1
|
Liu G, Wang X, Su X, Ji S, Ma Z, Gao Y, Song X. The Development Potential of AuNPs-Based Lateral Flow Technology Combined with Other Advanced Technologies in POCT. Appl Biochem Biotechnol 2025; 197:2867-2886. [PMID: 39937412 DOI: 10.1007/s12010-025-05190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Currently, there is a demand for rapid, sensitive, low-cost, portable, and visualized testing technologies for point-of-care testing (POCT). However, most traditional testing methods face challenges such as long testing times, complicated operations, and high costs, limiting their implementation in resource-limited areas and hindering the fulfillment of POCT demands. Lateral flow assay (LFA) has emerged as an ideal detection technique for POCT, particularly when utilizing gold nanoparticles (AuNPs) as labels. This approach not only enables visualization with the naked eye but also reduces the need for expensive reading instruments. The technologies reviewed in this paper encompass integrated detection technology utilizing amplification technique and LFA, integrated detection technology utilizing clustered regularly interspaced short palindromic repeats (CRISPR) system and LFA, the utilization of surface-enhanced Raman spectroscopy (SERS) in LFA detection technique, the utilization of aptamers in LFA detection technique, and the utilization of DNA barcodes in LFA detection technique. By integrating these advanced techniques, there is significant potential to overcome the limitations of LFA, including low sensitivity, poor specificity, inability to quantify, and false positives, thereby enabling broader applications in resource-constrained settings. Additionally, this article comprehensively evaluates the strengths and weaknesses of each approach, underscoring the immense developmental potential of AuNPs-based LFA in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Guiping Liu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xueli Wang
- School of Grain, Jilin Business and Technology College, Changchun, China
| | - Xiaomeng Su
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shixin Ji
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Zelong Ma
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yimeng Gao
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun, China.
| |
Collapse
|
2
|
Xu Z, Ma X, Ye J, Hou P, Yuan C, Pan L, Yang D, Li X, Wang P. Visual Detection and Identification of Influenza A Viruses by Nucleic Acid Probe-Enabled Lateral Flow Assay. Chembiochem 2025:e2500216. [PMID: 40267252 DOI: 10.1002/cbic.202500216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
Diagnosis of influenza A viral infection is crucial for preventing disease transmission and providing effective clinical treatments. There is an increasing need for convenient detection methods to enable simple yet precise identification of viral infections. Herein, a nucleic acid probe-enabled lateral flow assay (NALFA) is developed to realize visual detection and identification of influenza A viral infections (H1N1 and H3N2) of high sensitivity and specificity. Viral RNA targets are recognized by a padlock probe, which is circularized to induce rolling circle amplification (RCA). RCA products are enzymatically cleaved into short amplicons to complex with capture DNA probes for gold colloidal-induced visual lateral flow assay. NALFA achieved attomolar (aM) sensitivity for both standard viral RNAs, along with high specificity. While applying clinical samples (16 H1N1 patients, 12 healthy controls), NALFA exhibited high detection accuracy to successfully discriminate infected samples from noninfected samples. NALFA represents a potent and convenient nucleic acid detection assay that shall find its applications in fields of viral detection and beyond.
Collapse
Affiliation(s)
- Zhihao Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Hou
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Caiqing Yuan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xue Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
3
|
Emamiamin A, Shariati Pour SR, Serra T, Calabria D, Varone M, Di Nardo F, Guardigli M, Anfossi L, Baggiani C, Zangheri M, Mirasoli M. New Frontiers for the Early Diagnosis of Cancer: Screening miRNAs Through the Lateral Flow Assay Method. BIOSENSORS 2025; 15:238. [PMID: 40277551 PMCID: PMC12024991 DOI: 10.3390/bios15040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
MicroRNAs (miRNAs), which circulate in the serum and plasma, play a role in several biological processes, and their levels in body fluids are associated with the pathogenesis of various diseases, including different types of cancer. For this reason, miRNAs are considered promising candidates as biomarkers for diagnostic purposes, enabling the early detection of pathological onset and monitoring drug responses during therapy. However, current methods for miRNA quantification, such as northern blotting, isothermal amplification, RT-PCR, microarrays, and next-generation sequencing, are limited by their reliance on centralized laboratories, high costs, and the need for specialized personnel. Consequently, the development of sensitive, simple, and one-step analytical techniques for miRNA detection is highly desirable, particularly given the importance of early diagnosis and prompt treatment in cases of cancer. Lateral flow assays (LFAs) are among the most attractive point-of-care (POC) devices for healthcare applications. These systems allow for the rapid and straightforward detection of analytes using low-cost setups that are accessible to a wide audience. This review focuses on LFA-based methods for detecting and quantifying miRNAs associated with the diagnosis of various cancers, with particular emphasis on sensitivity enhancements achieved through the application of different labels and detection systems. Early, non-invasive detection of these diseases through the quantification of tailored biomarkers can significantly reduce mortality, improve survival rates, and lower treatment costs.
Collapse
Affiliation(s)
- Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
| | - Thea Serra
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Marta Varone
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum—University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum—University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
4
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Lamprou E, Kalligosfyri PM, Kalogianni DP. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. BIOSENSORS 2025; 15:68. [PMID: 39996970 PMCID: PMC11853705 DOI: 10.3390/bios15020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Multiplex lateral flow assays are one of the greatest advancements in the world of rapid diagnostics, achieving the performance of several tests in one. These tests meet the basic requirements of increasing ease of use, low detection limit, and high specificity, as they combine the use of novel strategies, such as the exploitation of multiple detection labels, and a variety of amplification methods. These tests have proven their usefulness in many different areas, including clinical diagnostics, food, and environmental monitoring. In this review paper, we attempt to highlight and discuss the predominant changes in multianalyte LFAs, as related to their principle, their development, and their combination with other methods. Attention is paid to their flexibility and the challenges associated with the use of LFA arrays, including strategies to improve the detectability, sensitivity, and reliability of the assays. Therefore, this review emphasizes the current advances in the field to underline the possible impact of multiplex LFAs on the future of diagnostics and analytical sciences.
Collapse
Affiliation(s)
- Eleni Lamprou
- Department of Chemistry, University of Patras, Rio, GR26504 Patras, Greece;
| | | | | |
Collapse
|
6
|
Lee ES, Cha BS, Jang YJ, Woo J, Kim S, Park SS, Oh SW, Park KS. Harnessing the potential of aptamers in cell-derived vesicles for targeting colorectal cancers at Pan-Dukes' stages. Int J Biol Macromol 2024; 280:135911. [PMID: 39317285 DOI: 10.1016/j.ijbiomac.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility. In this study, a novel method, termed colorectal cancer overall Dukes' staging Systematic Evolution of Ligands by Exponential enrichment (CROSS), was developed to identify Toggle Cell 1 (TC1) aptamers with high binding affinity to CRC cells at various Dukes' stages (A-D). Furthermore, a novel DDS was developed by incorporating a cholesterol-modified TC1 aptamer into CDV, which exhibited improved targeting ability and cellular uptake efficiency toward CRC cells compared to CDV alone. The results of this study highlight the potential efficacy of CDV in constructing a targeted DDS while overcoming the current challenges associated with other lipid-based DDS.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Wang C, Xu S, Yang X. Hypoxia-Driven Changes in Tumor Microenvironment: Insights into Exosome-Mediated Cell Interactions. Int J Nanomedicine 2024; 19:8211-8236. [PMID: 39157736 PMCID: PMC11328847 DOI: 10.2147/ijn.s479533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Hypoxia, as a prominent feature of the tumor microenvironment, has a profound impact on the multicomponent changes within this environment. Under hypoxic conditions, the malignant phenotype of tumor cells, the variety of cell types within the tumor microenvironment, as well as intercellular communication and material exchange, undergo complex alterations. These changes provide significant prospects for exploring the mechanisms of tumor development under different microenvironmental conditions and for devising therapeutic strategies. Exosomes secreted by tumor cells and stromal cells are integral components of the tumor microenvironment, serving as crucial mediators of intercellular communication and material exchange, and have consequently garnered increasing attention from researchers. This review focuses on the mechanisms by which hypoxic conditions promote the release of exosomes by tumor cells and alter their encapsulated contents. It also examines the effects of exosomes derived from tumor cells, immune cells, and other cell types under hypoxic conditions on the tumor microenvironment. Additionally, we summarize current research progress on the potential clinical applications of exosomes under hypoxic conditions and propose future research directions in this field.
Collapse
Affiliation(s)
- Churan Wang
- Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Xiao Yang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| |
Collapse
|
8
|
Sun X, Chen B, Shan Y, Jian M, Wang Z. Lectin microarray based glycan profiling of exosomes for dynamic monitoring of colorectal cancer progression. Anal Chim Acta 2024; 1316:342819. [PMID: 38969421 DOI: 10.1016/j.aca.2024.342819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Exosomes, as emerging biomarkers in liquid biopsies in recent years, offer profound insights into cancer diagnostics due to their unique molecular signatures. The glycosylation profiles of exosomes have emerged as potential biomarkers, offering a novel and less invasive method for cancer diagnosis and monitoring. Colorectal cancer (CRC) represents a substantial global health challenge and burden. Thus there is a great need for the aberrant glycosylation patterns on the surface of CRC cell-derived exosomes, proposing them as potential biomarkers for tumor characterization. RESULTS The interactions of 27 lectins with exosomes from three CRC cell lines (SW480, SW620, HCT116) and one normal colon epithelial cell line (NCM460) have been analyzed by the lectin microarray. The result indicates that Ulex Europaeus Agglutinin I (UEA-I) exhibits high affinity and specificity towards exosomes derived from SW480 cells. The expression of glycosylation related genes within cells has been analyzed by high-throughput quantitative polymerase chain reaction (HT-qPCR). The experimental result of HT-qPCR is consistent with that of lectin microarray. Moreover, the limit of detection (LOD) of UEA-I microarray is calculated to be as low as 2.7 × 105 extracellular vehicles (EVs) mL-1 (three times standard deviation (3σ) of blank sample). The UEA-I microarray has been successfully utilized to dynamically monitor the progression of tumors in mice-bearing SW480 CRC subtype, applicable in tumor sizes ranging from 2 mm to 20 mm in diameter. SIGNIFICANCE The results reveal that glycan expression pattern of exosome is linked to specific CRC subtypes, and regulated by glycosyltransferase and glycosidase genes of mother cells. Our findings illuminate the potential of glycosylation molecules on the surface of exosomes as reliable biomarkers for diagnosis of tumor at early stage and monitoring of cancer progression.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Yongjie Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
9
|
Shi X, Zhao X, Xue J, Jia E. Extracellular vesicle biomarkers in circulation for colorectal cancer detection: a systematic review and meta-analysis. BMC Cancer 2024; 24:623. [PMID: 38778252 PMCID: PMC11110411 DOI: 10.1186/s12885-024-12312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
We provided an overview which evaluated the diagnostic performance of circulation EV biomarkers for CRC from PubMed, Medline, and Web of Science until 21 August 2022.Weidentified 48 studies that involved 7727 participants and evaluated 162 plasma/serum individual EV biomarkers including 117 RNAs and 45 proteins, as well as 45 EV biomarker panels for CRC detection. 12 studies evaluated the diagnostic performance of EV biomarkers for early CRC. The summarized sensitivity, specificity, and AUC value of individual EV RNAs and EV RNA panels were 76%, 75%, 0.87 and 82%, 79% and 0.90, respectively. Meanwhile, those of individual EV proteins and EV protein panels were 85%, 84%, 0.92 and 87%, 83%, 0.92, respectively. These results indicated that EV biomarker panels revealed superior diagnostic performance than the corresponding individual biomarkers. In early CRC, EV biomarkers showed available diagnostic value with the sensitivity, specificity, and AUC value of 80%, 75%, and 0.89.In subgroup analyses, EV miRNAs and LncRNAs held similar diagnostic value with the sensitivity, specificity and AUC value of 75%, 78%, 0.90 and 79%, 72%, 0.83, which was highly consistent with the whole EV RNAs. Significantly, the diagnostic values of EV miRNAs in plasma were marginally higher than those based on serum. In detail, the sensitivity, specificity, and AUC values were 79%, 81%, and 0.92 in plasma, as well as 74%, 77%, and 0.88 in serum, respectively. Therefore, circulation EV biomarkers could be considered as a promising biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Wang J, Shi L, Zhu X, Tang Q, Wu M, Li B, Liu W, Jin Y. Entropy-driven catalysis-based lateral flow assay for sensitive detection of Alzheimer 's-associated MicroRNA. Talanta 2024; 271:125656. [PMID: 38224658 DOI: 10.1016/j.talanta.2024.125656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the brain worldwide. Currently, there is no effective cure. But accurate and early diagnosis of AD is critical to the development of patient care and future treatments. MiRNA-16 has been considered as an effective diagnostic biomarker for AD because of its regulatory effect on key proteins of AD. Herein, a colorimetric lateral flow assay (LFA) was developed for sensitive detection of miRNA-16 based on entropy-driven catalysis (EDC) amplification strategy. MiRNA-16 triggered EDC and released more linker DNAs (LDNA) of sandwich structure. Thus, AuNPs were enriched at the T-line to enhance the colorimetric signal and improve the sensitivity of visual assay. It showed good specificity and sensitivity for detecting miRNA-16 with a detection limit of 1.01 pM. The practical detection of miRNA-16 in human serum obtained satisfactory result. Significantly, EDC achieved signal amplification in homogeneous solution without enzyme and DNA labeling, leading to a cheap and easy detection of miRNA-16. Therefore, it provided a portable and rapid assay for AD-related nucleic acid, which holds a potential for point-of-care testing (POCT) of AD.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyu Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengmeng Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
11
|
Agnihotram R, Dhar R, Dhar D, Purushothaman K, Narasimhan AK, Devi A. Fusion of Exosomes and Nanotechnology: Cutting-Edge Cancer Theranostics. ACS APPLIED NANO MATERIALS 2024; 7:8489-8506. [DOI: 10.1021/acsanm.4c01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Rohan Agnihotram
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Debolina Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Kaavya Purushothaman
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| |
Collapse
|
12
|
Lee ES, Woo J, Shin J, Cha BS, Kim S, Park KS. Tetrahedral DNA nanostructures enhance transcription isothermal amplification for multiplex detection of non-coding RNAs. Biosens Bioelectron 2024; 250:116055. [PMID: 38266617 DOI: 10.1016/j.bios.2024.116055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
This study introduces an innovative detection system for multiple cancer biomarkers, employing transcription isothermal amplification methods in conjunction with a tetrahedral DNA nanostructure (TDN). We demonstrate that TDN enhances various transcription isothermal amplification methods by placing DNA probes in proximity. Notably, the TDN-enhanced split T7 promoter-based isothermal transcription amplification with light-up RNA aptamer (STAR) system stands out for its optimal performance and operational simplicity, especially in identifying non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs). Multiplex detection of lncRNAs was also achieved by generating distinct light-up RNA aptamers, each emitting unique fluorescence signals. The system effectively identified the target lncRNAs, demonstrating high sensitivity and selectivity in both cell lines and clinical samples. The system, utilizing the single enzyme T7 RNA polymerase, can be easily tailored for alternative targets by substituting target-specific sequences in DNA probes and seamlessly integrated with other isothermal amplification methods for greater sensitivity and accuracy in the detection of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
13
|
Guo S, Xie H, Zhao X, He H, Feng X, Li Y, Liu BF, Chen P. All-in-one detection of breast cancer-derived exosomal miRNA on a pen-based paper chip. Analyst 2024; 149:1250-1261. [PMID: 38225883 DOI: 10.1039/d3an02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Exosomal microRNAs (miRNAs) play a pivotal role in intercellular communication, regulating gene expression in target cells, and hold significant promise as cancer biomarkers for early detection and screening. However, achieving precise and viable detection of exosomal miRNAs remains a challenge. This paper proposes an all-in-one detection strategy for breast cancer-derived exosomal miRNA-21 on a pen-based paper chip (PPC). The PPC is constructed using a modified automatic pen and lateral flow assay (LFA), which results in a cost-effective fabrication process. The user only needs to add the sample and trigger the top of the self-contained PPC after a period of time to complete the entire detection process. To enhance the sensitivity of exosomal miRNA testing, an enzyme-free catalyzed hairpin assembly (CHA) is further introduced, enabling highly sensitive detection of miRNA-21 with a limit of detection (LOD) of 25 fmol. Additionally, the detection of miRNAs in differentially-expressed cells and clinical samples has also been successfully achieved with high specificity. Overall, the proposed PPC provides an effective tool for detecting early cancer, monitoring diseases, and establishing point of care testing (POCT).
Collapse
Affiliation(s)
- Song Guo
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
14
|
Wang N, Zhang J, Xiao B, Chen A. Microfluidic-assisted integrated nucleic acid test strips for POCT. Talanta 2024; 267:125150. [PMID: 37672986 DOI: 10.1016/j.talanta.2023.125150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Numerous diseases have posed significant threats to public health, notably the global pandemic of COVID-19, resulting in widespread devastation due to its high infectivity and severity. The nucleic acid lateral flow assay (NALFA) addresses challenges of complexity, cost, and time associated with traditional assays, offering a reliable platform for rapid and precise nucleic acid target detection. NALFA is gaining prominence as a point-of-care testing (POCT) technique, thanks to its user-friendly operation and rapid results. Nevertheless, conventional NALFA relies on specialized technicians and involves labor-intensive steps like DNA extraction and PCR processes, impeding its efficiency. To overcome these limitations, integrating NALFA with microfluidic technology, widely employed in rapid field detection, holds promise. This review comprehensively outlines prevailing strategies for integrating NALFA, encompassing both research initiatives and commercial applications. Addressing the bottleneck of nucleic acid amplification as a rate-limiting step, the review delves into progress in amplification-free NALFA and highlights prevalent signal amplification techniques. Ultimately, the review outlines the future prospect of integrated NALFA development, capturing the technology's evolution and providing valuable insights for academic and commercial endeavors.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Moro G, Fratte CD, Normanno N, Polo F, Cinti S. Point-of-Care Testing for the Detection of MicroRNAs: Towards Liquid Biopsy on a Chip. Angew Chem Int Ed Engl 2023; 62:e202309135. [PMID: 37672490 DOI: 10.1002/anie.202309135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Point-of-care (PoC) testing is revolutionizing the healthcare sector improving patient care in daily hospital practice and allowing reaching even remote geographical areas. In the frame of cancer management, the design and validation of PoC enabling the non-invasive, rapid detection of cancer markers is urgently required to implement liquid biopsy in clinical practice. Therefore, focusing on stable blood-based markers with high-specificity, such as microRNAs, is of crucial importance. In this work, we highlight the potential impact of circulating microRNAs detection on cancer management and the crucial role of PoC testing devices, especially for low-income countries. A detailed discussion about the challenges that should be faced to promote the technological transfer and clinical use of these tools has been added, to provide the readers with a complete overview of potentialities and current limitations.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| | - Chiara Dalle Fratte
- Department of Medical Biotechnology and Translational Medicine, Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan "Statale", Via Vanvitelli 32, 20133, Milan, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori (IRCCS), Fondazione Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
- European Centre for Living Technology (ECLT), Ca' Foscari University of Venice Ca' Bottacin, 30124, Venice, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| |
Collapse
|
16
|
Dhar R, Devi A. Exosomes Barcoding: A smart approach for cancer liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2023; 2:100129. [PMID: 40028488 PMCID: PMC11863820 DOI: 10.1016/j.jlb.2023.100129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 03/05/2025]
Abstract
Cancer is an unsolved health crisis worldwide. Extracellular vesicles (EVs) address this problem in a new way. In cancer, early detection is highly challenging, exosomes (a subpopulation of EVs, originating from endosomes) overcomes this limitation. In cancer, tumor-derived exosomes (TEXs) play a role as signaling molecules in cancer development and progression. TEXs provide detailed investigation for specific cancer biomarkers research. Exosomes heterogeneity (variation in exosomes size, exosomes origin, and inner molecular diversity) has led to complications in understanding and studying cancer liquid biopsies. Single exosome profiling and exosomes barcoding has helped in supporting and overcoming this limitation and has played a significant role in precision oncology. Exosomes barcoding is a promising interdisciplinary approach for screening cancers more specifically.
Collapse
Affiliation(s)
- Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
17
|
Cha BS, Jang YJ, Lee ES, Kim DY, Woo JS, Son J, Kim S, Shin J, Han J, Kim S, Park KS. Development of a Novel DNA Aptamer Targeting Colorectal Cancer Cell-Derived Small Extracellular Vesicles as a Potential Diagnostic and Therapeutic Agent. Adv Healthc Mater 2023; 12:e2300854. [PMID: 37129521 DOI: 10.1002/adhm.202300854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Colorectal cancer (CRC) as the second leading cause of global cancer deaths poses critical challenges in clinical settings. Cancer-derived small extracellular vesicles (sEVs), which are secreted by cancer cells, have been shown to mediate tumor development, invasion, and even metastasis, and have thus received increasing attention for the development of cancer diagnostic or therapeutic platforms. In the present study, the sEV-targeted systematic evolution of ligands by exponential enrichment (E-SELEX) is developed to generate a high-quality aptamer (CCE-10F) that recognizes and binds to CRC-derived sEVs. Via an in-depth investigation, it is confirmed that this novel aptamer possesses high affinity (Kd = 3.41 nm) for CRC-derived sEVs and exhibits a wide linear range (2.0 × 104 -1.0 × 106 particles µL-1 ) with a limit of detection (LOD) of 1.0 × 103 particles µL-1 . Furthermore, the aptamer discriminates CRC cell-derived sEVs from those derived from normal colon cell, human serum, and other cancer cells, showing high specificity for CRC cell-derived sEVs and significantly suppresses the critical processes of metastasis, including cellular migration, invasion, and angiogenesis, which are originally induced by sEVs themselves. These findings are highly encouraging for the potential use of the aptamer in sEV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Su Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinseo Son
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokhwan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
18
|
Xu N, Cong X, Sun R, Yin L, Zhang J, Pu Y. Metabolic risk factors link unhealthy lifestyles to the risk of colorectal polyps in China. Prev Med Rep 2023; 35:102314. [PMID: 37752979 PMCID: PMC10518789 DOI: 10.1016/j.pmedr.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 09/28/2023] Open
Abstract
Colorectal cancer is the second leading cause of global cancer-related deaths, and its precursor lesions are colorectal polyps (CAP). The study aimed to explore the effect of combinations of unhealthy lifestyles on CAP and investigate the mediation role of metabolic disorder in this process. A total of 1299 adults were recruited from a hospital in Jiangsu, China, including 811 cases and 488 adults without diseases. The information on demographic characteristics and lifestyles was collected through questionnaires and the medical record system. Serum biochemical parameters were determined using the automatic biochemical analyzer. Adjusted regression analysis showed that unhealthy lifestyles, including smoking, overnight meals, daily water intake, staying up late, and exercise associated with the risk of CAP. Furthermore, metabolic biomarkers, including BMI, triglycerides, and uric acid, were associated with the risk of CAP. Also, unhealthy lifestyle scores were positively associated with BMI, triglycerides, and CAP. The mediation effect of metabolic biomarkers, such as BMI and triglycerides on the association of unhealthy lifestyle scores with CAP was significant. Available data demonstrate the adverse effect of combinations of unhealthy lifestyle factors on CAP, and metabolic disorders to potentially mediate the association of unhealthy lifestyles with the risk of CAP.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- The Jiangsu Province Official Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
19
|
Lamprou E, Sotiriou M, Kalligosfyri PM, Kalogianni DP, Christopoulos TK. A universal lateral flow assay for microRNA visual detection in urine samples. Talanta 2023; 262:124682. [PMID: 37244240 DOI: 10.1016/j.talanta.2023.124682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
MicroRNAs (miRNAs) have been emerged as novel and significant biomarkers in liquid biopsy that can be found in different body fluids. Several techniques have been developed and applied for miRNAs analysis, including nucleic acid-based amplification methods, next generation sequencing, DNA microarrays and new genome-editing methods. These methods, however, are time-consuming and require expensive instruments and specially trained personnel. Biosensors, on the other hand, are alternative and valuable analytical/diagnostic tools due to their simplicity, cost-effectiveness, rapid analysis and ease of use. Several biosensors, especially nanotechnology-based ones, have been developed for miRNA analysis that are based either on target amplification or signal amplification and target re-cycling for sensitive detection. At this point of view, we have introduced a new and universal lateral flow assay in combination with reverse transcription - polymerase chain reaction (RT-PCR) and gold nanoparticles as reporters for the detection of miR-21 and miR-let-7a in human urine. It is the first time that such a biosensor has been applied to the detection of microRNAs in urine. As low as 102-103 copies of miR-21 and 102--104 copies of miR-let-7a added in urine were detectable by the proposed lateral flow assay with great specificity and repeatability (%CVs <4.5%).
Collapse
Affiliation(s)
- Eleni Lamprou
- Department of Chemistry, University of Patras, GR26504, Rio, Patras, Greece
| | - Markos Sotiriou
- Department of Chemistry, University of Patras, GR26504, Rio, Patras, Greece
| | | | | | - Theodore K Christopoulos
- Department of Chemistry, University of Patras, GR26504, Rio, Patras, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, 26504, Greece
| |
Collapse
|
20
|
Han J, Shin J, Lee ES, Cha BS, Kim S, Jang Y, Kim S, Park KS. Cas12a/blocker DNA-based multiplex nucleic acid detection system for diagnosis of high-risk human papillomavirus infection. Biosens Bioelectron 2023; 232:115323. [PMID: 37079992 DOI: 10.1016/j.bios.2023.115323] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) proteins are an innovative tool in molecular diagnostics owing to their high specificity and modularity for target nucleic acid sequences. However, the sequence-indiscriminate trans-cleavage activity of the Cas protein renders multiplex detection challenging. In this study, we developed a Cas12a-based multiplex detection system by designing blocker DNA complementary to reporter DNA, which enables the simultaneous detection of two genes with a single Cas protein in a single reaction. As a proof of concept, we chose high-risk human papillomavirus (HPV) 16 and 18 as the model targets and incorporated recombinase polymerase amplification (RPA) and transcription reactions to achieve high accuracy and sensitivity. Using the proposed system, we detected the genes of both HPV 16 and 18 down to 1 aM within 80 min under isothermal conditions. We validated the performance of the system in detecting genomic DNA from various cell lines and clinical samples from cervical cancer patients with high specificity. The proposed system facilitated rapid multiplex detection of high-risk HPVs in a single reaction tube with only Cas12a, thus representing a more user-friendly and economical alternative to previous Cas protein-based multiplex detection assays. The proposed system has considerable potential for point-of-care testing and could be expanded to detect various nucleic acid biomarkers.
Collapse
Affiliation(s)
- Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Youngjun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Seokhwan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
22
|
Bovari-Biri J, Garai K, Banfai K, Csongei V, Pongracz JE. miRNAs as Predictors of Barrier Integrity. BIOSENSORS 2023; 13:bios13040422. [PMID: 37185497 PMCID: PMC10136429 DOI: 10.3390/bios13040422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The human body has several barriers that protect its integrity and shield it from mechanical, chemical, and microbial harm. The various barriers include the skin, intestinal and respiratory epithelia, blood-brain barrier (BBB), and immune system. In the present review, the focus is on the physical barriers that are formed by cell layers. The barrier function is influenced by the molecular microenvironment of the cells forming the barriers. The integrity of the barrier cell layers is maintained by the intricate balance of protein expression that is partly regulated by microRNAs (miRNAs) both in the intracellular space and the extracellular microenvironment. The detection of changes in miRNA patterns has become a major focus of diagnostic, prognostic, and disease progression, as well as therapy-response, markers using a great variety of detection systems in recent years. In the present review, we highlight the importance of liquid biopsies in assessing barrier integrity and challenges in differential miRNA detection.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| |
Collapse
|
23
|
HNRNPA2B1-Mediated MicroRNA-92a Upregulation and Section Acts as a Promising Noninvasive Diagnostic Biomarker in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15051367. [PMID: 36831695 PMCID: PMC9954252 DOI: 10.3390/cancers15051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
MicroRNA-92a (miR-92a) may serve as a novel promising biomarker in multiple cancers, including colorectal cancer (CRC); however, the diagnostic accuracy and the underlying molecular mechanism of miR-92a in CRC is poorly understood. We first carried out meta-analysis and found that serum/plasma miR-92a yield better diagnostic efficacy when compared to stool samples and CRC tissues, and this finding was validated by our independent study through stool sample. Multiple bioinformatics assay indicated that miR-92a expression was positively correlated with heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1) expression and closely related with the clinical characteristics of CRC. Experimental evidence showed that knockdown of HNRNPA2B1 could significantly decrease miR-92a expression and secretion in RKO cells. HNRNPA2B1 mediated miR-92a via m6A RNA modification. These findings indicate that HNRNPA2B1-m6A RNA modification-derived MicroRNA-92a upregulation and section from the local CRC acts a candidate noninvasive serum biomarker in colorectal cancer. Our study provides a novel insight into miR-92a mechanisms in relation to both expression and secretion for CRC diagnosis.
Collapse
|
24
|
Extracellular Vesicles, as Drug-Delivery Vehicles, Improve the Biological Activities of Astaxanthin. Antioxidants (Basel) 2023; 12:antiox12020473. [PMID: 36830031 PMCID: PMC9952194 DOI: 10.3390/antiox12020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Astaxanthin (AST) exhibits potent antioxidant and anti-inflammatory activities but poor stability and biological efficacy, which limit its application in the food and medical industries. In the present study, a new strategy was proposed to enhance the biological activities of AST using fetal bovine serum-derived extracellular vesicles (EVs). Saponin-assisted incubation was used to load AST owing to its high encapsulation efficiency and loading capacity. AST-incorporated EVs (EV-ASTs) maintained their original EV morphology and showed high stability at 4 °C, 25 °C, and 37 °C over a 28-day period, which was attributed to the protective environment provided by the phospholipid bilayer membrane of the EVs. Additionally, the EV-ASTs exhibited excellent antioxidant and anti-inflammatory activities in HaCaT keratinocytes and RAW 264.7 macrophage cells, respectively; these were significantly higher than those of free AST. Furthermore, the mechanism associated with the enhanced biological activities of EV-ASTs was evaluated by analyzing the expression of genes involved in antioxidation and anti-inflammation, in parallel with cellular in vitro assays. These results provide insights into methods for improving the performance of hydrophobic drugs using nature-derived EVs and will contribute to the development of novel drug-delivery systems.
Collapse
|
25
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
26
|
Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Lin B, Jiang J, Jia J, Zhou X. Recent Advances in Exosomal miRNA Biosensing for Liquid Biopsy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217145. [PMID: 36363975 PMCID: PMC9655350 DOI: 10.3390/molecules27217145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
As a noninvasive detection technique, liquid biopsy plays a valuable role in cancer diagnosis, disease monitoring, and prognostic assessment. In liquid biopsies, exosomes are considered among the potential biomarkers because they are important bioinformation carriers for intercellular communication. Exosomes transport miRNAs and, thus, play an important role in the regulation of cell growth and function; therefore, detection of cancer cell-derived exosomal miRNAs (exo-miRNAs) gives effective information in liquid biopsy. The development of sensitive, convenient, and reliable exo-miRNA assays will provide new perspectives for medical diagnosis. This review presents different designs and detection strategies of recent exo-miRNA assays in terms of signal transduction and amplification, as well as signal detection. In addition, this review outlines the current attempts at bioassay methods in liquid biopsies. Lastly, the challenges and prospects of exosome bioassays are also considered.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (X.Z.)
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jingxuan Jia
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (X.Z.)
| |
Collapse
|
28
|
Qi L, Pan Y, Tang M, Chen X. Circulating cell-free circRNA panel predicted tumorigenesis and development of colorectal cancer. J Clin Lab Anal 2022; 36:e24431. [PMID: 35421275 PMCID: PMC9102498 DOI: 10.1002/jcla.24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Background Colorectal cancer (CRC) is reported with high morbidity and mortality. Currently, the sensitivity of diagnostic markers for colorectal cancer is low. Therefore, further exploration of new plasma diagnostic markers for early detection of colorectal cancer is of great value. We aimed to explore potential circRNAs in plasma as biomarkers for early diagnosis of CRC. Methods We employed the circRNA microarray to investigate dysregulated circRNAs in plasma samples of CRC patients, colorectal adenoma patients (CRA), and healthy controls. Through in‐depth analysis, significantly differentially expressed circRNAs were screened as candidate targets. Results Eight circRNAs (hsa_circ_104885, hsa_circ_100185, hsa_circ_103171, hsa_circ_001978, hsa_circ_105039, hsa_circ_103627, hsa_circ_101717, and hsa_circ_104192) were obtained as candidate circRNAs with upregulation in CRC comparing with both CRA and healthy control. Through detecting the plasma expression levels of eight candidate targets, we identified three circRNA (hsa_circ_001978, hsa_circ_105039, and hsa_circ_103627) with increased level which were consistent with the microarray results in training set. Further validation found the circRNA panel was consistent with training set. The ROC curve also revealed a high diagnostic ability of hsa_circ_001978, hsa_circ_105039, and hsa_circ_103627 in predicted the CRC from CRA patients (AUC = 0.966) as well as healthy controls (AUC = 0.969). Conclusion Our data suggest that hsa_circ_001978, hsa_circ_105039, and hsa_circ_103627 might be a CRC‐specific biomarker for early diagnosis.
Collapse
Affiliation(s)
- Le Qi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Gastroenterology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Pan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Tang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|