1
|
Zhang T, Zhong H, Yang M, Shi X, Yang L, Yang J, Liu H, Luo Y, Xie Y, Zhong Z, Peng G, Zhang K, Zheng C, Zhang M, Zhou Z. Lactobacillus salivary LSbg3 is a Potential Food Probiotic Having Excellent Anti-pathogen Effect That Might Improve Antibiotic-Resistant Diarrhea in Dogs. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10527-0. [PMID: 40259196 DOI: 10.1007/s12602-025-10527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Antibiotics may disrupt the intestinal microbiota balance and induce antimicrobial resistance. Although probiotics should be a priority treatment for animal diarrhea, it still has chance to be used as same/or behind as antibiotics in the clinic. Among the probiotics, Lactobacillus (Lact.) was the most frequently utilized in clinical setting since its excellent ability of safety, anti-pathogen, stress resistance, and easy colonization in intestine. In this study, we screened 24 strains of Lact. in the presence of antibiotics from clinical common antibiotic-treated feces, identified L. salivarius LSbg3 exhibiting good stress resistance, potent antibacterial activity, and exceptional intestinal adhesion capability. Its genome showed a good function of regulating intestinal nutrition while lack of transmission antibiotic-resistance genes. Additionally, in a simulated canine diarrhea with failed antibiotic treatment, LSbg3 had a good efficacy in the releasing diarrhea, balancing the microbiome and suppressing typical pathogens, positioning a potential food probiotic have excellent effect on anti-pathogen that can effectively improve antibiotic-resistant diarrhea in dogs.
Collapse
Affiliation(s)
- Ting Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongyu Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu, 611130, China
| | - Xin Shi
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Liuqing Yang
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China.
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Schmid SM, Tolbert MK. Harnessing the microbiome: probiotics, antibiotics and their role in canine and feline gastrointestinal disease. Vet Rec 2024; 195:13-25. [PMID: 39545593 DOI: 10.1002/vetr.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Unfavourable alterations of the host microbial environment, known as dysbiosis, have been identified in many canine and feline gastrointestinal (GI) diseases. As a result, normalisation of microbial composition and function has become an important therapeutic target. Given the complex and individualistic interplay between the resident microbiota, host and environment, a multimodal approach is often necessary when addressing dysbiosis in dogs and cats with GI disease. Systemic antibiotics are often empirically used to treat acute and chronic GI diseases. However, with modern genomic techniques demonstrating the profound negative effect antibiotics can have on the GI microbiota and the rapid emergence of resistant bacteria globally, there has been an increased focus on identifying antibiotic alternatives for use in small animal practice. Biotics, such as prebiotics, probiotics and synbiotics, are of growing interest due to their potential supportive effect on the microbiota. This article reviews the evidence for the use of biotics in canine and feline GI disease, highlighting how judicious use of antibiotics and targeted probiotic supplementation can enhance patient outcomes by promoting a balanced gut microbial environment.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Sztukowski KE, Yaufman Z, Cook MR, Aarnes TK, Husbands BD. Vincristine-induced adverse events related to body weight in dogs treated for lymphoma. J Vet Intern Med 2024; 38:1686-1692. [PMID: 38563346 PMCID: PMC11099714 DOI: 10.1111/jvim.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Traditional dosing of chemotherapy drugs based on body surface area may overdose small dogs, leading to an increased frequency of adverse events (AEs). HYPOTHESIS/OBJECTIVES Evaluate the frequency of hematologic and gastrointestinal AEs in dogs with newly diagnosed lymphoma treated with vincristine weighing ≤15 kg in comparison to dogs weighing >15 kg. We hypothesized that dogs weighing ≤15 kg would experience a higher frequency of AEs. ANIMALS One hundred and thirty-eight dogs with newly diagnosed lymphoma were treated with vincristine. METHODS A multicenter retrospective study reviewing hematologic data and medical record information. Complete blood counts were performed no more than 24 hours before vincristine administration and then between 4 and 8 days post-administration. Data were evaluated using logistic regression or ordinal logistic regression. RESULTS Thirty-eight dogs weighing ≤15 kg and 100 dogs weighing >15 kg were included. The median vincristine dose for both groups was 0.6 mg/m2. Seventeen (12.3%) instances of neutropenia occurred with no significant difference in overall frequency or grade between groups. Thirty initially asymptomatic substage A dogs (29.4%) experienced gastrointestinal AEs. Because of the widespread use of gastrointestinal supportive care medications, statistical comparison between groups could not be performed. Seven instances of hospitalization occurred (5.0%) and the risk of hospitalization did not differ significantly between groups (P = .37). CONCLUSIONS AND CLINICAL IMPORTANCE Vincristine dosed at ≤0.6 mg/m2 does not increase the risk of hematologic AEs in dogs weighing ≤15 kg.
Collapse
Affiliation(s)
- Keira E. Sztukowski
- Department of Clinical SciencesThe Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Zachary Yaufman
- Department of Clinical SciencesThe Ohio State University College of Veterinary MedicineColumbusOhioUSA
- Present address:
Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineRoanokeVirginiaUSA
| | - Matthew R. Cook
- Nashville Veterinary SpecialistsNashvilleTennesseeUSA
- Present address:
Metropolitan Veterinary HospitalHighland HeightsOhioUSA
| | - Turi K. Aarnes
- Department of Clinical SciencesThe Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Brian D. Husbands
- Department of Clinical SciencesThe Ohio State University College of Veterinary MedicineColumbusOhioUSA
| |
Collapse
|
4
|
Stübing H, Suchodolski JS, Reisinger A, Werner M, Hartmann K, Unterer S, Busch K. The Effect of Metronidazole versus a Synbiotic on Clinical Course and Core Intestinal Microbiota in Dogs with Acute Diarrhea. Vet Sci 2024; 11:197. [PMID: 38787169 PMCID: PMC11125899 DOI: 10.3390/vetsci11050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The usefulness of antibiotics in dogs with acute diarrhea (AD) is controversial. It is also unclear what effect metronidazole has on potential enteropathogens such as Clostridium perfringens and Escherichia coli. Thus, the aim of this study was to evaluate the effect of metronidazole vs. a synbiotic on the clinical course and core intestinal bacteria of dogs with AD. Twenty-seven dogs with AD were enrolled in this prospective, randomized, blinded clinical trial and treated with either metronidazole (METg) or a synbiotic (SYNg; E. faecium DSM 10663; NCIMB 10415/4b170). The Canine Acute Diarrhea Severity (CADS) index was recorded daily for eleven days. Bacteria were quantified using qPCR. Data were analyzed using mixed models with repeated measures. A higher concentration of E. coli was observed in the METg group vs. the SYNg group on Day 6 (p < 0.0001) and Day 30 (p = 0.01). Metronidazole had no effect on C. perfringens. C. hiranonis was significantly lower in the METg group than in the SYNg group on Days 6 and 30 (p < 0.0001; p = 0.0015). No significant differences were observed in CADS index, fecal consistency, or defecation frequency between treatment groups (except for the CADS index on one single day). In conclusion, metronidazole negatively impacts the microbiome without affecting clinical outcomes. Thus, synbiotics might be a preferred treatment option for dogs with AD.
Collapse
Affiliation(s)
- Helene Stübing
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA;
| | - Andrea Reisinger
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Melanie Werner
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland (S.U.)
| | - Katrin Hartmann
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Stefan Unterer
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland (S.U.)
| | - Kathrin Busch
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| |
Collapse
|
5
|
Marshall-Jones ZV, Patel KV, Castillo-Fernandez J, Lonsdale ZN, Haydock R, Staunton R, Amos GCA, Watson P. Conserved signatures of the canine faecal microbiome are associated with metronidazole treatment and recovery. Sci Rep 2024; 14:5277. [PMID: 38438389 PMCID: PMC10912219 DOI: 10.1038/s41598-024-51338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Antibiotic resistance is recognised as one of the biggest global threats to human and animal health. Understanding the influence of antibiotics on the canine microbiome is important to know the potential mid-to-long term effects on dysbiosis and mitigate side-effects such as antibiotic-associated diarrhoea. In this study, metronidazole was prescribed to 22 dogs for suspected giardiasis after exhibiting gastrointestinal symptoms such as diarrhoea and/or vomiting. Faecal samples were collected before, during seven days of treatment, and six months post-cessation. Faecal microbiota was assessed with 16S rRNA sequencing. Shannon diversity was reduced for up to three days after the treatment ended, and an altered community persisted for four to six weeks. All dogs recovered to a similar microbiome composition as pre-treatment. Immediately after receiving metronidazole, an increase in the relative abundance of the genera Lactobacillus, Bifidobacterium, and Enterococcus was observed. This may be due to antibiotic resistance commonly exhibited by these organisms. One-to-two weeks post-cessation, several other genera that were sensitive to the antibiotic recovered in abundances, with taxa belonging to the Erysipelotrichaceae family particularly driving composition change. Many of the bacteria initially reduced were associated with carbohydrate fermentation. This suggests scope exists to explore interventions to augment gastrointestinal health and support the re-establishment of the microbiome.
Collapse
Affiliation(s)
- Zoe V Marshall-Jones
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Krusha V Patel
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | | | - Zoe N Lonsdale
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Richard Haydock
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Ruth Staunton
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
6
|
Becker SD, Hughes DM. Patient weight has diverse effects on the prescribing of different antibiotics to dogs. Front Vet Sci 2024; 11:1358535. [PMID: 38440386 PMCID: PMC10910008 DOI: 10.3389/fvets.2024.1358535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Various factors including body weight-associated treatment cost may influence the probability of dispensing antibiotics to dogs in first-opinion practice, but their effect on specific drug choice remains unclear. Methods Multiple membership regression modeling was used to investigate the probability of dispensing 12 different antibiotics to dogs of different weights in the context of various disease presentations, using anonymized data obtained from electronic health records of 18 clinics between 2020 and 2022. Data from 14,259 dogs were analyzed. Results Treatment choice varied significantly with animal weight. Higher body weight was associated with an increased likelihood of dispensing lower cost antimicrobials such as amoxicillin and trimethoprim sulfonamide, while use of higher cost antimicrobials such as cefovecin was strongly biased to smaller animals. However, these effects were limited when restricted treatment options were available for the target condition. Conclusion This work demonstrates that anticipated financial costs may result in different treatment choices for canine patients depending on their body weight. Further work is needed to understand the impact of financial pressures on veterinarians' treatment choices, and the implications for the optimization of antimicrobial stewardship in first opinion practice.
Collapse
Affiliation(s)
- Stuart D. Becker
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
- Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire, United Kingdom
| | - David M. Hughes
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|