1
|
Liu LH, Lei W, Zhang Z, Lai S, Xu B, Ge Q, Luo J, Yang M, Zhang Y, Chen J, Zhong Q, Wu YR, Jiang A. OMEGA-guided DNA polymerases enable random mutagenesis in a tunable window. Trends Biotechnol 2025:S0167-7799(25)00048-4. [PMID: 40074636 DOI: 10.1016/j.tibtech.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Targeted random mutagenesis is crucial for breeding, directed evolution, and gene function studies, yet efficient tools remain scarce. Here, we present obligate mobile element guided activity (OMEGA)-R, an innovative targeted random mutagenesis system that integrates SpyCatcher-enIscB and PolI3M-TBD-SpyTag, outperforming existing state-of-the-art technologies in key metrics, such as protein size, mutagenesis efficiency, window length, and continuity. OMEGA-R achieves a dramatic enhancement of on-target mutagenesis, reaching a rate of 1.4 × 10-5 base pairs (bp) per generation (bpg), with minimal off-target effects, in both Escherichia coli and Bacillus subtilis. The system also demonstrates exceptional compatibility with high-throughput screening (HTS) technologies, including fluorescence-activated droplet sorting (FADS) and phage-assisted continuous evolution (PACE). Utilizing OMEGA-R, we successfully identified a series of effective mutations within the T7 promoter (pT7), ribosome-binding site (RBS), superfolder GFP (sfGFP), and autocyclizing ribozyme (AR), which are invaluable for the development of high-performance biotechnology tools. These findings underscore the high efficiency and broad application potential of OMEGA-R.
Collapse
Affiliation(s)
- Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China; Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, PR China
| | - Wei Lei
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Shijing Lai
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Bo Xu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Qijun Ge
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Jiawen Luo
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Yang Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Jinde Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Qiuru Zhong
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
2
|
Yao Y, Li B, Wang J, Chen C, Gao W, Li C. A novel HVEM-Fc recombinant protein for lung cancer immunotherapy. J Exp Clin Cancer Res 2025; 44:62. [PMID: 39979981 PMCID: PMC11841141 DOI: 10.1186/s13046-025-03324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The ubiquitously expressed transmembrane protein, Herpesvirus Entry Mediator (HVEM), functions as a molecular switch, capable of both activating and inhibiting the immune response depending on its interacting ligands. HVEM-Fc is a novel recombinant fusion protein with the potential to eradicate tumor cells. METHODS The anti-tumor efficacy of HVEM-Fc was evaluated in C57BL/6 mice-bearing lung cancer models: a syngeneic model and an orthotopic model of mouse lung cancer. Additionally, patient-derived organoids were employed in conjunction with T cell co-culture systems. To investigate the underlying mechanisms, a comprehensive array of techniques was utilized, including single-cell RNA sequencing, spatial transcriptomics, bulk RNA sequencing, and flow cytometry. Furthermore, the anti-tumor effects of HVEM-Fc in combination with Programmed Death-1 (PD-1) inhibitors were assessed. Finally, mouse immune cell depletion antibodies were used to elucidate the underlying mechanisms of action. RESULTS In vivo, 1 mg/kg HVEM-Fc demonstrated effective inhibition of tumor growth and metastasis in C57BL/6 mice bearing lung cancer model and a KP orthotopic model of mouse lung cancer. Multi-omics analysis showed that HVEM-Fc induced an immune-stimulatory microenvironment. Notably, the combination of HVEM-Fc with a PD-1 inhibitor demonstrated the most potent inhibition of tumor cell growth. In vitro, HVEM-Fc was validated to eradicate tumor cells through the activation of T cells in both non-small cell lung cancer (NSCLC) organoids and T cell co-culture models. CONCLUSIONS Our data demonstrate that HVEM-Fc exerts a strong signal that augments and prolongs T-cell activity in both murine models and human NSCLC organoid models. Moreover, the combination of HVEM-Fc with a PD-1 inhibitor yields the most effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200041, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai, 200030, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai, 200030, China
| | - Jing Wang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200041, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai, 200030, China
| | - Wen Gao
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200041, China.
| | - Chunguang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai, 200030, China.
| |
Collapse
|
3
|
Zhou J, Xiao Y, Tang Q, Yan Y, Liu D, Zhang H. De novo design protein binders for MBP and GST tags. Biochem Biophys Res Commun 2025; 748:151322. [PMID: 39827550 DOI: 10.1016/j.bbrc.2025.151322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Maltose-binding protein (MBP) and glutathione S-transferase (GST) are widely used solubility-enhancing protein tags, typically employed to address various issues related to protein expression and purification. The detection of these tags are usually achieved through binding of corresponding antibodies. Designing low-cost binders as alternatives to antibodies is of great significance. This study employed a de novo design approach, starting with a large number of protein scaffolds and screening out 6 candidate binders targeting MBP and 4 candidate binders targeting GST based on scoring functions. Flow cytometry low-affinity selection and biolayer interferometry (BLI) quantitative results showed that MBP and GST can interact strongly with one or several binders, exhibiting nanomolar binding. Among them, LZMB3 has a binding dissociation constant (KD) of 54.05 ± 1.46 nM, while LJGB3 and LJGB4 have KD values of 105.4 ± 1.812 nM and 437.9 ± 17.69 nM, respectively.
Collapse
Affiliation(s)
- Jinlong Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China
| | - Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China
| | - Qian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yunjun Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China.
| |
Collapse
|
4
|
Chen Y, Huang Y, Yang YR. DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and In Situ Electron Cryotomography. JACS AU 2025; 5:17-27. [PMID: 39886579 PMCID: PMC11775714 DOI: 10.1021/jacsau.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
DNA nanostructures present new opportunities as Nanotags for electron microscopy (EM) imaging, leveraging their high programmability, unique shapes, biomolecule conjugation capability, and stability compatible with standard cryogenic sample preparation protocols. This perspective highlights the potential of DNA Nanotags to enable high-throughput multiplexed EM analysis and facilitate in situ particle identification for cryogenic electron tomography (cryo-ET). Meanwhile, applying Nanotags in live-cell environments requires the efficient cellular uptake of intact structures and successful cytosolic migration. Promising strategies such as employing direct cytosolic delivery platforms and expressing RNA-based Nanotags in situ are discussed, while more systematic studies are needed to fully understand the intracellular trafficking and achieve precise localization of DNA Nanotags.
Collapse
Affiliation(s)
- Yuanfang Chen
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqian Huang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhe R. Yang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Huang X, Yang L, Yang K, Zhou H, Abudureheman T, Zheng W, Chen K, Duan C. Construction of a versatile fusion protein for targeted therapy and immunotherapy. Protein Sci 2024; 33:e4944. [PMID: 38501479 PMCID: PMC10949329 DOI: 10.1002/pro.4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Antibody (Ab)-based drugs have been widely used in targeted therapies and immunotherapies, leading to significant improvements in tumor therapy. However, the failure of Ab therapy due to the loss of target antigens or Ab modifications that affect its function limits its application. In this study, we expanded the application of antibodies (Abs) by constructing a fusion protein as a versatile tool for Ab-based target cell detection, delivery, and therapy. We first constructed a SpaC Catcher (SpaCC for short) fusion protein that included the C domains of Staphylococcal protein A (SpaC) and the SpyCatcher. SpaCC conjugated with SpyTag-X (S-X) to form the SpaCC-S-X complex, which binds non-covalently to an Ab to form the Ab-SpaCC-S-X protein complex. The "X" can be a variety of small molecules such as fluoresceins, cell-penetrating peptide TAT, Monomethyl auristatin E (MMAE), and DNA. We found that Ab-SpaCC-S-FITC(-TAT) could be used for target cell detection and delivery. Besides, we synthesized the Ab-SpaCC-SN3-MMAE complex by linking Ab with MMAE by SpaCC, which improved the cytotoxicity of small molecule toxins. Moreover, we constructed an Ab-DNA complex by conjugating SpaCC with the aptamer (Ap) and found that Ab-SpaCC-SN3-Ap boosted the tumor-killing function of T-cells by retargeting tumor cells. Thus, we developed a multifunctional tool that could be used for targeted therapies and immunotherapies, providing a cheap and convenient novel drug development strategy.
Collapse
Affiliation(s)
- Xiu‐Song Huang
- Clinicopathological Diagnosis & Research CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education InstitutesBaiseChina
- Graduate School of Youjiang Medical University for NationalitiesBaiseChina
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
- Fujian Branch of Shanghai Children's Medical Center Affiliated to SJTU‐SM, and Fujian Children's HospitalFujianChina
| | - Ke Yang
- Nanchong Second People's HospitalNanchongChina
| | - Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Kai‐Ming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
- Fujian Branch of Shanghai Children's Medical Center Affiliated to SJTU‐SM, and Fujian Children's HospitalFujianChina
| | - Cai‐Wen Duan
- Clinicopathological Diagnosis & Research CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education InstitutesBaiseChina
- Graduate School of Youjiang Medical University for NationalitiesBaiseChina
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
- Fujian Branch of Shanghai Children's Medical Center Affiliated to SJTU‐SM, and Fujian Children's HospitalFujianChina
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFujianChina
| |
Collapse
|
6
|
Zhou H, Abudureheman T, Zheng W, Yang L, Zhu J, Liang A, Duan C, Chen K. CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305566. [PMID: 38148412 PMCID: PMC10933668 DOI: 10.1002/advs.202305566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jian‐Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ai‐Bin Liang
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFuzhouFujian350122China
| | - Kaiming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| |
Collapse
|
7
|
Zhao X, Na N, Ouyang J. Functionalized DNA nanoplatform for multi-target simultaneous imaging: Establish the atlas of cancer cell species. Talanta 2024; 267:125222. [PMID: 37778181 DOI: 10.1016/j.talanta.2023.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Detection and imaging of cell membrane receptor proteins have gained widespread interest in recent years. However, recognition based on a single biomarker can induce false positive feedback, including off-target phenomenon caused by the absence of tumor-specific antigens. In addition, nucleic acid probes often cause nonspecific and undesired cell internalization during cell imaging. In this work, we constructed a logic gate DNA nano-platform (LGDP) for single-molecule imaging of cell membrane proteins to synergistically diagnose cancer cells. The traffic light-like color response of LGDP facilitates the precise discrimination among different cell lines. Combined with single molecule technology, the target proteins were qualitatively and quantitatively analyzed synergistically. Logic-gated recognition integrated in aptamer-functionalized molecular machines will prompt fast cells analysis, laying the foundation of cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China; Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China.
| |
Collapse
|