1
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into dentatorubral-pallidoluysian atrophy from a new Drosophila model of disease. Neurobiol Dis 2025; 207:106834. [PMID: 39921111 PMCID: PMC11969221 DOI: 10.1016/j.nbd.2025.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that can be induced to express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat in a variety of cells, including neuronal, glial or any other type of tissue. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
Affiliation(s)
- Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Oluwademilade Nuga
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Ryan O Dulay
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Nikhil C Patel
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Truman Kula
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | | | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Kristin Richardson
- Department of Pharmacology, Wayne State University School of Medicine, USA.
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
2
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into Dentatorubral-Pallidoluysian Atrophy from a new Drosophila model of disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627083. [PMID: 39713465 PMCID: PMC11661066 DOI: 10.1101/2024.12.05.627083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
|
3
|
Chongtham A, Agrawal N. Neuroprotective Potential of Eugenol in Polyglutamine-Mediated Neurodegenerative Disease Using Transgenic Drosophila Model. Dose Response 2024; 22:15593258241291652. [PMID: 39410958 PMCID: PMC11475233 DOI: 10.1177/15593258241291652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Polyglutamine (PolyQ) diseases including Huntington's disease are devastating neurodegenerative disorders characterized by progressive neuronal loss and motor dysfunction. PolyQ pathology involves multiple cellular events and phytochemicals with multi-target mechanisms hold promise to treat these diseases with least side effects. One such promising phytochemical is Eugenol, which possesses antioxidant and anti-inflammatory properties, potentially targeting disrupted cellular pathways in PolyQ diseases. The present study investigated the effects of Eugenol on neurodegeneration and motor dysfunction in transgenic Drosophila models of PolyQ diseases. In this study, the robust pseudopupil assay was performed to analyze adult photoreceptor neuron degeneration, a marker of widespread degenerative events. Furthermore, the well-established crawling and climbing assays were conducted to evaluate progressive motor dysfunction in the PolyQ larvae and flies. This study found that Eugenol administration at disease onset or after progression reduced PolyQ disease phenotypes, particularly, neurodegeneration and motor dysfunction in a dose-dependent manner and with no side effects. Thus, this study suggests that Eugenol could be a viable candidate for developing treatments for PolyQ diseases, offering a multi-target approach with the potential for minimal or no side effects compared to conventional therapies.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Zoology, University of Delhi, Delhi, India
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Guo Z, Chiesa G, Yin J, Sanford A, Meier S, Khalil AS, Cheng JX. Structural Mapping of Protein Aggregates in Live Cells Modeling Huntington's Disease. Angew Chem Int Ed Engl 2024; 63:e202408163. [PMID: 38880765 PMCID: PMC11781839 DOI: 10.1002/anie.202408163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a β-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller β-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Adam Sanford
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Stefan Meier
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
Yarychkivska O, Sharmin R, Elkhalil A, Ghose P. Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. Semin Cell Dev Biol 2024; 154:14-22. [PMID: 36792437 DOI: 10.1016/j.semcdb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Programmed cell death (PCD) is crucial for normal development and homeostasis. Our first insights into the genetic regulation of apoptotic cell death came from in vivo studies in the powerful genetic model system of C. elegans. More recently, novel developmental cell death programs occurring both embryonically and post-embryonically, and sex-specifically, have been elucidated. Recent studies in the apoptotic setting have also shed new light on the intricacies of phagocytosis in particular. This review provides a brief historical perspective of the origins of PCD studies in C. elegans, followed by a more detailed description of non-canonical apoptotic and non-apoptotic death programs. We conclude by posing open questions and commenting on our outlook on the future of PCD studies in C. elegans, highlighting the importance of advanced imaging tools and the continued leveraging of C. elegans genetics both with classical and modern cutting-edge approaches.
Collapse
Affiliation(s)
| | | | | | - Piya Ghose
- The University of Texas at Arlington, USA.
| |
Collapse
|
6
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. Nucleic Acids Res 2023; 51:9610-9628. [PMID: 37587694 PMCID: PMC10570059 DOI: 10.1093/nar/gkad665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Gene expression is a multistep process and crosstalk among regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant gene expression coordination, we performed a systematic reverse-genetic interaction screen in C. elegans, combining RNA binding protein (RBP) and transcription factor (TF) mutants to generate over 100 RBP;TF double mutants. We identified many unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1, and the homeodomain TF ceh-14. Losing any one of these genes alone has no effect on the health of the organism. However, fust-1;ceh-14 and tdp-1;ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-Seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. A skipped exon in the polyglutamine-repeat protein pqn-41 is aberrantly included in tdp-1 mutants, and genetically forcing this exon to be skipped in tdp-1;ceh-14 double mutants rescues their fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility and a shared molecular role in exon inhibition.
Collapse
Affiliation(s)
- Morgan Taylor
- Southern Methodist University, Dallas, TX 75205, USA
| | - Olivia Marx
- Southern Methodist University, Dallas, TX 75205, USA
| | - Adam Norris
- Southern Methodist University, Dallas, TX 75205, USA
| |
Collapse
|
7
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537345. [PMID: 37131843 PMCID: PMC10153140 DOI: 10.1101/2023.04.18.537345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene expression is a multistep, carefully controlled process, and crosstalk between regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant coordination between transcriptional and post-transcriptional gene regulation, we performed a systematic reverse-genetic interaction screen in C. elegans . We combined RNA binding protein (RBP) and transcription factor (TF) mutants, creating over 100 RBP; TF double mutants. This screen identified a variety of unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1 , and the homeodomain TF ceh-14 . Losing any one of these genes alone has no significant effect on the health of the organism. However, fust-1; ceh-14 and tdp-1; ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. We identify a cassette exon in the polyglutamine-repeat protein pqn-41 which tdp-1 inhibits. Loss of tdp-1 causes the pqn-41 exon to be aberrantly included, and forced skipping of this exon in tdp-1; ceh-14 double mutants rescues fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility in a ceh-14 mutant background and reveal a shared molecular function of fust-1 and tdp-1 in exon inhibition.
Collapse
|
8
|
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173:52-63. [PMID: 34224816 DOI: 10.1016/j.freeradbiomed.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.
Collapse
|
9
|
Mier P, Andrade-Navarro MA. The features of polyglutamine regions depend on their evolutionary stability. BMC Evol Biol 2020; 20:59. [PMID: 32448113 PMCID: PMC7247214 DOI: 10.1186/s12862-020-01626-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Polyglutamine regions (polyQ) are one of the most studied and prevalent homorepeats in eukaryotes. They have a particular length-dependent codon usage, which relates to a characteristic CAG-slippage mechanism. Pathologically expanded tracts of polyQ are known to form aggregates and are involved in the development of several human neurodegenerative diseases. The non-pathogenic function of polyQ is to mediate protein-protein interactions via a coiled-coil pairing with an interactor. They are usually located in a helical context. Results Here we study the stability of polyQ regions in evolution, using a set of 60 proteomes from four distinct taxonomic groups (Insecta, Teleostei, Sauria and Mammalia). The polyQ regions can be distinctly grouped in three categories based on their evolutionary stability: stable, unstable by length variation (inserted), and unstable by mutations (mutated). PolyQ regions in these categories can be significantly distinguished by their glutamine codon usage, and we show that the CAG-slippage mechanism is predominant in inserted polyQ of Sauria and Mammalia. The polyQ amino acid context is also influenced by the polyQ stability, with a higher proportion of proline residues around inserted polyQ. By studying the secondary structure of the sequences surrounding polyQ regions, we found that regarding the structural conformation around a polyQ, its stability category is more relevant than its taxonomic information. The protein-protein interaction capacity of a polyQ is also affected by its stability, as stable polyQ have more interactors than unstable polyQ. Conclusions Our results show that apart from the sequence of a polyQ, information about its orthologous sequences is needed to assess its function. Codon usage, amino acid context, structural conformation and the protein-protein interaction capacity of polyQ from all studied taxa critically depend on the region stability. There are however some taxa-specific polyQ features that override this importance. We conclude that a taxa-driven evolutionary analysis is of the highest importance for the comprehensive study of any feature of polyglutamine regions.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
10
|
Pelassa I, Cibelli M, Villeri V, Lilliu E, Vaglietti S, Olocco F, Ghirardi M, Montarolo PG, Corà D, Fiumara F. Compound Dynamics and Combinatorial Patterns of Amino Acid Repeats Encode a System of Evolutionary and Developmental Markers. Genome Biol Evol 2020; 11:3159-3178. [PMID: 31589292 PMCID: PMC6839033 DOI: 10.1093/gbe/evz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Marica Cibelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Veronica Villeri
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Elena Lilliu
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Serena Vaglietti
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Federica Olocco
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Mirella Ghirardi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| |
Collapse
|
11
|
Mier P, Elena-Real C, Urbanek A, Bernadó P, Andrade-Navarro MA. The importance of definitions in the study of polyQ regions: A tale of thresholds, impurities and sequence context. Comput Struct Biotechnol J 2020; 18:306-313. [PMID: 32071707 PMCID: PMC7016039 DOI: 10.1016/j.csbj.2020.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine (polyQ) regions are one of the most prevalent homorepeats in eukaryotes. It is however difficult to evaluate their prevalence because various studies claim different results. The reason is the lack of a consensus to define what is indeed a polyQ region. We have tackled this issue by studying how the use of different thresholds (i.e., minimum number of glutamines required in a protein region of a given size), to detect polyQ regions in the human proteome influences not only their prevalence but also their general features and sequence context. Threshold definition shapes the length distribution of the polyQ dataset, and changes the observed number and position of impurities (amino acids other than glutamine) within polyQ regions. Irrespective of the chosen threshold, leucine and proline residues are enriched both within and around polyQ. While leucine is enriched at the N-terminus of polyQ and specially at position -1 (amino acid preceding the polyQ), proline is prevalent in the C-terminus (positions +1 to +5, that is, the first five amino acids after the polyQ). We also checked the suitability of these thresholds for other species, and compared their polyQ features with those found in humans. As the sequence context and features of polyQ regions are threshold-dependent, we propose a method to quickly scan the polyQ landscape of a proteome. We complement our results with a summarized overview about which biases are to be expected per threshold when studying polyQ regions.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Carlos Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
12
|
Markaki M, Tavernarakis N. Caenorhabditis elegans as a model system for human diseases. Curr Opin Biotechnol 2020; 63:118-125. [PMID: 31951916 DOI: 10.1016/j.copbio.2019.12.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
The nematode Caenorhabditis elegans offers unique advantages that enable a comprehensive delineation of the cellular and molecular mechanisms underlying devastating human pathologies such as stroke, ischemia and age-associated neurodegenerative disorders. Genetic models of human diseases that closely simulate several disease-related phenotypes have been established in the worm. These models allow the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screenings, designed to elucidate the molecular mechanisms mediating pathogenesis and to identify targets and drugs for emergent therapeutic interventions. Such strategies have already provided valuable insights, highly relevant to human health and quality of life. This article considers the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Basic Sciences, School of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
13
|
Chuang CS, Chang JC, Soong BW, Chuang SF, Lin TT, Cheng WL, Orr HT, Liu CS. Treadmill training increases the motor activity and neuron survival of the cerebellum in a mouse model of spinocerebellar ataxia type 1. Kaohsiung J Med Sci 2019; 35:679-685. [PMID: 31271500 DOI: 10.1002/kjm2.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia (SCA) type 1 (SCA1) is a rare autosomal dominant disorder that is characterized by worsening of disordered coordination, ataxia of the trunk, and other neurological symptoms. Physical activity improves both mobility and the daily living activities of patients with SCA. Intervention with daily regular treadmill exercise may slow the deterioration of cerebellar neurons in SCA1. Therefore, the signal changes and performance of cerebellar neurons after exercise in SCA1 was investigated in this study. We employed a transgenic mouse model of SCA1, generated by amplifying the cytosine-adenine-guanine trinucleotide repeat expansions, and the mice underwent 1 month of moderate daily treadmill exercise for 1 hour. The rotarod test revealed that the motor function of the SCA1 mice that underwent training was superior to that of the control SCA1 mice, which did not undergo training. Moreover, the cerebellar pathology revealed preserved Purkinje neurons stained by carbindin with an increase of the neuronal Per Arnt Sim domain protein 4, a key regulation in the structural and functional plasticity of neurons, in the excised SCA1 mice relative to the controls. The mechanism was related to an increase of phosphorylation of ribosomal protein S6, a downstream target of the mammalian target of rapamycin pathway, but not to autophagy activation. This study determined that regular treadmill exercise may play a crucial role in the viable support of cerebellar neurons in SCA1.
Collapse
Affiliation(s)
- Chieh-Sen Chuang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Institute of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Fei Chuang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Chin-San Liu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan.,School of Chinese Medicine, Graduate Institute of Integrated Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Ji S, Luo Y, Cai Q, Cao Z, Zhao Y, Mei J, Li C, Xia P, Xie Z, Xia Z, Zhang J, Sun Q, Chen D. LC Domain-Mediated Coalescence Is Essential for Otu Enzymatic Activity to Extend Drosophila Lifespan. Mol Cell 2019; 74:363-377.e5. [PMID: 30879902 DOI: 10.1016/j.molcel.2019.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, RNA-binding proteins (RBPs) interact with RNAs to form ribonucleoprotein complexes (RNA granules) that have long been thought to regulate RNA fate or activity. Emerging evidence suggests that some RBPs not only bind RNA but also possess enzymatic activity related to ubiquitin regulation, raising important questions of whether these RBP-formed RNA granules regulate ubiquitin signaling and related biological functions. Here, we show that Drosophila Otu binds RNAs and coalesces to membrane-less biomolecular condensates via its intrinsically disordered low-complexity domain, and coalescence represents a functional state for Otu exerting deubiquitinase activity. Notably, coalescence-mediated enzymatic activity of Otu is positively regulated by its bound RNAs and co-partner Bam. Further genetic analysis reveals that the Otu/Bam deubiquitinase complex and dTraf6 constitute a feedback loop to maintain intestinal immune homeostasis during aging, thereby controlling longevity. Thus, regulated biomolecular condensates may represent a mechanism that controls dynamic enzymatic activities and related biological processes.
Collapse
Affiliation(s)
- Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yuewan Luo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhijie Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yuanyuan Zhao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jie Mei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Chenxiao Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Pengyan Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhongwen Xie
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jian Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Yeh PA, Liu YH, Chu WC, Liu JY, Sun YH. Glial expression of disease-associated poly-glutamine proteins impairs the blood-brain barrier in Drosophila. Hum Mol Genet 2019; 27:2546-2562. [PMID: 29726932 DOI: 10.1093/hmg/ddy160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Expansion of poly-glutamine (polyQ) stretches in several proteins has been linked to neurodegenerative diseases. The effects of polyQ-expanded proteins on neurons have been extensively studied, but their effects on glia remain unclear. We found that expression of distinct polyQ proteins exclusively in all glia or specifically in the blood-brain barrier (BBB) and blood-retina barrier (BRB) glia caused cell-autonomous impairment of BBB/BRB integrity, suggesting that BBB/BRB glia are most vulnerable to polyQ-expanded proteins. Furthermore, we also found that BBB/BRB leakage in Drosophila is reflected in reversed waveform polarity on the basis of electroretinography (ERG), making ERG a sensitive method to detect BBB/BRB leakage. The polyQ-expanded protein Atxn3-84Q forms aggregates, induces BBB/BRB leakage, restricts Drosophila lifespan and reduces the level of Repo (a pan-glial transcriptional factor required for glial differentiation). Expression of Repo in BBB/BRB glia can rescue BBB/BRB leakage, suggesting that the reduced expression of Repo is important for the effect of polyQ on BBB/BRB impairment. Coexpression of the chaperon HSP40 and HSP70 effectively rescues the effects of Atxn3-84Q, indicating that polyQ protein aggregation in glia is deleterious. Intriguingly, coexpression of wild-type Atxn3-27Q can also rescue BBB/BRB impairment, suggesting that normal polyQ protein may have a protective function.
Collapse
Affiliation(s)
- Po-An Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Chu
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Japan
| | - Jia-Yu Liu
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci 2018; 43:424-435. [PMID: 29636213 DOI: 10.1016/j.tibs.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023]
Abstract
Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.
Collapse
|
17
|
He WT, Xue W, Gao YG, Hong JY, Yue HW, Jiang LL, Hu HY. HSP90 recognizes the N-terminus of huntingtin involved in regulation of huntingtin aggregation by USP19. Sci Rep 2017; 7:14797. [PMID: 29093475 PMCID: PMC5666004 DOI: 10.1038/s41598-017-13711-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022] Open
Abstract
Huntington’s disease (HD) is caused by aberrant expansion of polyglutamine (polyQ) in the N-terminus of huntingtin (Htt). Our previous study has demonstrated that HSP90 is involved in the triage decision of Htt, but how HSP90 recognizes and regulates Htt remains elusive. We investigated the interaction between HSP90 and the N-terminal fragments of Htt (Htt-N), such as the N-terminal 90-residue fragment (Htt-N90). Our results showed that HSP90 binds to the N-terminal extreme of Htt-N in a sequence just ahead of the polyQ tract. Structural integration of the middle and C-terminal domains of HSP90 is essential for interacting with Htt-N90, and the dimerization mediated by the C-terminal domain facilitates this interaction. Moreover, ubiquitin-specific protease 19 (USP19), a deubiquitinating enzyme interacting with HSP90, up-regulates the protein level of Htt-N90 and consequently promotes its aggregation, whereas disruption of the interaction between Htt-N90 and HSP90 attenuates the effect of USP19 on Htt-N90. Thus, HSP90 interacts with Htt-N90 on the N-terminal amphipathic α-helix, and then recruits USP19 to modulate the protein level and aggregation of Htt-N90. This study provides mechanistic insights into the recognition between HSP90 and the N-terminus of Htt, and the triage decision for the Htt protein by the HSP90 chaperone system.
Collapse
Affiliation(s)
- Wen-Tian He
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Wei Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Yong-Guang Gao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Jun-Ye Hong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China.
| |
Collapse
|
18
|
Franke V, Ganesh S, Karlic R, Malik R, Pasulka J, Horvat F, Kuzman M, Fulka H, Cernohorska M, Urbanova J, Svobodova E, Ma J, Suzuki Y, Aoki F, Schultz RM, Vlahovicek K, Svoboda P. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res 2017; 27:1384-1394. [PMID: 28522611 PMCID: PMC5538554 DOI: 10.1101/gr.216150.116] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Abstract
Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.
Collapse
Affiliation(s)
- Vedran Franke
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Sravya Ganesh
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Rosa Karlic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Josef Pasulka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Filip Horvat
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Maja Kuzman
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Helena Fulka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Marketa Cernohorska
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Jana Urbanova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| |
Collapse
|
19
|
Kato M, McKnight SL. Cross-β Polymerization of Low Complexity Sequence Domains. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023598. [PMID: 27836835 DOI: 10.1101/cshperspect.a023598] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most transcription factors and RNA regulatory proteins encoded by eukaryotic genomes ranging from yeast to humans contain polypeptide domains variously described as intrinsically disordered, prion-like, or of low complexity (LC). These LC domains exist in an unfolded state when DNA and RNA regulatory proteins are studied in biochemical isolation from cells. Upon incubation in the purified state, many of these LC domains polymerize into homogeneous, labile amyloid-like fibers. Here, we consider several lines of evidence that may favor biologic utility for LC domain polymers.
Collapse
Affiliation(s)
- Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
| | - Steven L McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
| |
Collapse
|
20
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
21
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
22
|
Jansen AHP, Batenburg KL, Pecho-Vrieseling E, Reits EA. Visualization of prion-like transfer in Huntington's disease models. Biochim Biophys Acta Mol Basis Dis 2016; 1863:793-800. [PMID: 28040507 DOI: 10.1016/j.bbadis.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
Most neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease are hallmarked by aggregate formation of disease-related proteins. In various of these diseases transfer of aggregation-prone proteins between neurons and between neurons and glial cells has been shown, thereby initiating aggregation in neighboring cells and so propagating the disease phenotype. Whereas this prion-like transfer is well studied in Alzheimer's and Parkinson's disease, only a few studies have addressed this potential mechanism in Huntington's disease. Here, we present an overview of in vitro and in vivo methodologies to study release, intercellular transfer and uptake of aggregation-prone protein fragments in Huntington's disease models.
Collapse
Affiliation(s)
- Anne H P Jansen
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - Kevin L Batenburg
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eline Pecho-Vrieseling
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Eric A Reits
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
24
|
Modulation of Molecular Chaperones in Huntington’s Disease and Other Polyglutamine Disorders. Mol Neurobiol 2016; 54:5829-5854. [DOI: 10.1007/s12035-016-0120-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
|
25
|
Li L, Liu H, Dong P, Li D, Legant WR, Grimm JB, Lavis LD, Betzig E, Tjian R, Liu Z. Real-time imaging of Huntingtin aggregates diverting target search and gene transcription. eLife 2016; 5. [PMID: 27484239 PMCID: PMC4972539 DOI: 10.7554/elife.17056] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023] Open
Abstract
The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells - 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Li Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,LKS Bio-medical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, United States
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Dong Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Transcription Imaging Consortium, Howard Hughes Medical Institute, Ashburn, United States
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert Tjian
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,LKS Bio-medical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, United States.,Transcription Imaging Consortium, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Transcription Imaging Consortium, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
26
|
Inayathullah M, Tan A, Jeyaraj R, Lam J, Cho NJ, Liu CW, Manoukian MAC, Ashkan K, Mahmoudi M, Rajadas J. Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides. Neuropeptides 2016; 57:71-83. [PMID: 26874369 DOI: 10.1016/j.npep.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/11/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
Huntington's disease (HD) is recognized as a currently incurable, inherited neurodegenerative disorder caused by the accumulation of misfolded polyglutamine (polyQ) peptide aggregates in neuronal cells. Yet, the mechanism by which newly formed polyQ chains interact and assemble into toxic oligomeric structures remains a critical, unresolved issue. In order to shed further light on the matter, our group elected to investigate the folding of polyQ peptides - examining glutamine repeat lengths ranging from 3 to 44 residues. To characterize these aggregates we employed a diverse array of technologies, including: nuclear magnetic resonance; circular dichroism; Fourier transform infrared spectroscopy; fluorescence resonance energy transfer (FRET), and atomic force microscopy. The data we obtained suggest that an increase in the number of glutamine repeats above 14 residues results in disordered loop structures, with different repeat lengths demonstrating unique folding characteristics. This differential folding manifests in the formation of distinct nano-sized fibrils, and on this basis, we postulate the idea of 14 polyQ repeats representing a critical loop length for neurotoxicity - a property that we hope may prove amenable to future therapeutic intervention. Furthermore, FRET measurements on aged assemblages indicate an increase in the end-to-end distance of the peptide with time, most probably due to the intermixing of individual peptide strands within the nanofibril. Further insight into this apparent time-dependent reorganization of aggregated polyQ peptides may influence future disease modeling of polyQ-related proteinopathies, in addition to directing novel clinical innovations.
Collapse
Affiliation(s)
- Mohammed Inayathullah
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, Tamilnadu, India; Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Aaron Tan
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; UCL Medical School, University College London (UCL), London, UK; University College London Hospitals NHS Foundation Trust, London, UK.
| | - Rebecca Jeyaraj
- UCL Medical School, University College London (UCL), London, UK
| | - James Lam
- UCL Medical School, University College London (UCL), London, UK
| | - Nam-Joon Cho
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University, Palo Alto, CA, USA
| | - Martin A C Manoukian
- Department of Dermatology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's College London, London, UK
| | - Morteza Mahmoudi
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jayakumar Rajadas
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
27
|
A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem Biophys Res Commun 2016; 474:626-633. [DOI: 10.1016/j.bbrc.2016.03.152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 11/19/2022]
|
28
|
Characterization of the conformational fluctuations in the Josephin domain of ataxin-3. Biophys J 2016; 107:2932-2940. [PMID: 25517158 PMCID: PMC4269769 DOI: 10.1016/j.bpj.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
As for a variety of other molecular recognition processes, conformational fluctuations play an important role in the cleavage of polyubiquitin chains by the Josephin domain of ataxin-3. The interaction between Josephin and ubiquitin appears to be mediated by the motions of α-helical hairpin that is unusual among deubiquitinating enzymes. Here, we characterized the conformational fluctuations of the helical hairpin by incorporating NMR measurements as replica-averaged restraints in molecular dynamics simulations, and by validating the results by small-angle x-ray scattering measurements. This approach allowed us to define the extent of the helical hairpin motions and suggest a role of such motions in the recognition of ubiquitin.
Collapse
|
29
|
Yang H, Hu HY. Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J 2016; 283:3705-3717. [PMID: 27016044 DOI: 10.1111/febs.13722] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Protein misfolding and aggregation are a hallmark of several neurodegenerative diseases (NDs). However, how protein aggregation leads to cytotoxicity and neurodegeneration is still controversial. Emerging evidence demonstrates that sequestration of cellular-interacting partners by protein aggregates contributes to the pathogenesis of these diseases. Here, we review current research on sequestration of cellular proteins by protein aggregates and its relation to proteinopathies. Based on different interaction modes, we classify these protein sequestrations into four types: protein coaggregation, domain/motif-mediated sequestration, RNA-assisted sequestration, and sequestration of molecular chaperones. Thus, the cellular essential proteins and/or RNA hijacked by protein aggregates may lose their biological functions, consequently resulting in cytotoxicity and neurodegeneration. We have proposed a hijacking model recapitulating the sequestration process and the loss-of-function pathology of ND.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
Burguete AS, Almeida S, Gao FB, Kalb R, Akins MR, Bonini NM. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. eLife 2015; 4:e08881. [PMID: 26650351 PMCID: PMC4758954 DOI: 10.7554/elife.08881] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
Microsatellite expansions are the leading cause of numerous neurodegenerative disorders. Here we demonstrate that GGGGCC and CAG microsatellite repeat RNAs associated with C9orf72 in amyotrophic lateral sclerosis/frontotemporal dementia and with polyglutamine diseases, respectively, localize to neuritic granules that undergo active transport into distal neuritic segments. In cultured mammalian spinal cord neurons, the presence of neuritic GGGGCC repeat RNA correlates with neuronal branching defects, and the repeat RNA localizes to granules that label with fragile X mental retardation protein (FMRP), a transport granule component. Using a Drosophila GGGGCC expansion disease model, we characterize dendritic branching defects that are modulated by FMRP and Orb2. The human orthologs of these modifiers are misregulated in induced pluripotent stem cell-differentiated neurons (iPSNs) from GGGGCC expansion carriers. These data suggest that expanded repeat RNAs interact with the messenger RNA transport and translation machinery, causing transport granule dysfunction. This could be a novel mechanism contributing to the neuronal defects associated with C9orf72 and other microsatellite expansion diseases.
Collapse
Affiliation(s)
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, United States
| | - Robert Kalb
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, United States
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
31
|
Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis. Sci Rep 2015; 5:15749. [PMID: 26507409 PMCID: PMC4623810 DOI: 10.1038/srep15749] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
Infection with cagA-positive Helicobacter pylori is critically associated with the development of gastric cancer. The cagA-encoded CagA is delivered into gastric epithelial cells via type IV secretion, where it interacts with and thereby deregulates the pro-oncogenic phosphatase SHP2. East Asian CagA and Western CagA are two major CagA species produced by H. pylori circulating in East Asian countries and in the rest of the world, respectively. The SHP2 binding site of Western CagA, termed the EPIYA-C segment, variably duplicates and infection with H. pylori carrying Western CagA with multiple EPIYA-C segments is a distinct risk factor of gastric cancer. Here we show that duplication of EPIYA-C from one to two or more increases SHP2 binding of Western CagA by more than one hundredfold. Based on the decisive difference in SHP2 binding, Western CagA can be divided into two types: type I CagA carrying a single EPIYA-C segment and type II CagA carrying multiple EPIYA-C segments. Gastric epithelial cells expressing type II CagA acquire the ability to invade extracellular matrices, a malignant cellular trait associated with deregulated SHP2. A big leap in SHP2 binding activity may therefore provide molecular basis that makes type II Western CagA a distinct gastric cancer risk.
Collapse
|
32
|
Punihaole D, Hong Z, Jakubek RS, Dahlburg EM, Geib S, Asher SA. Glutamine and Asparagine Side Chain Hyperconjugation-Induced Structurally Sensitive Vibrations. J Phys Chem B 2015; 119:13039-51. [PMID: 26392216 PMCID: PMC5065012 DOI: 10.1021/acs.jpcb.5b07651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We identified vibrational spectral marker bands that sensitively report on the side chain structures of glutamine (Gln) and asparagine (Asn). Density functional theory (DFT) calculations indicate that the Amide III(P) (AmIII(P)) vibrations of Gln and Asn depend cosinusoidally on their side chain OCCC dihedral angles (the χ3 and χ2 angles of Gln and Asn, respectively). We use UV resonance Raman (UVRR) and visible Raman spectroscopy to experimentally correlate the AmIII(P) Raman band frequency to the primary amide OCCC dihedral angle. The AmIII(P) structural sensitivity derives from the Gln (Asn) Cβ-Cγ (Cα-Cβ) stretching component of the vibration. The Cβ-Cγ (Cα-Cβ) bond length inversely correlates with the AmIII(P) band frequency. As the Cβ-Cγ (Cα-Cβ) bond length decreases, its stretching force constant increases, which results in an upshift in the AmIII(P) frequency. The Cβ-Cγ (Cα-Cβ) bond length dependence on the χ3 (χ2) dihedral angle results from hyperconjugation between the Cδ═Oϵ (Cγ═Oδ) π* and Cβ-Cγ (Cα-Cβ) σ orbitals. Using a Protein Data Bank library, we show that the χ3 and χ2 dihedral angles of Gln and Asn depend on the peptide backbone Ramachandran angles. We demonstrate that the inhomogeneously broadened AmIII(P) band line shapes can be used to calculate the χ3 and χ2 angle distributions of peptides. The spectral correlations determined in this study enable important new insights into protein structure in solution, and in Gln- and Asn-rich amyloid-like fibrils and prions.
Collapse
Affiliation(s)
- David Punihaole
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Chevron Science Center, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Chevron Science Center, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan S. Jakubek
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Chevron Science Center, Pittsburgh, Pennsylvania 15260, United States
| | - Elizabeth M. Dahlburg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Chevron Science Center, Pittsburgh, Pennsylvania 15260, United States
| | - Steven Geib
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Chevron Science Center, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Chevron Science Center, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
33
|
Yang H, Liu S, He WT, Zhao J, Jiang LL, Hu HY. Aggregation of Polyglutamine-expanded Ataxin 7 Protein Specifically Sequesters Ubiquitin-specific Protease 22 and Deteriorates Its Deubiquitinating Function in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex. J Biol Chem 2015. [PMID: 26195632 DOI: 10.1074/jbc.m114.631663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ataxin 7 (Atx7) is a component of the deubiquitination module (DUBm) in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex for transcriptional regulation, and expansion of its polyglutamine (polyQ) tract leads to spinocerebellar ataxia type 7. However, how polyQ expansion of Atx7 affects DUBm function remains elusive. We investigated the effects of polyQ-expanded Atx7 on ubiquitin-specific protease (USP22), an interacting partner of Atx7 functioning in deubiquitination of histone H2B. The results showed that the inclusions or aggregates formed by polyQ-expanded Atx7 specifically sequester USP22 through their interactions mediated by the N-terminal zinc finger domain of Atx7. The mutation of the zinc finger domain in Atx7 that disrupts its interaction with USP22 dramatically abolishes sequestration of USP22. Moreover, polyQ expansion of Atx7 decreases the deubiquitinating activity of USP22 and, consequently, increases the level of monoubiquitinated H2B. Therefore, we propose that polyQ-expanded Atx7 forms insoluble aggregates that sequester USP22 into a catalytically inactive state, and then the impaired DUBm loses the function to deubiquitinate monoubiquitinated histone H2B or H2A. This may result in dysfunction of the SAGA complex and transcriptional dysregulation in spinocerebellar ataxia type 7 disease.
Collapse
Affiliation(s)
- Hui Yang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Shuai Liu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Wen-Tian He
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Jian Zhao
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Lei-Lei Jiang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Hong-Yu Hu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
34
|
Lam YW, Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000PRIME REPORTS 2015; 7:48. [PMID: 26097721 PMCID: PMC4447046 DOI: 10.12703/p7-48] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nucleolus is a non-membrane-bound nuclear organelle found in all eukaryotes. It is the quintessential ‘RNA-seeded’ nuclear body, forming around specific chromosomal features called nucleolar organizing regions that contain arrays of ribosomal DNA. Assembly is triggered by activation of RNA polymerase I-mediated transcription and regulated in mammalian cells in a cell cycle-dependent manner. Although the nucleolus is best known for its role in coordinating ribosome biogenesis, biochemical and proteomic analyses have revealed a much wider functional complexity than previously appreciated, including roles in cell cycle regulation, DNA damage sensing and repair, pre-mRNA processing, telomere metabolism, processing of non-coding RNAs, and coordination of the cellular response to various stresses. Despite these advances, much remains to be learned about the full range of biological processes that occur within, or involve, this organelle and how its assembly/disassembly and functional reorganization in response to various stimuli are regulated. Here, we review the impact of recent studies that provide major insights into these fundamental questions, and we highlight the therapeutic potential of targeting nucleolar pathways.
Collapse
Affiliation(s)
- Yun Wah Lam
- Department of Biology and Chemistry, City University of Hong KongTat Chee Avenue, KowloonHong Kong
| | - Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa451 Smyth Road, Ottawa, ON, K1H 8M5Canada
| |
Collapse
|
35
|
Fodale V, Kegulian NC, Verani M, Cariulo C, Azzollini L, Petricca L, Daldin M, Boggio R, Padova A, Kuhn R, Pacifici R, Macdonald D, Schoenfeld RC, Park H, Isas JM, Langen R, Weiss A, Caricasole A. Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy. PLoS One 2014; 9:e112262. [PMID: 25464275 PMCID: PMC4251833 DOI: 10.1371/journal.pone.0112262] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays. METHODOLOGY/PRINCIPAL FINDINGS By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein. CONCLUSIONS/SIGNIFICANCE The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntington's disease.
Collapse
Affiliation(s)
| | - Natalie C. Kegulian
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | | | | | | | | | | | | | | | - Robert Pacifici
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Ryan C. Schoenfeld
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Hyunsun Park
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - J. Mario Isas
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (RL); (AW); (AC)
| | - Andreas Weiss
- IRBM Promidis, Pomezia, Rome, Italy
- * E-mail: (RL); (AW); (AC)
| | | |
Collapse
|
36
|
Yang H, Li JJ, Liu S, Zhao J, Jiang YJ, Song AX, Hu HY. Aggregation of polyglutamine-expanded ataxin-3 sequesters its specific interacting partners into inclusions: implication in a loss-of-function pathology. Sci Rep 2014; 4:6410. [PMID: 25231079 PMCID: PMC5377324 DOI: 10.1038/srep06410] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/22/2014] [Indexed: 01/13/2023] Open
Abstract
Expansion of polyglutamine (polyQ) tract may cause protein misfolding and aggregation that lead to cytotoxicity and neurodegeneration, but the underlying mechanism remains to be elucidated. We applied ataxin-3 (Atx3), a polyQ tract-containing protein, as a model to study sequestration of normal cellular proteins. We found that the aggregates formed by polyQ-expanded Atx3 sequester its interacting partners, such as P97/VCP and ubiquitin conjugates, into the protein inclusions through specific interactions both in vitro and in cells. Moreover, this specific sequestration impairs the normal cellular function of P97 in down-regulating neddylation. However, expansion of polyQ tract in Atx3 does not alter the conformation of its surrounding regions and the interaction affinities with the interacting partners, although it indeed facilitates misfolding and aggregation of the Atx3 protein. Thus, we propose a loss-of-function pathology for polyQ diseases that sequestration of the cellular essential proteins via specific interactions into inclusions by the polyQ aggregates causes dysfunction of the corresponding proteins, and consequently leads to neurodegeneration.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Jing-Jing Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Shuai Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Jian Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Ya-Jun Jiang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Ai-Xin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
37
|
Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 2014; 23:3402-20. [PMID: 24497578 PMCID: PMC4049302 DOI: 10.1093/hmg/ddu049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form—alone or with polyQ and polyQA—CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2—a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion—and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases.
Collapse
Affiliation(s)
| | - Davide Corà
- Center for Molecular Systems Biology, University of Torino, Torino 10123, Italy
| | - Federico Cesano
- Department of Chemistry, University of Torino, Torino 10125, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology,Medical University of Vienna, Vienna 1090, Austria
| | - Pier Giorgio Montarolo
- Department of Neuroscience and
- National Institute of Neuroscience (INN), Torino 10125, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience and
- To whom correspondence should be addressed at: Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy. Tel: +39-0116708486;
| |
Collapse
|
38
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Menon RP, Soong D, de Chiara C, Holt M, McCormick JE, Anilkumar N, Pastore A. Mapping the self-association domains of ataxin-1: identification of novel non overlapping motifs. PeerJ 2014; 2:e323. [PMID: 24711972 PMCID: PMC3970802 DOI: 10.7717/peerj.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.
Collapse
Affiliation(s)
- Rajesh P Menon
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Daniel Soong
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London , Guy's Campus, London , UK ; British Heart Foundation Centre of Research Excellence, King's College London , Denmark Hill Campus, London , UK
| | - Cesira de Chiara
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Mark Holt
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London , Guy's Campus, London , UK
| | - John E McCormick
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Narayana Anilkumar
- British Heart Foundation Centre of Research Excellence, King's College London , Denmark Hill Campus, London , UK
| | - Annalisa Pastore
- MRC National Institute for Medical Research, The Ridgeway , London , UK ; Department of Molecular Neuroscience, Institute of Psychiatry, King's College London , Denmark Hill Campus, London , UK
| |
Collapse
|
40
|
Landrum E, Wetzel R. Biophysical underpinnings of the repeat length dependence of polyglutamine amyloid formation. J Biol Chem 2014; 289:10254-10260. [PMID: 24596088 DOI: 10.1074/jbc.c114.552943] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There are now 10 expanded CAG repeat diseases in which both disease risk and age of onset are strongly dependent on the repeat length of the polyglutamine (polyQ) sequence in the disease protein. Large, polyQ-rich inclusions in patient brains and in cell and animal models are consistent with the involvement of polyQ aggregation in the disease mechanism. This possibility is reinforced by studies showing strong repeat length dependence to the aggregation process, qualitatively mirroring the repeat length dependence of disease risk. Our understanding of the underlying biophysical principles that mediate the repeat length dependence of aggregation, however, is far from complete. A previous study of simple polyQ peptides showed that N*, the size of the critical nucleus that controls onset of aggregation, decreases from unfavorable tetramer to favorable monomer over the range Q23 to Q26. These data, however, do not explain why, for all peptides exhibiting N* ∼ 1, spontaneous aggregation rates continue to increase with increasing repeat length. Here we describe a novel kinetics analyses that maps out the nonlinear dependence with repeat length of a nucleation efficiency term that is likely related to aspects of nucleus structure. This trend accounts for why nucleus size increases to tetrameric at repeat lengths of Q23 or below. Intriguingly, both aggregation and age of onset trend with repeat length in similar ways, exhibiting large changes per added Gln at low repeat lengths and small changes per added Gln at relatively long repeat lengths. Fibril stability also increases with repeat length in a nonlinear fashion.
Collapse
Affiliation(s)
- Elizabeth Landrum
- Department of Structural Biology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Ronald Wetzel
- Department of Structural Biology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
41
|
Sin O, Michels H, Nollen EAA. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1951-1959. [PMID: 24525026 DOI: 10.1016/j.bbadis.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 01/17/2023]
Abstract
Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be applied to "humanized" models of C. elegans for neurodegenerative diseases, enabling for example the identification of genes involved in protein aggregation, one of the hallmarks of these diseases. In this review, we will describe the genetic screens employed in C. elegans and how these can be used to understand molecular processes involved in neurodegenerative and other human diseases. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Olga Sin
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Helen Michels
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands
| | - Ellen A A Nollen
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
42
|
Torrente MP, Shorter J. The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins. Prion 2014; 7:457-63. [PMID: 24401655 PMCID: PMC4201613 DOI: 10.4161/pri.27531] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A baffling aspect of metazoan proteostasis is the lack of an Hsp104 ortholog that rapidly disaggregates and reactivates misfolded polypeptides trapped in stress induced disordered aggregates, preamyloid oligomers, or amyloid fibrils. By contrast, in bacteria, protozoa, chromista, fungi, and plants, Hsp104 orthologs are highly conserved and confer huge selective advantages in stress tolerance. Moreover, in fungi, the amyloid remodeling activity of Hsp104 has enabled deployment of prions for various beneficial modalities. Thus, a longstanding conundrum has remained unanswered: how do metazoan cells renature aggregated proteins or resolve amyloid fibrils without Hsp104? Here, we highlight recent advances that unveil the metazoan protein-disaggregase machinery, comprising Hsp110, Hsp70, and Hsp40, which synergize to dissolve disordered aggregates, but are unable to rapidly solubilize stable amyloid fibrils. However, Hsp110, Hsp70, and Hsp40 exploit the slow monomer exchange dynamics of amyloid, and can slowly depolymerize amyloid fibrils from their ends in a manner that is stimulated by small heat shock proteins. Upregulation of this system could have key therapeutic applications in various protein-misfolding disorders. Intriguingly, yeast Hsp104 can interface with metazoan Hsp110, Hsp70, and Hsp40 to rapidly eliminate disease associated amyloid. Thus, metazoan proteostasis is receptive to augmentation with exogenous disaggregases, which opens a number of therapeutic opportunities.
Collapse
Affiliation(s)
- Mariana P Torrente
- Department of Biochemistry and Biophysics; 805b Stellar-Chance Laboratories; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - James Shorter
- Department of Biochemistry and Biophysics; 805b Stellar-Chance Laboratories; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
43
|
Zhang P, Wang Q, Hughes H, Intrieri G. Synthetic Lethality Induced by a Strong <i>Drosophila</i> Enhancer of Expanded Polyglutamine Tract. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojgen.2014.44028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells. J Mol Biol 2013; 426:816-29. [PMID: 24291210 DOI: 10.1016/j.jmb.2013.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/21/2013] [Accepted: 11/15/2013] [Indexed: 11/23/2022]
Abstract
Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases such as Huntington's disease. Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either L- or D-polyQ peptides and found that D-fibrils are as cytotoxic as L-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced L-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized D- and L-polyQ in vitro. We found that, as expected, D-polyQ monomers are not recognized by proteins that recognize L-polyQ monomers. However, amyloid fibrils prepared from D-polyQ peptides can efficiently seed the aggregation of L-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a "rippled β-sheet" interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins.
Collapse
|
45
|
Jenkins VK, Timmons AK, McCall K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol 2013; 23:567-74. [PMID: 23968895 PMCID: PMC3839102 DOI: 10.1016/j.tcb.2013.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Multiple types of cell death exist including necrosis, apoptosis, and autophagic cell death. The Drosophila ovary provides a valuable model to study the diversity of cell death modalities, and we review recent progress to elucidate these pathways. At least five distinct types of cell death occur in the ovary, and we focus on two that have been studied extensively. Cell death of mid-stage egg chambers occurs through a novel caspase-dependent pathway that involves autophagy and triggers phagocytosis by surrounding somatic epithelial cells. For every egg, 15 germline nurse cells undergo developmental programmed cell death, which occurs independently of most known cell death genes. These forms of cell death are strikingly similar to cell death observed in the germlines of other organisms.
Collapse
Affiliation(s)
| | - Allison K Timmons
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| |
Collapse
|
46
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|