unattainable sensitivity and specificity. Using C. elegans together with our analytically validated and verified method provides a powerful tool to evaluate mechanisms of neurotoxicity, and furthermore to identify possible therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
| | - Laura Kubens
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- Inorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
| | - Tanja Schwerdtle
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10032, USA;
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
| |
Collapse
|
3
|
Liu X, Liu J, Zhao X, Zhang D, Wang Q. Ag NPs/PMMA nanocomposite as an efficient platform for fluorescence regulation of riboflavin. OPTICS EXPRESS 2022; 30:34918-34931. [PMID: 36242494 DOI: 10.1364/oe.470454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The fluorescence detection platform has broad application in many fields. In this paper, we report a simple and efficient fluorescence detection platform based on the synergistic effects of Ag nanoparticles (Ag NPs) and polymethylmethacrylate (PMMA). Ag NPs were introduced to realize the plasmon enhancement fluorescence and a thin PMMA layer was used to adjust the distance between Ag NPs and riboflavin. The thin PMMA layer not only enhances the fluorescence by enhancing adhesion of substrate, but also optimizes the plasmon enhancement fluorescence effect by serving as the spacer. The fluorescence enhancement factor based on this platform shows a trend of increasing with the decrease of the concentration of riboflavin, and the detection of riboflavin is realized based on this feature, the lowest detectable concentration is as low as 0.27 µM. In addition to the detection based on plasmon enhancement fluorescence, the detection of riboflavin at low concentrations can also be realized by the shift and broadening of the fluorescence peak due to the Ag NPs. The combination of the two ways of plasmon enhancement fluorescence and shift of the fluorescence spectra is used for the detection of riboflavin. These results show that the platform has great potential applications in the field of detection and sensing.
Collapse
|
4
|
Li X, Liu X, Liu Y, Gao R, Wu X, Gao X. Highly sensitive detection of dopamine based on gold nanoflowers enhanced-Tb(III) fluorescence. Talanta 2022; 249:123700. [PMID: 35751922 DOI: 10.1016/j.talanta.2022.123700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
We developed a trace level detection method for dopamine (DA) based on the metal-enhanced fluorescence (MEF) effect of gold nanoflowers (AuNFs). AuNFs prepared were excellent enhancement fluorescence substrates due to their unique morphology with rich edges and sharp quoins. DA was the target analyte and also as a bridge reagent that could regulate the distance between AuNFs and Tb3+. The characteristic fluorescence of Tb3+ was enhanced significantly through the synergistic effect between the luminescence sensitized by DA and the MEF caused by AuNFs. Under the optimum experimental conditions, the fluorescence intensity of Tb3+ at 545 nm demonstrated very significant sensing ability against DA concentration and showed a good linear relationship in the range of 0.80-300 nM and the limit of detection was 0.21 nM (S/N = 3). The proposed method was also validated in serum samples and the dopamine hydrochloride injection samples with satisfactory results.
Collapse
Affiliation(s)
- XueQin Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xingcen Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yujie Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Ran Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xia Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, 250012, PR China
| |
Collapse
|
5
|
Wu S, Wang H, Zhao B, Cao T, Ma J, Liu L, Tong Z. Construction of cationic polyfluorinated azobenzene/reduced graphene oxide for simultaneous determination of dopamine, uric acid and ascorbic acid. Talanta 2022; 237:122986. [PMID: 34736705 DOI: 10.1016/j.talanta.2021.122986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
A highly sensitive cationic polyfluorinated azobenzene/reduced graphene oxide (C3F7-azo+/RGO) nanocomposite electrochemical sensor for simultaneous detection of dopamine (DA), ascorbic acid (AA) and uric acid (UA) was successfully synthesized using a facile exfoliation/restacking method. The nanocomposite is self-assembled from oppositely charged graphene oxide nanosheets (GO) and polyfluorinated azobenzene cations (C3F7-azo+), and then obtained by electrochemical reduction. The structure and electrochemical properties were characterized by X-ray diffraction (XRD), energy dispersive spectrometer analysis (EDS), transmission electron microscope (TEM) and scanning electron microscope (SEM). The electrochemical property of C3F7-azo+/RGO was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). It can be clearly seen from experimental results that C3F7-azo+/RGO-modified electrode (C3F7-azo+/RGO/GCE) can detect DA, AA and UA simultaneously, and has good stability and anti-interference performance. The detection limits are 65 nM, 8 nM and 11 nM for DA, AA and UA in the ranges 57.28-134.28 μM, 0.04-6.01 μM, 9.23-23.45 μM, respectively.
Collapse
Affiliation(s)
- Shining Wu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haoran Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tongtong Cao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Juanjuan Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhiwei Tong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; SORST, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Kawaguchi-shi, Saitama, 332-0012, Japan.
| |
Collapse
|
6
|
Li S, Liu D, Wu B, Sun H, Liu X, Zhang H, Ding N, Wu L. One-pot synthesis of a peroxidase-like nanozyme and its application in visual assay for tyrosinase activity. Talanta 2021; 239:123088. [PMID: 34838324 DOI: 10.1016/j.talanta.2021.123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/02/2023]
Abstract
Both single-atom nanozymes (SAzymes) and protein-template metal nanoparticles have attracted comprehensive attention in several respects owing to their excellent catalytic performance, green facile synthesis process, and robustness. Herein, the peroxidase-like activity of single-atom copper anchored on bovine hemoglobin-template gadolinium nanoparticles (Cu,Gd@BHbFITC NPs) were successfully synthesized and two sensitive turn-on fluorescence strategies for tyrosinase (TYR) activity sensing were proposed for the first time. For strategy Ⅰ, TYR sensing was carried out from 1.00 to 7.80 U/mL with the detection limit (LOD) of 0.20 U/mL based on the fluorescence resonance energy transfer (FRET) between the fluorescein isothiocyanate (FITC) and the in situ generated polydopamine dots (PDA-dots). For strategy Ⅱ, The LOD of TYR was 0.05 U/mL with the linear range of 0.40-19.70 U/mL based on the elimination of inner-filter effect (IEF) between FITC and the reaction product (RC) of phenol and 4-Aminoantipyrine (AAP). The smartphone-assisted sensing platform was applied to construct the on-site detection of TYR with both strategies. The developed probe possessed good selectivity and was successfully utilized to TYR detection in serum samples.
Collapse
Affiliation(s)
- Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Di Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bingyan Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Nana Ding
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|