1
|
Zhang D, Yan P, Yu H, Sun J, Zhu S, Zhao XE. Ratiometric sensor based on Ag +-mediated luminescence of Tb-DNA complexes for visual detection of 4-aminophenol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125659. [PMID: 39731926 DOI: 10.1016/j.saa.2024.125659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Development of accurate, convenient and portable methods for monitoring 4-aminophenol (4-AP) is extremely important because of its strong toxicity. Here, a ratiometric fluorescence sensor based on Ag+-enhanced luminescence of Tb-DNA complexes has been presented for the detection of 4-AP. The luminescence of Tb-DNA complexes is enhanced about 30 times by Ag+, which can trigger energy transfer from DNA to Tb3+ more efficiently. In the presence of 4-AP, Ag+ can be reduced into Ag0 owing to its strong reducibility, inducing the decrease of Tb-DNA complexes at 545 nm remarkably. Besides, 4-AP exhibits intrinsic fluorescence at 375 nm under the same conditions. Therefore, ratiometric detection of 4-AP can be achieved using F375/F545 as readout with a detection limit of 0.4 μM. Real water samples have been tsted to evaluate this method in practical application and satisfactory results have been obtained. Furthermore, the addition of 4-AP into Tb-DNA-Ag+ system induces a visible color variation from green to bluish violet, enabling visual detection of 4-AP under the assistance of a smartphone.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Ping Yan
- Department of Internal Medicine, University Hospital, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Hong Yu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City 810001, Qinghai, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| | - Xian-En Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| |
Collapse
|
2
|
Liu W, Wang K, Liu P, Jiang W, Feng Y, Hu Y, Zheng M, Zhou Y, Xiao Y, Liu Y. Tb 3+ assisted dithioerythritol stabilized copper nanocluster with AIE behavior for ratiometric fluorescent determination of fluoroquinolones. Anal Chim Acta 2024; 1316:342842. [PMID: 38969406 DOI: 10.1016/j.aca.2024.342842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Fluoroquinolones (FQs) are widely used in livestock and poultry industry because of their satisfactory effects in preventing and treating bacterial infection. However, due to irrational use and poor biodegradability, FQs can easily remain in food animals and further enter the human body through the food chain. Therefore, accurate and sensitive detection of FQs residues in animal-origin food is significant. The traditional methods commonly used for FQs detection have some limitations. Ratiometric fluorescence detection technology has the advantages of fast, sensitive, self-correcting, and easy visualization. However, the reports on the use of ratiometric fluorescence probes for FQs detection are limited. RESULTS In this work, a novel probe was proposed for ratiometric fluorescent analysis of FQs. In this probe, the fluorescence of dithioerythritol stabilized copper nanoclusters (DTE-Cu NCs) was significantly enhanced due to the Tb3+ triggered aggregation-induced emission effect. FQs bound Tb3+ in Tb3+/DTE-Cu NCs through carboxyl and carbonyl groups, so that Tb3+ was effectively sensitized to emit green fluorescence. However, the red fluorescence of DTE-Cu NCs was not interfered. The fluorescence of the probe transformed from red to green with the increase of FQs concentration. Using norfloxacin (NOR), difloxacin (DIF), and enrofloxacin (ENR) as FQs simulants, this probe showed a sensitive linear response ranged from 0.025 to 22.5 μM, with the limits of detection of 9.6 nM, 9.3 nM, and 7.7 nM. The application potential for FQs detection was verified via a standard addition assay of egg samples with the recovery rate of 90.4 %-114.7 %. SIGNIFICANT The fluorescence probe based on Tb3+/DTE-Cu NCs is expected to realize the ratiometric fluorescence sensitive detection of FQs. The establishment of this simple, effective, and rapid detection platform opens up a new way for the detection of FQs residues in animal-origin foods, and also provides a new idea for the design of rapid detection platforms for other hazard factors.
Collapse
Affiliation(s)
- Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Pan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Wanqi Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Feng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Ding X, Ahmad W, Rong Y, Wu J, Ouyang Q, Chen Q. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem 2024; 442:138417. [PMID: 38237297 DOI: 10.1016/j.foodchem.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Trace detection of ofloxacin (OFL) with high sensitivity, reliability, and visual clarity is challenging. To address this, a novel dual-modal aptasensor with fluorescence-colorimetric capabilities was designed that exploit the target-induced release of 3,3',5,5'-tetramethylbenzidine (TMB) molecules from aptamer-gated mesoporous silica nanoparticles (MSNs), the oxidase-like activity of iron alkoxide (IA) nanozyme, and the fluorescence attributes of core-shell upconversion nanoparticles. Therefore, the study reports a dual mode detection, with a fluorescence detection range for OFL spanning from 0.1 μg/kg to 1000 μg/kg (and a detection limit of 0.048 μg/kg). Additionally, the colorimetric method offered a linear detection range of 0.3 μg/kg to 1000 μg/kg, with a detection limit of 0.165 μg/kg. The proposed biosensor had been successfully applied to the determination of OFL content in real samples with satisfactory recoveries (78.24-96.14 %).
Collapse
Affiliation(s)
- Xiaodan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Wu Y, Zhou Y, Long H, Chen X, Jiang Y, Zhang L, Le T. A novel Zn/Eu-MOF for the highly sensitive, reversible and visualized sensing of ofloxacin residues in pork, beef and fish. Food Chem 2023; 422:136250. [PMID: 37126953 DOI: 10.1016/j.foodchem.2023.136250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The study investigates a bimetallic organic framework (Zn/Eu-MOF) based fluorescent probe for visual detection of ofloxacin (OFL) in pork, beef and fish. The developed sensing probe recognizes OFL through internal filtration and cation-π interaction between OFL and Zn/Eu-MOF, resulting in a distinct color change from orange-red to light green. The content of OFL can be determined through RGB analysis by a mobile-phone. The developed sensing probe offers several advantages such as broad linear range (0.1 ∼ 80 μM), rapid response time (30 s), low detection line (0.44 μM). The effectiveness of the sensing probe can last for five rounds with good recovery. Moreover, the application of the sensing probe on pork, beef and fish samples are reliable, with recoveries ranging from 93.4 to 112.1%, and the relative standard deviations (RSD) within 1.17% to 2.06%. These results suggest that the developed sensing probe could have significant potential for practical on-site test in food.
Collapse
Affiliation(s)
- Yan Wu
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Zhou
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Hongchen Long
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiangyu Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Yuanyuan Jiang
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Lei Zhang
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
5
|
Qi X, Tao S. MWCNT modified Ni-Fe LDH/BiVO 4 heterojunction: boosted visible-light-driven photoelectrochemical aptasensor for ofloxacin detection. RSC Adv 2022; 12:24269-24277. [PMID: 36128518 PMCID: PMC9412155 DOI: 10.1039/d2ra03981h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Sensitivity and selectivity, which can be identified by the photosensitivity of materials and the identification of elements, are two important factors for a photoelectrochemical aptasensor (PEC aptasensor). Herein, a patent PEC aptasensor for specifically detecting ofloxacin (OFL) was exploited, and a visible-light-active MWCNT/LDH/BiVO4 heterostructure was introduced as a photoactive material and identification elements, respectively. The combination of LDH with BiVO4 enhanced the photocurrent response, and MWCNT provided higher electron conductivity, which are advantageous for structuring PEC sensors. Furthermore, the two-pot synthesis of MWCNT/LDH/BiVO4 has the advantage of possessing an environmentally friendly character. Under optimal conditions, the photocurrent response of MWCNT/LDH/BiVO4 presents a linear trend with OFL concentration from 0.1 to 16 000 nM, and the limit of detection (S/N = 3) is as low as 0.03 nM. This new PEC sensing device afforded an ultra-sensitive sensor which has high selectivity and stability for detecting OFL.
Collapse
Affiliation(s)
- Xuejun Qi
- School of Architecture and Civil Engineering, Xihua University Chengdu 610039 PR China
| | - Shuyan Tao
- School of Architecture and Civil Engineering, Xihua University Chengdu 610039 PR China
| |
Collapse
|
6
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Liu S, Xu Y, Jiang X, Tan H, Ying B. Translation of aptamers toward clinical diagnosis and commercialization. Biosens Bioelectron 2022; 208:114168. [PMID: 35364525 DOI: 10.1016/j.bios.2022.114168] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
The dominance of antibodies in diagnostics has gradually changed following the discovery of aptamers in the early 1990s. Aptamers offer inherent advantages over traditional antibodies, including higher specificity, higher affinity, smaller size, greater stability, ease of manufacture, and low immunogenicity, rendering them the best candidates for point-of-care testing (POCT). In the past 20 years, the research community and pharmaceutical companies have made great efforts to promote the development of aptamer technology. Macugen® (pegaptanib) was the first aptamer drug approved by the US Food and Drug Administration (FDA), and various aptamer-based diagnostics show great promise in preclinical research and clinical trials. In this review, we introduce recent literature, ongoing clinical trials, commercial reagents of aptamer-based diagnostics, discuss the FDA regulatory mechanisms, and highlight the prospects and challenges in translating these studies into viable clinical diagnostic tools.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China
| | - Hong Tan
- Department of General Surgery, Chengdu Integrated TCM&Western Medicine Hospital (Chengdu First People's Hospital), Chengdu, 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China.
| |
Collapse
|
8
|
Tao J, Liu Z, Zhu Z, Zhang Y, Wang H, Pang P, Yang C, Yang W. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe 3O 4@TiO 2 nanoparticles triggered by a rolling circle amplification strategy. Talanta 2022; 241:123272. [PMID: 35121542 DOI: 10.1016/j.talanta.2022.123272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022]
Abstract
An ultrasensitive electrochemical detection of the activity and inhibition of T4 polynucleotide kinase (T4 PNK) was developed by using magnetic Fe3O4@TiO2 core-shell nanoparticles, which was triggered by a rolling circle amplification strategy (Fe3O4@TiO2-RCA). We used Fe3O4@TiO2 as a substrate to anchor a DNA primer. DNA S1 with 5'-OH termini was phosphorylated in the presence of T4 PNK and ATP, which was adsorbed on the surface of Fe3O4@TiO2 NPs and served as the primer for subsequent RCA reactions. After adding circular template DNA S2, RCA was initiated in the presence of phi29 DNA polymerase and dNTPs. Then, Fc-labeled DNA S3 (Fc-S3) was hybridized with RCA. The obtained Fe3O4@TiO2-RCA was adsorbed on the surface of a magnetic gold electrode (MGE) by magnetic enrichment, resulting in an enhanced electrochemical signal. The T4 PNK activity can be monitored by measuring the electrochemical signal generated. This electrochemical assay is sensitive to the activity of T4 PNK with a dynamic linear range of 0.00001-20 U/mL and a low detection limit of 3.0 × 10-6 U/mL. The proposed strategy can be used to screen the T4 PNK inhibitors, so it has great potential in the discovery of nucleotide kinase-target drug and early clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Jinpeng Tao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zaiqiong Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zhenyu Zhu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Chun Yang
- Shaanxi Geological Survey Center, Xi'an, 710068, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| |
Collapse
|