1
|
Gao S, Wei Z, Zheng X, Zhu J, Wang T, Huang X, Shen T, Zhang D, Guo Z, Zou X. Advancements in magnetic nanomaterial-assisted sensitive detection of foodborne bacteria: Dual-recognition strategies, functionalities, and multiplexing applications. Food Chem 2025; 478:143626. [PMID: 40049130 DOI: 10.1016/j.foodchem.2025.143626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 04/06/2025]
Abstract
Foodborne bacterial diseases are a major cause of human death. Sensitively quantifying those bacteria in foodstuffs is crucial for effective prevention. Yet, the matrix effect from abundant food interferents challenges this goal. Magnetic nanomaterials have been extensively utilized as effective sample pretreatment agents to facilitate the sensitive detection of bacterial pathogens, benefiting from their contribution to mitigating interference in food matrices. The advancement of magnetic scaffold-based biosensors in monitoring foodborne bacteria is reviewed in this work. This review highlights the dual-recognition strategies, which contribute to superior affordability and applicability in bacteria monitoring. The functionalities of magnetic nanoscaffolds in constructing pathogen-targeted biosensors are cataloged into three sections: magnetic separation mediators, signal generation probes, and agents for inactivating bacterial pathogens. Additionally, magnetic nanocomposite-driven multiplexing determination is critically discussed, with different detection approaches are highlighted. Further perspectives regarding superior multifunctional magnetic probes, tunable selection of bioreceptor, portable detection devices, smart identification, and differentiation of bacteria mixtures are introduced.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhangkun Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Tianxing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wei F, Liu Y. Magnetic-plasmonic nanoparticle-based surface-enhanced Raman scattering for biomedical detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126177. [PMID: 40220683 DOI: 10.1016/j.saa.2025.126177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that enables rapid, non-destructive, and susceptible detection of biological samples. The magnetic-plasmonic composite materials composed of magnetic and plasmonic nanoparticles have attracted extensive attention as SERS substrates in the biomedical field because of their ability to enrich, separate, and selectively identify biomolecules. In this review, the state-of-art progress of magnetic-plasmonic nanoparticle (MPNP)-based SERS substrates for biomedical detection is highlighted, covering the design and construction of MPNPs with different morphologies, organic and inorganic surface functionalization strategies adopted to improve the adaptability and applicability in biological systems for MPNPs, application development of MPNPs in biomedical detection, as well as the future challenges and issues to be addressed. It is highly expected that this review will help to fully understand the research status of MPNP-based SERS substrates and facilitate their further development and wider application in biological systems.
Collapse
Affiliation(s)
- Fengxue Wei
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaling Liu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
Rastmanesh S, Zeinaly I, Alivirdiloo V, Mobed A, Darvishi M. Biosensing for rapid detection of MDR, XDR and PDR bacteria. Clin Chim Acta 2025; 567:120121. [PMID: 39746435 DOI: 10.1016/j.cca.2024.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacteria poses a significant threat to global public health, complicating the management of infectious diseases and increasing morbidity and mortality rates. Rapid and sensitive detection of these resistant pathogens is crucial for effective treatment and infection control. This manuscript provides a comprehensive overview of various biosensor technologies developed for the rapid identification and quantification of MDR and XDR bacteria. We discuss the principles of operation, sensitivity, specificity, and practical applications of different biosensing platforms, including electrochemical, optical, and piezoelectric sensors. Additionally, we explore recent advancements in nanomaterials and microfluidics that enhance biosensor performance and enable point-of-care testing. The manuscript also addresses the challenges faced in the implementation of these technologies in clinical settings, such as regulatory hurdles and the need for standardization. A systematic literature review was conducted to identify relevant studies. Databases utilized include PubMed and Scopus, covering the time frame from 2015 to 2024. The literature screening criteria focused on the inclusion of only clinically validated studies to ensure the reliability and applicability of the findings. By highlighting the potential of biosensors to revolutionize the detection of drug-resistant bacteria, this work aims to inform researchers, clinicians, and policymakers about the critical role of innovative diagnostic tools in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Samad Rastmanesh
- Department of Pharmaceutics and Nanotechnology, School of pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ilghar Zeinaly
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Iran.
| | - Mohammad Darvishi
- Infectious Disease, School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center(IDTMC), AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Lin S, Zheng Y, Xing Y, Dou K, Wang R, Cui H, Wang R, Yu F. Highly sensitive SERS nanoplatform based on aptamer and vancomycin for detection of S. aureus and its clinical application. Talanta 2024; 280:126691. [PMID: 39151316 DOI: 10.1016/j.talanta.2024.126691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Staphylococcus aureus (S. aureus) is the most common pathogen in human purulent infections, which can cause local purulent infections, as well as pneumonia, pseudomembranous enteritis, pericarditis, and even systemic infections. The conventional methods including bacteria colony counting, polymerase chain reaction and enzyme-linked immunosorbent assay can't fully meet the requirement of highly sensitive detection of S. aureus due to their own disadvantages. Therefore, it's an urgent need to develop new platform to detect S. aureus in the early infection stage. In this study, a new surface-enhanced Raman scattering (SERS)-based nanoplatform based on dual-recognition of aptamer (Apt) and vancomycin (Van) was developed for the highly sensitive detection of S. aureus. The SERS nanoplatform consisted of two functional parts: aptamer-conjugated Fe3O4 magnetic nanoparticles (Fe3O4-Apt MNPs) for bacteria enrichment and vancomycin modified-Au nanoparticles (Van-Au NPs) as the SERS probes for S. aureus quantitative detection. Upon the target bacteria enrichment, the SERS signals of the supernatant after magnetic separation could be obtained and analyzed under different concentrations of S. aureus. The limit of detection of the proposed assay was found to be 3.27 CFU/mL. We believe that the proposed SERS-based nanoplatform has great potential as a powerful tool in the early detection of specific bacteria.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China; Jiangyin Center for Disease Control and Prevention, No. 158 Changjiang Road, Jiangyin, 214431, China
| | - Yunsi Zheng
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Yanlong Xing
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Kun Dou
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Hongwang Cui
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
6
|
Yuwen L, Ni J, Liang J, Liu X, Chen Z, Li X, Lv H, Zhang J, Song C. Portable SERS biosensor based on aptamer-assisted catalytic hairpin assembly signal amplification for ultrasensitive detection of Staphylococcus aureus. Talanta 2024; 278:126565. [PMID: 39018762 DOI: 10.1016/j.talanta.2024.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyu Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
7
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
8
|
Yadav A, Yadav AK, NaziaTarannum. Fabrication of Aluminum Foil Integrated Pegylated Gold Nanoparticle Surface-Enhanced Raman Scattering Substrate for the Detection and Classification of Uropathogenic Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:6127-6137. [PMID: 39133870 DOI: 10.1021/acsabm.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Rapid detection and classification of pathogenic microbes for food hygiene, healthcare, environmental contamination, and chemical and biological exposures remain a major challenge due to nonavailability of fast and accurate detection methods. The delay in clinical diagnosis of the most frequent bacterial infections, particularly urinary tract infections (UTIs), which affect about half of the population at least once in their lifetime, can be fatal if not detected and treated appropriately. In this work, we have fabricated aluminum (Al) foil integrated pegylated gold nanoparticles (AuNPs) as a potential surface-enhanced Raman scattering (SERS) substrate, which is used for the detection and classification of uropathogens, namely, E. coli, S. aureus, and P. aeruginosa directly from the culture without any pretreatment. The substrate is first drop cast with bacterial pellets and then pegylated AuNPs, and the interaction of two on Al foil base gives identifiable characteristic Raman peaks with good reproducibility. With the use of chemometric methods such as principal component analysis (PCA), the Al foil-based SERS substrate offers a quick, effective detection and classification of three strains of UTI bacteria with the least bacterial concentration (105 cells mL-1) necessary for clinical diagnosis. In addition, this substrate was able to detect E. coli positive clinical samples by giving SERS fingerprint information directly from centrifuged urine samples within minutes. The stability of pegylated AuNPs provides for its application at the point of care with rapid and easy detection of uropathogens as well as the possibility of advancement in healthcare applications.
Collapse
Affiliation(s)
- Akanksha Yadav
- Department of Physics, Chaudhary Charan Singh University, Meerut 250004, India
| | - Anil K Yadav
- Department of Physics, Chaudhary Charan Singh University, Meerut 250004, India
| | - NaziaTarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut 250004, India
| |
Collapse
|
9
|
Wang Q, Yang Q. Seizing the Hidden Assassin: Current Detection Strategies for Staphylococcus aureus and Methicillin-Resistant S. aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39031091 DOI: 10.1021/acs.jafc.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is a kind of pathogenic bacteria which can lead to food poisoning, hospital, and community infections. S. aureus and methicillin-resistant S. aureus (MRSA) have become headaches for public health worldwide. Therefore, strengthening the detection of S. aureus and MRSA is a critical step to prevent and control its spread and infection. This review summarized multiple detection methods (electrochemical, optical, and other biosensors) for sensitive and efficient detection of nonresistant and resistant S. aureus. First, we have introduced the principle and methods of detection platform for S. aureus and MRSA. We also contrasted various detection strategies. Finally, the current situation and prospect of S. aureus and MRSA detection in the future are explored in depth, and its development direction of detection methods is also predicted. In this review, we found that although biosensors have shown tremendous brilliance in the field of monitoring, they are currently in the experimental stage. It can be certain that we are very close to entering the commercialization stage. The point-of care testing available to nonprofessionals will become a new direction. We firmly believe that the monitoring system will be more perfect and stable and public life will be healthier and safer.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, no. 700 Changcheng Road, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, no. 700 Changcheng Road, Qingdao 266109, China
| |
Collapse
|
10
|
Zhang C, Wang Y, Li Y, Song J, Wang Y. Click preparation of triazole-bridged teicoplanin-bound chiral stationary phases for efficient separating amino acid enantiomers. Talanta 2024; 274:125984. [PMID: 38537352 DOI: 10.1016/j.talanta.2024.125984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
Enantioseparation of amino acids is considered as a challenging task due to the extreme structural similarity of their enantiomers. Herein, teicoplanin was modified with different chemical equivalents of azide groups and attached to silica particles by employing Click Chemistry for resolution of chiral amino acids for the first time. Interestingly, teicoplanin modified with 5-fold the chemical equivalent of azide groups (TK-2 CSP) exhibited superior amino acid separation ability compared to two other columns: one modified with only 1-fold the chemical equivalent of azide groups (TK-1 CSP), and the other modified with excess azide groups (TK-3 CSP). Additionally, the TK-2 CSP exhibited superior enantioselectivity when separating amino acids containing hydrophobic alkyl side chains in comparison to other teicoplanin-based CSPs. The TK-2 CSP column allows the baseline separation of 7 native amino acids. Molecular docking demonstrates that effective enantioseparation arises from distinct patterns of interaction between the host and guest molecules. Moreover, (p-methyl) phenylcarbaminoylated-teicoplanin CSP (TK-4, TK-5 CSP) were prepared by post-modification from TK-1 CSP and TK-2 CSP to isolate Fmoc-modified amino acids. This work explores the impact of various modification methods on the enantioseparation effects of host molecules and paves the way for expanding the potential applications of teicoplanin and macrocyclic glycopeptide molecules.
Collapse
Affiliation(s)
- Chenglin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300075, China
| | - Yuhan Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300075, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300075, China
| | - Jiatai Song
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300075, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300075, China.
| |
Collapse
|
11
|
Takallu S, Aiyelabegan HT, Zomorodi AR, Alexandrovna KV, Aflakian F, Asvar Z, Moradi F, Behbahani MR, Mirzaei E, Sarhadi F, Vakili-Ghartavol R. Nanotechnology improves the detection of bacteria: Recent advances and future perspectives. Heliyon 2024; 10:e32020. [PMID: 38868076 PMCID: PMC11167352 DOI: 10.1016/j.heliyon.2024.e32020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Nanotechnology has advanced significantly, particularly in biomedicine, showing promise for nanomaterial applications. Bacterial infections pose persistent public health challenges due to the lack of rapid pathogen detection methods, resulting in antibiotic overuse and bacterial resistance, threatening the human microbiome. Nanotechnology offers a solution through nanoparticle-based materials facilitating early bacterial detection and combating resistance. This study explores recent research on nanoparticle development for controlling microbial infections using various nanotechnology-driven detection methods. These approaches include Surface Plasmon Resonance (SPR) Sensors, Surface-Enhanced Raman Scattering (SERS) Sensors, Optoelectronic-based sensors, Bacteriophage-Based Sensors, and nanotechnology-based aptasensors. These technologies provide precise bacteria detection, enabling targeted treatment and infection prevention. Integrating nanoparticles into detection approaches holds promise for enhancing patient outcomes and mitigating harmful bacteria spread in healthcare settings.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abolfazl Rafati Zomorodi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee Behbahani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoozeh Sarhadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
13
|
Su G, Liu Y, Hou Y, Zhang R, Wang W, Zhang J, Dang L. Surface-Enhanced Raman Spectroscopy Sensor Integrated with Ag@ZIF-8@Au Core-Shell-Shell Nanowire Membrane for Enrichment, Ultrasensitive Detection, and Inactivation of Bacteria in the Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28080-28092. [PMID: 38768255 PMCID: PMC11163406 DOI: 10.1021/acsami.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
A core-shell-shell sandwich material is developed with silver nanowires as the core, ZIF-8 as an inner shell, and gold nanoparticles as the outer shell, namely, Ag@ZIF-8@Au nanowires (AZA-NW). Then, the synthesized AZA-NW is transformed into a surface-enhanced Raman spectroscopy (SERS) sensor (named M-AZA) by the vacuum filtration method and used to enrich, detect, and inactivate traces of bacteria in the environment. The M-AZA sensor has three main functions: (1) trace bacteria are effectively enriched, with an enrichment efficiency of 91.4%; (2) ultrasensitive detection of trace bacteria is realized, with a minimum detectable concentration of 1 × 101 CFU/mL; (3) bacteria are effectively killed up to 92.4%. The shell thickness of ZIF-8 (5-75 nm) is controlled by adjusting the synthesis conditions. At an optimum shell thickness of 15 nm, the effect of gold nanoparticles and ZIF-8 shell on the sensor's stability, SERS activity, and antibacterial performance is investigated. The simulation of the SERS sensor using the finite difference time domain (FDTD) method is consistent with the experimental results, theoretically demonstrating the role of the gold nanoparticles and the ZIF-8 shell. The sensor also shows excellent stability, safety, and generalizability. The campus water sample is then tested on-site by the M-AZA SERS sensor, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Guanwen Su
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| | - Yue Liu
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| | - Yulin Hou
- Institute
of Preventive Medicine, Fourth Military
Medical University, Xi’an 710033, China
| | - Rui Zhang
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers and Department of Immunology, Fourth
Military Medical University, Xi’an, Shaanxi 710032, China
| | - Wei Wang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| | - Jie Zhang
- Institute
of Preventive Medicine, Fourth Military
Medical University, Xi’an 710033, China
| | - Leping Dang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| |
Collapse
|
14
|
Liu X, Jiang S, Zhang T, Xu Z, Liu L, Zhang Z, Pan S, Li Y. "Magnet" Based on Activated Silver Nanoparticles Adsorbed Bacteria to Predict Refractory Apical Periodontitis Via Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8499-8508. [PMID: 38335515 DOI: 10.1021/acsami.3c16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Refractory apical periodontitis (RAP) is an endodontic apical inflammatory disease caused by Enterococcus faecalis (E. faecalis). Bacterial detection using surface-enhanced Raman scattering (SERS) technology is a hot research topic, but the specific and direct detection of oral bacteria is a challenge, especially in real clinical samples. In this paper, we develop a novel SERS-based green platform for label-free detection of oral bacteria. The platform was built on silver nanoparticles with a two-step enhancement way using NaBH4 and sodium (Na+) to form "hot spots," which resulted in an enhanced SERS fingerprint of E. faecalis with fast, quantitative, lower-limit, reproducibility, and stability. In combination with machine learning, four different oral bacteria (E. faecalis, Porphyromonas gingivalis, Streptococcus mutans, and Escherichia coli) could be intelligently distinguished. The unlabeled detection method emphasized the specificity of E. faecalis in simulated saliva, serum, and even real samples from patients with clinical root periapical disease. In addition, the assay has been shown to be environmentally friendly and without secondary contamination through antimicrobial assays. The proposed label-free, rapid, safe, and green SERS detection strategy for oral bacteria provided an innovative solution for the early diagnosis and prevention of RAP and other perioral diseases.
Collapse
Affiliation(s)
- Xin Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
| | - Shen Jiang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Ting Zhang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Inorganic Chemistry and Physical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, P. R. China
| | - Ziming Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
| | - Ling Liu
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhe Zhang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- College of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Shuang Pan
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
| | - Yang Li
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, Oulu 90220, Finland
| |
Collapse
|
15
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
16
|
Tătaru AM, Canciu A, Tertiș M, Cristea C, Cernat A. Staphylococcus aureus - Review on potential targets for sensors development. Bioelectrochemistry 2023; 153:108492. [PMID: 37413820 DOI: 10.1016/j.bioelechem.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is accountable for a wide variety of clinical disease with a high rate of morbidity and mortality around the globe. It has a leading place into the ESKAPE group that includes six pathogens and exhibit multidrug resistance and are the major cause of healthcare associated infections: Enterococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. A critical overview regarding the development of sensors for both S. aureus and his, more dangerous alter ego, Methicillin-resistant S. aureus (MRSA) was presented focusing on the bacteria targets starting with the detection of the whole cell, up to specific wall components, toxins or other virulence factors. The literature data was systematically assessed having in sight the design of the sensing platforms, the analytical performances, and possible courses of action to be implemented in real practice as point-of-care (POC) devices. Moreover, a distinct section was dedicated to commercially available devices and out of the box approaches, namely the use of bacteriophages as an alternative to antimicrobial therapy and as sensors modifiers. The reviewed sensors and devices were discussed in terms of their suitability for different biosensing applications, in early screening of contamination regarding food analysis, environmental monitoring and in clinical diagnosis.
Collapse
Affiliation(s)
- Ana-Maria Tătaru
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Alexandra Canciu
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Mihaela Tertiș
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania.
| | - Andreea Cernat
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Rodriguez L, Zhang Z, Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria. ANALYTICAL SCIENCE ADVANCES 2023; 4:81-95. [PMID: 38715923 PMCID: PMC10989577 DOI: 10.1002/ansa.202200066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 11/17/2024]
Abstract
Rapid and sensitive bacteria detection and identification are becoming increasingly important for a wide range of areas including the control of food safety, the prevention of infectious diseases, and environmental monitoring. Raman spectroscopy is an emerging technology which provides comprehensive information for the analysis of bacteria in a short time and with high sensitivity. Raman spectroscopy offers many advantages including relatively simple operation, non-destructive analysis, and information on molecular differences between bacteria species and strains. A variety of biochemical properties can be measured in a single spectrum. This short review covers the recent advancements and applications of Raman spectroscopy for bacteria analysis with specific focuses on bacteria detection, bacteria identification and discrimination, as well as bacteria antibiotic susceptibility testing in 2022. The development of novel substrates, the combination with other techniques, and the utilization of advanced data processing tools for the improvement of Raman spectroscopy and future directions are discussed.
Collapse
Affiliation(s)
- Linsey Rodriguez
- Department of Nutrition and Food SciencesTexas Woman's UniversityDentonTexasUSA
| | - Zhiyun Zhang
- Research and DevelopmentDaisy BrandGarlandTexasUSA
| | - Danhui Wang
- Department of Nutrition and Food SciencesTexas Woman's UniversityDentonTexasUSA
| |
Collapse
|
18
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
19
|
Integration of three non-interfering SERS probes combined with ConA-functionalized magnetic nanoparticles for extraction and detection of multiple foodborne pathogens. Mikrochim Acta 2023; 190:103. [PMID: 36821058 DOI: 10.1007/s00604-023-05676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
A sandwich-structured SERS biosensor has been constructed for simultaneous detection of multiple pathogenic bacteria, consisting of non-interfering SERS probes for bacterial labeling and ConA-functionalizd magnetic nanoparticles for bacteria extraction. A the preparation method of PP3 SERS probe with high Raman activity is reported for the first time. Since the PP3 SERS probe has a very strong Raman peak at 2081 cm-1 in the "Raman silent region," the mixed SERS probe formed with MP1 and DP2 can meet the needs of multiple foodborne pathogen detection. Significantly, S. aureus, E. coli, and P. aeruginosa can be successfully extracted upon external magnetic field, and the limit of detection (LOD) is 1 CFU‧mL-1, lower than that of the congeneric detectors. This work paves a new way for the construction of a novel detector and absorbent for different bacteria in complex samples by using SERS probe.
Collapse
|
20
|
Yan X, Shi H, Jia P, Sun X. LSPR Tunable Ag@PDMS SERS Substrate for High Sensitivity and Uniformity Detection of Dye Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3894. [PMID: 36364670 PMCID: PMC9658649 DOI: 10.3390/nano12213894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
At present, the use of efficient and cost-effective methods to construct plasmonic surface-enhanced Raman scattering (SERS) substrates of high sensitivity, uniformity and reproducibility is still crucial to satisfy the practical application of SERS technology. In this paper, a localized surface plasmonic resonance (LSPR) tunable flexible Ag@PDMS substrate was successfully constructed by the low-cost bio-template-stripping method and magnetron sputtering technology. The theory proves that the local electromagnetic field enhancement and "hot spot" distribution is adjustable by modifying the size of the optical cavity unit in the periodicity nanocavity array structure. Experimentally, using rhodamine 6G (R6G) as the target analyte, the SERS performance of optimal Ag@PDMS substrate (Ag film thickness for 315 nm) was researched in detail, which the minimum detection limit was 10-11 M and the enhancement factor was calculated as 8.03 × 108, indicating its high sensitivity. The relative standard deviation (RSD) was calculated as 10.38%, showing that the prepared substrate had excellent electromagnetic field enhancement uniformity. At last, the trace detection of Crystal violet (CV, LOD = 10-9 M) and the simultaneous detection of three common dyes (R6G, CV and Methylene blue (MB) mixture) were also realized. This result suggests that the SERS substrate has a good application prospect in the quantitative and qualitative detection of dye molecules.
Collapse
Affiliation(s)
- Xiaoya Yan
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Hongyan Shi
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Pengxue Jia
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Xiudong Sun
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
21
|
Eskandari V, Sahbafar H, Zeinalizad L, Sabzian F, Abbas MH, Hadi A. A Surface-Enhanced Raman Scattering (SERS) Biosensor Fabricated Using the Electrodeposition Method for Ultrasensitive Detection of Amino Acid Histidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Bao F, Liang Z, Deng J, Lin Q, Li W, Peng Q, Fang Y. Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements. Crit Rev Food Sci Nutr 2022; 64:3920-3931. [PMID: 36300845 DOI: 10.1080/10408398.2022.2137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms in food do harms to human. They can cause serious adverse reactions and sometimes even death. So it is an urgent matter to find an effective method to control them. The research of intelligent- biosensor packaging is in the ascendant in recent years, which is mainly promoted by reflecting on food safety and reducing resource waste. Intelligent biosensor-packaging is an instant and efficient intelligent packaging technology, which can directly and scientifically manifest the quality of food without complex operation. In this review, the purposes of providing relevant information on intelligent biosensor-packaging are reviewed, such as types of biosensors for monitoring foodborne microorganism, the suitable material for intelligent biosensor-packaging and design and fabrication of intelligent biosensor-packaging. The potential of intelligent biosensor-packaging in the detection of foodborne microorganisms is emphasized. The challenges and directions of the intelligent biosensor-packaging in the detection of foodborne pathogens are discussed. With the development of science and technology in the future, the intelligent biosensor-packaging should be commercialized in a real sense. And it is expected that commercial products can be manufactured in the future, which will provide a far-reaching approach in food safety and food prevention. HighlightsSeveral biosensors are suitable for the detection of food microorganisms.Plastic polymer is an excellent choice for the construction of intelligent biosensor packaging.Design and fabrication can lay the foundation for intelligent-biosensor packaging.Intelligent biosensor-packaging can realize fast and real-time detection of microorganisms in food.
Collapse
Affiliation(s)
- Feng Bao
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, P. R. China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Qiong Peng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| |
Collapse
|