1
|
Martinez PA, Ferreira S, Sanz CL, Costa MES, Yoshimoto HM, Zanata SM, Nakao LS. Could the cell nucleus be a new destination for QSOX1 under thermal stress? Biochem Biophys Res Commun 2025; 750:151423. [PMID: 39893889 DOI: 10.1016/j.bbrc.2025.151423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Quiescin/sulfhydryl oxidase 1 (QSOX1) is a thiol oxidase that exists in two isoforms, QSOX1a, which contains a transmembrane (TM) domain, a short extraluminal domain, and a luminal catalytic domain, and QSOX1b, which lacks the TM domain and remains soluble. QSOX1 is localized in the ER, Golgi, secretory vesicles, endosomes, and the extracellular environment. In this study, we demonstrate via immunofluorescence that QSOX1 translocates to the nucleus in response to heat (43 °C) and cold (4 °C) stress, occurring as early as 15 min post-exposure in L929 fibroblasts. Orthogonal views of confocal microscopy images reveal that QSOX1 is predominantly nucleoplasmic. This nuclear translocation was further confirmed through cell fractionation followed by immunoblotting, which also identified QSOX1a as the primary isoform present in nuclear fractions. RT-qPCR analysis revealed an increase in QSOX1a mRNA levels, with a significant upregulation observed specifically after cold stress. Finally, QSOX1 knockdown sensitized fibroblasts to cold stress-induced cell death, indicating a potential cytoprotective role for QSOX1a under these conditions. Our findings suggest that the cell nucleus may serve as a novel subcellular destination for QSOX1a during cold stress. Based on existing literature, we proposed a hypothesis to explain the nuclear translocation, possibly via a lateral diffusion-retention mechanism. The biological significance and molecular mechanisms underlying this translocation, however, warrant further investigation.
Collapse
Affiliation(s)
- Pierina A Martinez
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Soraia Ferreira
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carmen L Sanz
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
2
|
Malamos P, Kalyvianaki K, Panagiotopoulos AA, Vogiatzoglou AP, Tsikalaki AA, Katifori A, Polioudaki H, Darivianaki MN, Theodoropoulos PA, Panagiotidis CA, Notas G, Castanas E, Kampa M. Nuclear translocation of the membrane oxoeicosanoid/androgen receptor, OXER1: Possible mechanisms involved. Mol Cell Endocrinol 2024; 594:112357. [PMID: 39236798 DOI: 10.1016/j.mce.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OXER1, the receptor for the arachidonic acid metabolite 5-οxo-eicosatetraenoic acid (5-oxo-ETE), has been reported to also bind and mediate the membrane-initiated actions of androgens. Indeed, androgens antagonize the 5-oxo-ETE effects through OXER1, affecting a number of signaling pathways and inhibiting cancer cell proliferation and migration. OXER1, being a GPCR, was classically described to be localized in the plasma membrane. However, for numerous GPCRs, there is now strong evidence that they can be also found in other cellular compartments, including the nucleus. The aim of the present work was to investigate OXER1's possible localization in the nucleus and identify the mechanism(s) involved. For this purpose, we verified OXER1's nuclear presence by immunofluorescence and western blot, in whole cells and nuclei of two different prostate cancer cell lines (DU-145 and LNCaP) and in CHO cells transfected with a GFP labelled OXER1, both in untreated and OXER1 ligands' treated cells. Mutated, OXER1-tGFP expressing, CHO cells were used to verify that OXER1 agonist (5-oxo-ETE) binding is necessary for OXER1 nuclear translocation. NLS sequences were in silico identified, and a specific inhibitor, as well as, specific importins' siRNAs were also utilized to explore the mechanism involved. Moreover, we examined the role of palmitoylation in OXER1 nuclear translocation by in silico identifying possible palmitoylation sites and using a palmitoylation inhibitor. Our results clearly show that OXER1 can be localized in the nucleus, in an agonist-dependent manner, that is inhibited by androgens. We also provide evidence for two possible mechanisms for its nuclear trafficking, that involve receptor palmitoylation and importin-mediated cytoplasmic-nuclear transport. In our knowledge, it is the first time that a membrane androgen receptor is identified into the nucleus, suggesting an alternative, more direct, mode of action, involving nuclear mechanisms. Therefore, our findings provide new insights on androgen-mediated actions and androgen-lipid interactions, and reveal new possible therapeutic targets, not only for cancer, but also for other pathological conditions in which OXER1 may have an important role.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasios A Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Amalia P Vogiatzoglou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasia Artemis Tsikalaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Anastasia Katifori
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Hara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Maria N Darivianaki
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panayiotis A Theodoropoulos
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Christos A Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Ikeda T, Yamazaki K, Okumura F, Kamura T, Nakatsukasa K. Role of the San1 ubiquitin ligase in the heat stress-induced degradation of nonnative Nup1 in the nuclear pore complex. Genetics 2024; 226:iyae017. [PMID: 38302116 DOI: 10.1093/genetics/iyae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/21/2022] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of nonnative Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-Nup component of the central core of the NPC) was stable, C-terminally green fluorescent protein-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of nontagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of nonnative Nups generated by genetic mutation or when NPC biogenesis is impaired.
Collapse
Affiliation(s)
- Takanari Ikeda
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Kenji Yamazaki
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Fukuoka 813-8529, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
4
|
Martins-Marques T, Witschas K, Ribeiro I, Zuzarte M, Catarino S, Ribeiro-Rodrigues T, Caramelo F, Aasen T, Carreira IM, Goncalves L, Leybaert L, Girao H. Cx43 can form functional channels at the nuclear envelope and modulate gene expression in cardiac cells. Open Biol 2023; 13:230258. [PMID: 37907090 PMCID: PMC10645070 DOI: 10.1098/rsob.230258] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
Classically associated with gap junction-mediated intercellular communication, connexin43 (Cx43) is increasingly recognized to possess non-canonical biological functions, including gene expression regulation. However, the mechanisms governing the localization and role played by Cx43 in the nucleus, namely in transcription modulation, remain unknown. Using comprehensive and complementary approaches encompassing biochemical assays, super-resolution and immunogold transmission electron microscopy, we demonstrate that Cx43 localizes to the nuclear envelope of different cell types and in cardiac tissue. We show that translocation of Cx43 to the nucleus relies on Importin-β, and that Cx43 significantly impacts the cellular transcriptome, likely by interacting with transcriptional regulators. In vitro patch-clamp recordings from HEK293 and adult primary cardiomyocytes demonstrate that Cx43 forms active channels at the nuclear envelope, providing evidence that Cx43 can participate in nucleocytoplasmic shuttling of small molecules. The accumulation of nuclear Cx43 during myogenic differentiation of cardiomyoblasts is suggested to modulate expression of genes implicated in this process. Altogether, our study provides new evidence for further defining the biological roles of nuclear Cx43, namely in cardiac pathophysiology.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Katja Witschas
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Ilda Ribeiro
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isabel Marques Carreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Lino Goncalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Luc Leybaert
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
5
|
Klupp BG, Mettenleiter TC. The Knowns and Unknowns of Herpesvirus Nuclear Egress. Annu Rev Virol 2023; 10:305-323. [PMID: 37040797 DOI: 10.1146/annurev-virology-111821-105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
6
|
Lee S, Carrasquillo Rodríguez JW, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. J Cell Biol 2023; 222:e202304026. [PMID: 37382667 PMCID: PMC10309186 DOI: 10.1083/jcb.202304026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Lipid composition determines organelle identity; however, whether the lipid composition of the inner nuclear membrane (INM) domain of the ER contributes to its identity is not known. Here, we show that the INM lipid environment of animal cells is under local control by CTDNEP1, the master regulator of the phosphatidic acid phosphatase lipin 1. Loss of CTDNEP1 reduces association of an INM-specific diacylglycerol (DAG) biosensor and results in a decreased percentage of polyunsaturated containing DAG species. Alterations in DAG metabolism impact the levels of the resident INM protein Sun2, which is under local proteasomal regulation. We identify a lipid-binding amphipathic helix (AH) in the nucleoplasmic domain of Sun2 that prefers membrane packing defects. INM dissociation of the Sun2 AH is linked to its proteasomal degradation. We suggest that direct lipid-protein interactions contribute to sculpting the INM proteome and that INM identity is adaptable to lipid metabolism, which has broad implications on disease mechanisms associated with the nuclear envelope.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Holly Merta
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Cheng LC, Zhang X, Baboo S, Nguyen JA, Martinez-Bartolomé S, Loose E, Diedrich J, Yates JR, Gerace L. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. Life Sci Alliance 2023; 6:e202301998. [PMID: 37433644 PMCID: PMC10336727 DOI: 10.26508/lsa.202301998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
The nuclear envelope (NE) is a subdomain of the ER with prominent roles in nuclear organization, which are largely mediated by its distinctive protein composition. We developed methods to reveal low-abundance transmembrane (TM) proteins concentrated at the NE relative to the peripheral ER. Using label-free proteomics that compared isolated NEs with cytoplasmic membranes, we first identified proteins with apparent NE enrichment. In subsequent authentication, ectopically expressed candidates were analyzed by immunofluorescence microscopy to quantify their targeting to the NE in cultured cells. Ten proteins from a validation set were found to associate preferentially with the NE, including oxidoreductases, enzymes for lipid biosynthesis, and regulators of cell growth and survival. We determined that one of the validated candidates, the palmitoyltransferase Zdhhc6, modifies the NE oxidoreductase Tmx4 and thereby modulates its NE levels. This provides a functional rationale for the NE concentration of Zdhhc6. Overall, our methodology has revealed a group of previously unrecognized proteins concentrated at the NE and additional candidates. Future analysis of these can potentially unveil new mechanistic pathways associated with the NE.
Collapse
Affiliation(s)
- Li-Chun Cheng
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Xi Zhang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Julie A Nguyen
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Esther Loose
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Larry Gerace
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
8
|
Chen AL, Wu TH, Shi L, Clusin WT, Kao PN. Calcium-Activated Big-Conductance (BK) Potassium Channels Traffic through Nuclear Envelopes into Kinocilia in Ray Electrosensory Cells. Cells 2023; 12:2125. [PMID: 37681857 PMCID: PMC10486799 DOI: 10.3390/cells12172125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Electroreception through ampullae of Lorenzini in the little skate, Leucoraja erinacea, involves functional coupling between voltage-activated calcium channels (CaV1.3, cacna1d) and calcium-activated big-conductance potassium (BK) channels (BK, kcnma1). Whole-mount confocal microscopy was used to characterize the pleiotropic expression of BK and CaV1.3 in intact ampullae. BK and CaV1.3 are co-expressed in electrosensory cell plasma membranes, nuclear envelopes and kinocilia. Nuclear localization sequences (NLS) were predicted in BK and CaV1.3 by bioinformatic sequence analyses. The BK NLS is bipartite, occurs at an alternative splice site for the mammalian STREX exon and contains sequence targets for post-translational phosphorylation. Nuclear localization of skate BK channels was characterized in heterologously transfected HEK293 cells. Double-point mutations in the bipartite NLS (KR to AA or SVLS to AVLA) independently attenuated BK channel nuclear localization. These findings support the concept that BK partitioning between the electrosensory cell plasma membrane, nucleus and kinocilium may be regulated through a newly identified bipartite NLS.
Collapse
Affiliation(s)
- Abby L. Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| | - Ting-Hsuan Wu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingfang Shi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| | - William T. Clusin
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Peter N. Kao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| |
Collapse
|
9
|
Tsuda N, Fukagawa R, Sueda S. Does the nuclear envelope retain its identity during mitosis? FEBS Lett 2023; 597:682-692. [PMID: 36528783 DOI: 10.1002/1873-3468.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
During mitosis in metazoan species, the nuclear envelope (NE) undergoes breakdown, and its fragments are absorbed within the membranous network of the endoplasmic reticulum (ER). Past observations by fluorescence microscopy led researchers to think that the NE loses its identity when it is absorbed within the ER membrane. However, in our previous work, we developed a more specific labelling method and found evidence that the NE does not completely lose its identity during mitosis. In the present work, we conduct further experiments, the results of which support the idea that the NE partially retains its identity during mitosis.
Collapse
Affiliation(s)
- Natsumi Tsuda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| | - Ryohei Fukagawa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| | - Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| |
Collapse
|
10
|
Cheng LC, Zhang X, Baboo S, Nguyen JA, Martinez-Bartolomé S, Loose E, Diedrich J, Yates JR, Gerace L. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528342. [PMID: 36824861 PMCID: PMC9949040 DOI: 10.1101/2023.02.13.528342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear envelope (NE) is a subdomain of the ER with prominent roles in nuclear organization, largely mediated by its distinctive protein composition. We developed methods to reveal novel, low abundance transmembrane (TM) proteins concentrated at the NE relative to the peripheral ER. Using label-free proteomics that compared isolated NEs to cytoplasmic membranes, we first identified proteins with apparent NE enrichment. In subsequent authentication, ectopically expressed candidates were analyzed by immunofluorescence microscopy to quantify their targeting to the NE in cultured cells. Ten proteins from a validation set were found to associate preferentially with the NE, including oxidoreductases, enzymes for lipid biosynthesis and regulators of cell growth and survival. We determined that one of the validated candidates, the palmitoyltransferase Zdhhc6, modifies the NE oxidoreductase Tmx4 and thereby modulates its NE levels. This provides a functional rationale for the NE concentration of Zdhhc6. Overall, our methodology has revealed a group of previously unrecognized proteins concentrated at the NE and additional candidates. Future analysis of these can potentially unveil new mechanistic pathways associated with the NE.
Collapse
Affiliation(s)
- Li-Chun Cheng
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Xi Zhang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Julie A Nguyen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | | | - Esther Loose
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Larry Gerace
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| |
Collapse
|
11
|
Baltoumas FA, Sofras D, Apostolakou AE, Litou ZI, Iconomidou VA. NucEnvDB: A Database of Nuclear Envelope Proteins and Their Interactions. MEMBRANES 2023; 13:62. [PMID: 36676869 PMCID: PMC9861991 DOI: 10.3390/membranes13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The nuclear envelope (NE) is a double-membrane system surrounding the nucleus of eukaryotic cells. A large number of proteins are localized in the NE, performing a wide variety of functions, from the bidirectional exchange of molecules between the cytoplasm and the nucleus to chromatin tethering, genome organization, regulation of signaling cascades, and many others. Despite its importance, several aspects of the NE, including its protein-protein interactions, remain understudied. In this work, we present NucEnvDB, a publicly available database of NE proteins and their interactions. Each database entry contains useful annotation including a description of its position in the NE, its interactions with other proteins, and cross-references to major biological repositories. In addition, the database provides users with a number of visualization and analysis tools, including the ability to construct and visualize protein-protein interaction networks and perform functional enrichment analysis for clusters of NE proteins and their interaction partners. The capabilities of NucEnvDB and its analysis tools are showcased by two informative case studies, exploring protein-protein interactions in Hutchinson-Gilford progeria and during SARS-CoV-2 infection at the level of the nuclear envelope.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 34 Fleming St., 16672 Athens, Greece
| | - Dimitrios Sofras
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31—Box 2438, 3001 Leuven, Belgium
| | - Avgi E. Apostolakou
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Zoi I. Litou
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology & Biophysics, Department of Biology, School of Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
12
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Cheng LC, Zhang X, Abhinav K, Nguyen JA, Baboo S, Martinez-Bartolomé S, Branon TC, Ting AY, Loose E, Yates JR, Gerace L. Shared and Distinctive Neighborhoods of Emerin and Lamin B Receptor Revealed by Proximity Labeling and Quantitative Proteomics. J Proteome Res 2022; 21:2197-2210. [PMID: 35972904 PMCID: PMC9442789 DOI: 10.1021/acs.jproteome.2c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Emerin and lamin B receptor (LBR) are abundant transmembrane
proteins
of the nuclear envelope that are concentrated at the inner nuclear
membrane (INM). Although both proteins interact with chromatin and
nuclear lamins, they have distinctive biochemical and functional properties.
Here, we have deployed proximity labeling using the engineered biotin
ligase TurboID (TbID) and quantitative proteomics to compare the neighborhoods
of emerin and LBR in cultured mouse embryonic fibroblasts. Our analysis
revealed 232 high confidence proximity partners that interact selectively
with emerin and/or LBR, 49 of which are shared by both. These included
previously characterized NE-concentrated proteins, as well as a host
of additional proteins not previously linked to emerin or LBR functions.
Many of these are TM proteins of the ER, including two E3 ubiquitin
ligases. Supporting these results, we found that 11/12 representative
proximity relationships identified by TbID also were detected at the
NE with the proximity ligation assay. Overall, this work presents
methodology that may be used for large-scale mapping of the landscape
of the INM and reveals a group of new proteins with potential functional
connections to emerin and LBR.
Collapse
Affiliation(s)
- Li-Chun Cheng
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Xi Zhang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Kanishk Abhinav
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Julie A Nguyen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Sabyasachi Baboo
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Salvador Martinez-Bartolomé
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Esther Loose
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Larry Gerace
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Majumder S, Hsu YY, Moghimianavval H, Andreas M, Giessen TW, Luxton GG, Liu AP. In Vitro Synthesis and Reconstitution Using Mammalian Cell-Free Lysates Enables the Systematic Study of the Regulation of LINC Complex Assembly. Biochemistry 2022; 61:1495-1507. [PMID: 35737522 PMCID: PMC9789527 DOI: 10.1021/acs.biochem.2c00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding the structure and structure-function relationships of membrane proteins is a fundamental problem in biomedical research. Given the difficulties inherent to performing mechanistic biochemical and biophysical studies of membrane proteins in vitro, we previously developed a facile HeLa cell-based cell-free expression (CFE) system that enables the efficient reconstitution of full-length (FL) functional inner nuclear membrane Sad1/UNC-84 (SUN) proteins (i.e., SUN1 and SUN2) in supported lipid bilayers. Here, we provide evidence that suggests that the reconstitution of CFE-synthesized FL membrane proteins in supported lipid bilayers occurs primarily through the fusion of endoplasmic reticulum-derived microsomes present within our CFE reactions with our supported lipid bilayers. In addition, we demonstrate the ease with which our synthetic biology platform can be used to investigate the impact of the chemical environment on the ability of CFE-synthesized FL SUN proteins reconstituted in supported lipid bilayers to interact with the luminal domain of the KASH protein nesprin-2. Moreover, we use our platform to study the molecular requirements for the homo- and heterotypic interactions between SUN1 and SUN2. Finally, we show that our platform can be used to simultaneously reconstitute three different CFE-synthesized FL membrane proteins in a single supported lipid bilayer. Overall, these results establish our HeLa cell-based CFE and supported lipid bilayer reconstitution platform as a powerful tool for performing mechanistic dissections of the oligomerization and function of FL membrane proteins in vitro. While our platform is not a substitute for cell-based studies, it does provide important mechanistic insights into the biology of difficult-to-study membrane proteins.
Collapse
Affiliation(s)
- Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Michael Andreas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Tobias W. Giessen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - G.W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, 95616, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
15
|
Yang L, Chen Y, Xu L, Wang J, Qi H, Guo J, Zhang L, Shen J, Wang H, Zhang F, Xie L, Zhu W, Lü P, Qian Q, Yu H, Song S. The OsFTIP6-OsHB22-OsMYBR57 module regulates drought response in rice. MOLECULAR PLANT 2022; 15:1227-1242. [PMID: 35684964 DOI: 10.1016/j.molp.2022.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved a sophisticated set of mechanisms to adapt to drought stress. Transcription factors play crucial roles in plant responses to various environmental stimuli by modulating the expression of numerous stress-responsive genes. However, how the crosstalk between different transcription factor families orchestrates initiation of the key transcriptional network and the role of posttranscriptional modification of transcription factors, especially in cellular localization/trafficking in response to stress in rice, remain still largely unknown. In this study, we isolated an Osmybr57 mutant that displays a drought-sensitive phenotype through a genetic screen for drought stress sensitivity. We found that OsMYBR57, an MYB-related protein, directly regulates the expression of several key drought-related OsbZIPs in response to drought treatment. Further studies revealed that OsMYBR57 interacts with a homeodomain transcription factor, OsHB22, which also plays a positive role in drought signaling. We further demonstrate that OsFTIP6 interacts with OsHB22 and promotes the nucleocytoplasmic translocation of OsHB22 into the nucleus, where OsHB22 cooperates with OsMYBR57 to regulate the expression of drought-responsive genes. Our findings have revealed a mechanistic framework underlying the OsFTIP6-OsHB22-OsMYBR57 module-mediated regulation of drought response in rice. The OsFTIP6-mediated OsHB22 nucleocytoplasmic shuttling and OsMYBR57-OsHB22 regulation of OsbZIP transcription ensure precise control of expression of OsLEA3 and Rab21, and thereby regulate the response to water deficiency in rice.
Collapse
Affiliation(s)
- Lijia Yang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liang Xu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haoyue Qi
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jun Shen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huanyu Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lijun Xie
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Zhu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Shiyong Song
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Zhang R, Kang R, Tang D. STING1 in Different Organelles: Location Dictates Function. Front Immunol 2022; 13:842489. [PMID: 35371032 PMCID: PMC8969013 DOI: 10.3389/fimmu.2022.842489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1), also known as TMEM173, is an immune adaptor protein that governs signal crosstalk that is implicated in many physiological and pathological processes. Although it has been established that STING1 traffics from the endoplasmic reticulum (ER) to Golgi apparatus (Golgi) upon DNA-triggered activation, emerging evidence reveals that STING1 can be transported to different organelles, which dictate its immune-dependent (e.g., the production of type I interferons and pro-inflammatory cytokines) and -independent (e.g., the activation of autophagy and cell death) functions. In this brief review, we outline the roles of STING1 in different organelles (including the ER, ER-Golgi intermediate compartment, Golgi, mitochondria, endosomes, lysosomes, and nucleus) and discuss the potential relevance of these roles to diseases and pharmacological interventions.
Collapse
|
17
|
Deolal P, Jamir I, Mishra K. Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae. Nucleus 2022; 13:79-93. [PMID: 35171083 PMCID: PMC8855845 DOI: 10.1080/19491034.2022.2034286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A double membrane bilayer perforated by nuclear pore complexes (NPCs) governs the shape of the nucleus, the prominent distinguishing organelle of a eukaryotic cell. Despite the absence of lamins in yeasts, the nuclear morphology is stably maintained and shape changes occur in a regulated fashion. In a quest to identify factors that contribute to regulation of nuclear shape and function in Saccharomyces cerevisiae, we used a fluorescence imaging based approach. Here we report the identification of a novel protein, Uip4p, that is required for regulation of nuclear morphology. Loss of Uip4 compromises NPC function and loss of nuclear envelope (NE) integrity. Our localization studies show that Uip4 localizes to the NE and endoplasmic reticulum (ER) network. Furthermore, we demonstrate that the localization and expression of Uip4 is regulated during growth, which is crucial for NPC distribution.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Dimapur, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
18
|
The amino-terminal domain of TRPV4 channel is involved in its trafficking to the nucleus. Biochem Biophys Res Commun 2022; 592:13-17. [PMID: 35007845 DOI: 10.1016/j.bbrc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is a sensor for multiple physical and chemical stimuli of ubiquitous expression that participates in various functions either in differentiated tissues or during differentiation. We recently demonstrated the nuclear localization of the full-length TRPV4 in the renal epithelial cells MDCK and its interaction with the transcriptional regulator β-catenin. Here, we describe the presence of a functional nuclear localization signals (NLS) in the N-terminal domain of TRPV4. Simultaneous substitution R404Q, K405Q, and K407Q, produces a channel that fail to reach the nucleus, while K177Q, K178Q, and R179Q mutant channel reaches the nucleus but does not arrive to the plasma membrane (PM). Similar result was observed with the S824D phosphomimetic mutant and the K407E mutation associated with skeletal dysplasia. Structural analysis of these mutants showed important remodeling in their C-terminal domains. Our observations suggest that nucleus-PM trafficking of TRPV4 is important for its cellular functions and may help to explain some deleterious effect of mutations causing TRPV4 channelopathies.
Collapse
|
19
|
Shelton SN, Smith SE, Unruh JR, Jaspersen SL. A distinct inner nuclear membrane proteome in Saccharomyces cerevisiae gametes. G3 (BETHESDA, MD.) 2021; 11:6400631. [PMID: 34849801 PMCID: PMC8664494 DOI: 10.1093/g3journal/jkab345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023]
Abstract
The inner nuclear membrane (INM) proteome regulates gene expression, chromatin organization, and nuclear transport; however, it is poorly understood how changes in INM protein composition contribute to developmentally regulated processes, such as gametogenesis. We conducted a screen to determine how the INM proteome differs between mitotic cells and gametes. In addition, we used a strategy that allowed us to determine if spores synthesize their INM proteins de novo, rather than inheriting their INM proteins from the parental cell. This screen used a split-GFP complementation system, where we were able to compare the distribution of all C-terminally tagged transmembrane proteins in Saccharomyces cerevisiae in gametes to that of mitotic cells. Gametes contain a distinct INM proteome needed to complete gamete formation, including expression of genes linked to cell wall biosynthesis, lipid biosynthetic and metabolic pathways, protein degradation, and unknown functions. Based on the inheritance pattern, INM components are made de novo in the gametes. Whereas mitotic cells show a strong preference for proteins with small extraluminal domains, gametes do not exhibit this size preference likely due to the changes in the nuclear permeability barrier during gametogenesis. Taken together, our data provide evidence for INM changes during gametogenesis and shed light on mechanisms used to shape the INM proteome of spores.
Collapse
Affiliation(s)
- Shary N Shelton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules 2021; 11:biom11121821. [PMID: 34944465 PMCID: PMC8698790 DOI: 10.3390/biom11121821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.
Collapse
|
21
|
Castaneda JM, Shimada K, Satouh Y, Yu Z, Devlin DJ, Ikawa M, Matzuk MM. FAM209 associates with DPY19L2, and is required for sperm acrosome biogenesis and fertility in mice. J Cell Sci 2021; 134:272021. [PMID: 34471926 PMCID: PMC8627553 DOI: 10.1242/jcs.259206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023] Open
Abstract
Infertility afflicts up to 15% of couples globally each year with men a contributing factor in 50% of these cases. Globozoospermia is a rare condition found in infertile men, which is characterized by defective acrosome biogenesis leading to the production of round-headed sperm. Here, we report that family with sequence similarity 209 (Fam209) is required for acrosome biogenesis in mouse sperm. FAM209 is a small transmembrane protein conserved among mammals. Loss of Fam209 results in fertility defects that are secondary to abnormalities in acrosome biogenesis during spermiogenesis, reminiscent of globozoospermia. Analysis of the FAM209 proteome identified DPY19L2, whose human orthologue is involved in the majority of globozoospermia cases. Although mutations in human and mouse Dpy19l2 have been shown to cause globozoospermia, no in vivo interacting partners of DPY19L2 have been identified until now. FAM209 colocalizes with DPY19L2 at the inner nuclear membrane to maintain the developing acrosome. Here, we identified FAM209 as the first interacting partner of DPY19L2, and the second protein that is essential for acrosome biogenesis that localizes to the inner nuclear membrane.
Collapse
Affiliation(s)
- Julio M Castaneda
- Research Institute for Microbial Diseases, Department of Experimental Genome Research, Osaka University, Osaka 5620031, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Department of Experimental Genome Research, Osaka University, Osaka 5620031, Japan
| | - Yuhkoh Satouh
- Institute for Molecular and Cellular Regulation, Department of Molecular and Cellular Biology, Gunma University, Gunma 3718512, Japan
| | - Zhifeng Yu
- Department of Pathology & Immunology and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Darius J Devlin
- Department of Pathology & Immunology and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Department of Experimental Genome Research, Osaka University, Osaka 5620031, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
STING protects breast cancer cells from intrinsic and genotoxic-induced DNA instability via a non-canonical, cell-autonomous pathway. Oncogene 2021; 40:6627-6640. [PMID: 34625708 DOI: 10.1038/s41388-021-02037-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
STING (Stimulator of Interferon Genes) is an endoplasmic reticulum-anchored adaptor of the innate immunity best known to trigger pro-inflammatory cytokine expression in response to pathogen infection. In cancer, this canonical pathway can be activated by intrinsic or drug-induced genomic instability, potentiating antitumor immune responses. Here we report that STING downregulation decreases cell survival and increases sensitivity to genotoxic treatment in a panel of breast cancer cell lines in a cell-autonomous manner. STING silencing impaired DNA Damage Response (53BP1) foci formation and increased DNA break accumulation. These newly identified properties were found to be independent of STING partner cGAS and of its canonical pro-inflammatory pathway. STING was shown to partially localize at the inner nuclear membrane in a variety of breast cancer cell models and clinical tumor samples. Interactomics analysis of nuclear STING identified several proteins of the DNA Damage Response, including the three proteins of the DNA-PK complex, further supporting a role of STING in the regulation of genomic stability. In breast and ovarian cancer patients that received adjuvant chemotherapy, high STING expression is associated with increased risk of relapse. In summary, this study highlights an alternative, non-canonical tumor-promoting role of STING that opposes its well-documented function in tumor immunosurveillance.
Collapse
|
23
|
Funk C, Marques da Silveira e Santos D, Ott M, Raschbichler V, Bailer SM. The HSV1 Tail-Anchored Membrane Protein pUL34 Contains a Basic Motif That Supports Active Transport to the Inner Nuclear Membrane Prior to Formation of the Nuclear Egress Complex. Viruses 2021; 13:v13081544. [PMID: 34452409 PMCID: PMC8402719 DOI: 10.3390/v13081544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Herpes simplex virus type 1 nucleocapsids are released from the host nucleus by a budding process through the nuclear envelope called nuclear egress. Two viral proteins, the integral membrane proteins pUL34 and pUL31, form the nuclear egress complex at the inner nuclear membrane, which is critical for this process. The nuclear import of both proteins ensues separately from each other: pUL31 is actively imported through the central pore channel, while pUL34 is transported along the peripheral pore membrane. With this study, we identified a functional bipartite NLS between residues 178 and 194 of pUL34. pUL34 lacking its NLS is mislocalized to the TGN but retargeted to the ER upon insertion of the authentic NLS or a mimic NLS, independent of the insertion site. If co-expressed with pUL31, either of the pUL34-NLS variants is efficiently, although not completely, targeted to the nuclear rim where co-localization with pUL31 and membrane budding seem to occur, comparable to the wild-type. The viral mutant HSV1(17+)Lox-UL34-NLS mt is modestly attenuated but viable and associated with localization of pUL34-NLS mt to both the nuclear periphery and cytoplasm. We propose that targeting of pUL34 to the INM is facilitated by, but not dependent on, the presence of an NLS, thereby supporting NEC formation and viral replication.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (C.F.); (D.M.d.S.eS.)
| | - Débora Marques da Silveira e Santos
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (C.F.); (D.M.d.S.eS.)
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, 70174 Stuttgart, Germany
| | - Melanie Ott
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, 80539 Munich, Germany; (M.O.); (V.R.)
| | - Verena Raschbichler
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, 80539 Munich, Germany; (M.O.); (V.R.)
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany; (C.F.); (D.M.d.S.eS.)
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, 70174 Stuttgart, Germany
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, 80539 Munich, Germany; (M.O.); (V.R.)
- Correspondence: ; Tel.: +49-711-970-4180
| |
Collapse
|
24
|
Jahed Z, Domkam N, Ornowski J, Yerima G, Mofrad MRK. Molecular models of LINC complex assembly at the nuclear envelope. J Cell Sci 2021; 134:269219. [PMID: 34152389 DOI: 10.1242/jcs.258194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope. Herein, we present a review of recent studies over the past few years that have shed light on the mechanisms of SUN-KASH interactions, their higher order assembly, and the molecular mechanisms of force transfer across these complexes.
Collapse
Affiliation(s)
- Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA 92039, USA
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Wojcik S, Kriechbaumer V. Go your own way: membrane-targeting sequences. PLANT PHYSIOLOGY 2021; 185:608-618. [PMID: 33822216 PMCID: PMC8133554 DOI: 10.1093/plphys/kiaa058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 05/05/2023]
Abstract
Membrane-targeting sequences, connected targeting mechanisms, and co-factors orchestrate primary targeting of proteins to membranes.
Collapse
Affiliation(s)
- Stefan Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Author for communication: (V.K.)
| |
Collapse
|
26
|
Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance. Biomolecules 2021; 11:biom11010054. [PMID: 33406777 PMCID: PMC7824755 DOI: 10.3390/biom11010054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Protein homeostasis, or proteostasis, is crucial for the functioning of a cell, as proteins that are mislocalized, present in excessive amounts, or aberrant due to misfolding or other type of damage can be harmful. Proteostasis includes attaining the correct protein structure, localization, and the formation of higher order complexes, and well as the appropriate protein concentrations. Consequences of proteostasis imbalance are evident in a range of neurodegenerative diseases characterized by protein misfolding and aggregation, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. To protect the cell from the accumulation of aberrant proteins, a network of protein quality control (PQC) pathways identifies the substrates and direct them towards refolding or elimination via regulated protein degradation. The main pathway for degradation of misfolded proteins is the ubiquitin-proteasome system. PQC pathways have been first described in the cytoplasm and the endoplasmic reticulum, however, accumulating evidence indicates that the nucleus is an important PQC compartment for ubiquitination and proteasomal degradation of not only nuclear, but also cytoplasmic proteins. In this review, we summarize the nuclear ubiquitin-proteasome pathways involved in proteostasis maintenance in yeast, focusing on inner nuclear membrane-associated degradation (INMAD) and San1-mediated protein quality control.
Collapse
|
27
|
Fluorescent Labeling of the Nuclear Envelope Without Relying on Inner Nuclear Membrane Proteins. Methods Mol Biol 2021; 2274:3-14. [PMID: 34050457 DOI: 10.1007/978-1-0716-1258-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nuclear envelope (NE), a double membrane that separates nuclear components from the cytoplasm, undergoes a breakdown and reformation during cell division. To trace NE dynamics, the NE needs to be labeled with a fluorescent marker, and for this purpose, markers based on inner nuclear membrane (INM) proteins are normally used. However, NE labeling with INM proteins has some limitations. Here, we introduce a protocol for fluorescent labeling and imaging of NE that does not rely on INM proteins, along with protocols for simultaneously imaging two nuclear components and for time-lapse imaging of labeled cells.
Collapse
|
28
|
Adams BM, Canniff NP, Guay KP, Larsen ISB, Hebert DN. Quantitative glycoproteomics reveals cellular substrate selectivity of the ER protein quality control sensors UGGT1 and UGGT2. eLife 2020; 9:e63997. [PMID: 33320095 PMCID: PMC7771966 DOI: 10.7554/elife.63997] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
UDP-glucose:glycoprotein glucosyltransferase (UGGT) 1 and 2 are central hubs in the chaperone network of the endoplasmic reticulum (ER), acting as gatekeepers to the early secretory pathway, yet little is known about their cellular clients. These two quality control sensors control lectin chaperone binding and glycoprotein egress from the ER. A quantitative glycoproteomics strategy was deployed to identify cellular substrates of the UGGTs at endogenous levels in CRISPR-edited HEK293 cells. The 71 UGGT substrates identified were mainly large multidomain and heavily glycosylated proteins when compared to the general N-glycoproteome. UGGT1 was the dominant glucosyltransferase with a preference toward large plasma membrane proteins whereas UGGT2 favored the modification of smaller, soluble lysosomal proteins. This study sheds light on differential specificities and roles of UGGT1 and UGGT2 and provides insight into the cellular reliance on the carbohydrate-dependent chaperone system to facilitate proper folding and maturation of the cellular N-glycoproteome.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Ida Signe Bohse Larsen
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
- Copenhagen Center for Glycomics, University of CopenhagenCopenhagenDenmark
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| |
Collapse
|
29
|
Groves NR, Biel A, Moser M, Mendes T, Amstutz K, Meier I. Recent advances in understanding the biological roles of the plant nuclear envelope. Nucleus 2020; 11:330-346. [PMID: 33161800 PMCID: PMC7746247 DOI: 10.1080/19491034.2020.1846836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.
Collapse
Affiliation(s)
- Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tyler Mendes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Katelyn Amstutz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Abstract
The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.
Collapse
Affiliation(s)
- Bailey Koch
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| | - Hong-Guo Yu
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| |
Collapse
|
31
|
Cheng LC, Baboo S, Lindsay C, Brusman L, Martinez-Bartolomé S, Tapia O, Zhang X, Yates JR, Gerace L. Identification of new transmembrane proteins concentrated at the nuclear envelope using organellar proteomics of mesenchymal cells. Nucleus 2020; 10:126-143. [PMID: 31142202 PMCID: PMC6550788 DOI: 10.1080/19491034.2019.1618175] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The double membrane nuclear envelope (NE), which is contiguous with the ER, contains nuclear pore complexes (NPCs) – the channels for nucleocytoplasmic transport, and the nuclear lamina (NL) – a scaffold for NE and chromatin organization. Since numerous human diseases linked to NE proteins occur in mesenchyme-derived cells, we used proteomics to characterize NE and other subcellular fractions isolated from mesenchymal stem cells and from adipocytes and myocytes. Based on spectral abundance, we calculated enrichment scores for proteins in the NE fractions. We demonstrated by quantitative immunofluorescence microscopy that five little-characterized proteins with high enrichment scores are substantially concentrated at the NE, with Itprip exposed at the outer nuclear membrane, Smpd4 enriched at the NPC, and Mfsd10, Tmx4, and Arl6ip6 likely residing in the inner nuclear membrane. These proteins provide new focal points for studying the functions of the NE. Moreover, our datasets provide a resource for evaluating additional potential NE proteins.
Collapse
Affiliation(s)
- Li-Chun Cheng
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Sabyasachi Baboo
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Cory Lindsay
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Liza Brusman
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | | | - Olga Tapia
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Xi Zhang
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - John R Yates
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Larry Gerace
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
32
|
Mudumbi KC, Czapiewski R, Ruba A, Junod SL, Li Y, Luo W, Ngo C, Ospina V, Schirmer EC, Yang W. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat Commun 2020; 11:2184. [PMID: 32366843 PMCID: PMC7198523 DOI: 10.1038/s41467-020-16033-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Roughly 10% of eukaryotic transmembrane proteins are found on the nuclear membrane, yet how such proteins target and translocate to the nucleus remains in dispute. Most models propose transport through the nuclear pore complexes, but a central outstanding question is whether transit occurs through their central or peripheral channels. Using live-cell high-speed super-resolution single-molecule microscopy we could distinguish protein translocation through the central and peripheral channels, finding that most inner nuclear membrane proteins use only the peripheral channels, but some apparently extend intrinsically disordered domains containing nuclear localization signals into the central channel for directed nuclear transport. These nucleoplasmic signals are critical for central channel transport as their mutation blocks use of the central channels; however, the mutated proteins can still complete their translocation using only the peripheral channels, albeit at a reduced rate. Such proteins can still translocate using only the peripheral channels when central channel is blocked, but blocking the peripheral channels blocks translocation through both channels. This suggests that peripheral channel transport is the default mechanism that was adapted in evolution to include aspects of receptor-mediated central channel transport for directed trafficking of certain membrane proteins.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
| | - Rafal Czapiewski
- The Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Andrew Ruba
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Wangxi Luo
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Christina Ngo
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Valentina Ospina
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Eric C Schirmer
- The Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
33
|
Yamamoto-Hino M, Kawaguchi K, Ono M, Furukawa K, Goto S. Lamin is essential for nuclear localization of the GPI synthesis enzyme PIG-B and GPI-anchored protein production in Drosophila. J Cell Sci 2020; 133:jcs.238527. [PMID: 32051283 PMCID: PMC7104860 DOI: 10.1242/jcs.238527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Membrane lipid biosynthesis is a complex process that occurs in various intracellular compartments. In Drosophila, phosphatidylinositol glycan-B (PIG-B), which catalyzes addition of the third mannose in glycosylphosphatidylinositol (GPI), localizes to the nuclear envelope (NE). Although this NE localization is essential for Drosophila development, the underlying molecular mechanism remains unknown. To elucidate this mechanism, we identified PIG-B-interacting proteins by performing immunoprecipitation followed by proteomic analysis. We then examined which of these proteins are required for the NE localization of PIG-B. Knockdown of Lamin Dm0, a B-type lamin, led to mislocalization of PIG-B from the NE to the endoplasmic reticulum. Lamin Dm0 associated with PIG-B at the inner nuclear membrane, a process that required the tail domain of Lamin Dm0. Furthermore, GPI moieties were distributed abnormally in the Lamin Dm0 mutant. These data indicate that Lamin Dm0 is involved in the NE localization of PIG-B and is required for proper GPI-anchor modification of proteins. Highlighted Article: Lamin plays a role in post-translational modification of plasma membrane proteins by tethering the GPI modification enzyme PIG-B to the inner nuclear membrane.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Kohei Kawaguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Hospital, Chu-o-ku, Tokyo 104-0045, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Satoshi Goto
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
34
|
Rempel IL, Popken P, Ghavami A, Mishra A, Hapsari RA, Wolters AHG, Veldsink AC, Klaassens M, Meinema AC, Poolman B, Giepmans BNG, Onck PR, Steen A, Veenhoff LM. Flexible and Extended Linker Domains Support Efficient Targeting of Heh2 to the Inner Nuclear Membrane. Structure 2020; 28:185-195.e5. [PMID: 31806352 DOI: 10.1016/j.str.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/09/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
The nuclear pore complex (NPC) is embedded in the nuclear envelope and forms the main gateway to the nuclear interior including the inner nuclear membrane (INM). Two INM proteins in yeast are selectively imported. Their sorting signals consist of a nuclear localization signal, separated from the transmembrane domain by a long intrinsically disordered (ID) linker. We used computational models to predict the dynamic conformations of ID linkers and analyzed the INM targeting efficiency of proteins with linker regions with altered Stokes radii and decreased flexibilities. We find that flexibility, Stokes radius, and the frequency at which the linkers are at an extended end-to-end distance larger than 25 nm are good predictors for the targeting of the proteins. The data are consistent with a transport mechanism in which INM targeting of Heh2 is dependent on an ID linker that facilitates the crossing of the approximately 25-nm thick NPC scaffold.
Collapse
Affiliation(s)
- Irina L Rempel
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Petra Popken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ali Ghavami
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ankur Mishra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Rizqiya A Hapsari
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Annemiek C Veldsink
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Marindy Klaassens
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Anne C Meinema
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Bert Poolman
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Anton Steen
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands.
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands.
| |
Collapse
|
35
|
Liu CH, Chien MJ, Chang YC, Cheng YH, Li FA, Mou KY. Combining Proximity Labeling and Cross-Linking Mass Spectrometry for Proteomic Dissection of Nuclear Envelope Interactome. J Proteome Res 2020; 19:1109-1118. [DOI: 10.1021/acs.jproteome.9b00609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheng-Hao Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Jou Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Hsiang Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
36
|
Natarajan N, Foresti O, Wendrich K, Stein A, Carvalho P. Quality Control of Protein Complex Assembly by a Transmembrane Recognition Factor. Mol Cell 2019; 77:108-119.e9. [PMID: 31679820 PMCID: PMC6941229 DOI: 10.1016/j.molcel.2019.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
The inner nuclear membrane (INM) is continuous with the endoplasmic reticulum (ER) but harbors a distinctive proteome essential for nuclear functions. In yeast, the Asi1/Asi2/Asi3 ubiquitin ligase complex safeguards the INM proteome through the clearance of mislocalized ER membrane proteins. How the Asi complex selectively targets mislocalized proteins and coordinates its activity with other ER functions, such as protein biogenesis, is unclear. Here, we uncover a link between INM proteome identity and membrane protein complex assembly in the remaining ER. We show that lone proteins and complex subunits failing to assemble in the ER access the INM for Asi-mediated degradation. Substrates are recognized by direct binding of Asi2 to their transmembrane domains for subsequent ubiquitination by Asi1/Asi3 and membrane extraction. Our data suggest a model in which spatial segregation of membrane protein complex assembly and quality control improves assembly efficiency and reduces the levels of orphan subunits. Quality control of unassembled subunits of membrane complexes is restricted to the INM The Asi complex promotes degradation of folded but unassembled membrane proteins Binding of Asi2 to membrane domain of unassembled subunits mediates their recognition INM quality control maintains complex subunits within near-stoichiometric levels
Collapse
Affiliation(s)
- Nivedita Natarajan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ombretta Foresti
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Kim Wendrich
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alexander Stein
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
37
|
Buchwalter A, Schulte R, Tsai H, Capitanio J, Hetzer M. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. eLife 2019; 8:e49796. [PMID: 31599721 PMCID: PMC6802967 DOI: 10.7554/elife.49796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
The inner nuclear membrane (INM) is a subdomain of the endoplasmic reticulum (ER) that is gated by the nuclear pore complex. It is unknown whether proteins of the INM and ER are degraded through shared or distinct pathways in mammalian cells. We applied dynamic proteomics to profile protein half-lives and report that INM and ER residents turn over at similar rates, indicating that the INM's unique topology is not a barrier to turnover. Using a microscopy approach, we observed that the proteasome can degrade INM proteins in situ. However, we also uncovered evidence for selective, vesicular transport-mediated turnover of a single INM protein, emerin, that is potentiated by ER stress. Emerin is rapidly cleared from the INM by a mechanism that requires emerin's LEM domain to mediate vesicular trafficking to lysosomes. This work demonstrates that the INM can be dynamically remodeled in response to environmental inputs.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Roberta Schulte
- The Salk Institute for Biological StudiesLa JollaUnited States
| | - Hsiao Tsai
- The Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Martin Hetzer
- The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
38
|
The NAE Pathway: Autobahn to the Nucleus for Cell Surface Receptors. Cells 2019; 8:cells8080915. [PMID: 31426451 PMCID: PMC6721735 DOI: 10.3390/cells8080915] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Various growth factors and full-length cell surface receptors such as EGFR are translocated from the cell surface to the nucleoplasm, baffling cell biologists to the mechanisms and functions of this process. Elevated levels of nuclear EGFR correlate with poor prognosis in various cancers. In recent years, nuclear EGFR has been implicated in regulating gene transcription, cell proliferation and DNA damage repair. Different models have been proposed to explain how the receptors are transported into the nucleus. However, a clear consensus has yet to be reached. Recently, we described the nuclear envelope associated endosomes (NAE) pathway, which delivers EGFR from the cell surface to the nucleus. This pathway involves transport, docking and fusion of NAEs with the outer membrane of the nuclear envelope. EGFR is then presumed to be transported through the nuclear pore complex, extracted from membranes and solubilised. The SUN1/2 nuclear envelope proteins, Importin-beta, nuclear pore complex proteins and the Sec61 translocon have been implicated in the process. While this framework can explain the cell surface to nucleus traffic of EGFR and other cell surface receptors, it raises several questions that we consider in this review, together with implications for health and disease.
Collapse
|
39
|
Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet 2019; 65:1099-1106. [PMID: 31020383 PMCID: PMC6744382 DOI: 10.1007/s00294-019-00971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Collapse
|
40
|
Groves NR, McKenna JF, Evans DE, Graumann K, Meier I. A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants. J Cell Sci 2019; 132:jcs226134. [PMID: 30858196 DOI: 10.1242/jcs.226134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph F McKenna
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Capera J, Serrano-Novillo C, Navarro-Pérez M, Cassinelli S, Felipe A. The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 2019; 20:ijms20030734. [PMID: 30744118 PMCID: PMC6386995 DOI: 10.3390/ijms20030734] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
Ion channels are transmembrane proteins that conduct specific ions across biological membranes. Ion channels are present at the onset of many cellular processes, and their malfunction triggers severe pathologies. Potassium channels (KChs) share a highly conserved signature that is necessary to conduct K⁺ through the pore region. To be functional, KChs require an exquisite regulation of their subcellular location and abundance. A wide repertoire of signatures facilitates the proper targeting of the channel, fine-tuning the balance that determines traffic and location. These signature motifs can be part of the secondary or tertiary structure of the protein and are spread throughout the entire sequence. Furthermore, the association of the pore-forming subunits with different ancillary proteins forms functional complexes. These partners can modulate traffic and activity by adding their own signatures as well as by exposing or masking the existing ones. Post-translational modifications (PTMs) add a further dimension to traffic regulation. Therefore, the fate of a KCh is not fully dependent on a gene sequence but on the balance of many other factors regulating traffic. In this review, we assemble recent evidence contributing to our understanding of the spatial expression of KChs in mammalian cells. We compile specific signatures, PTMs, and associations that govern the destination of a functional channel.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
42
|
Koch BA, Jin H, Tomko RJ, Yu HG. The anaphase-promoting complex regulates the degradation of the inner nuclear membrane protein Mps3. J Cell Biol 2019; 218:839-854. [PMID: 30737264 PMCID: PMC6400550 DOI: 10.1083/jcb.201808024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
How resident inner nuclear membrane (INM) proteins are turned over is unclear. Koch et al. identify an APC/C-dependent mechanism controlling the degradation of Mps3, a conserved integral protein of the INM. The nucleus is enclosed by the inner nuclear membrane (INM) and the outer nuclear membrane (ONM). While the ONM is continuous with the endoplasmic reticulum (ER), the INM is independent and separates the nucleoplasm from the ER lumen. Turnover of ER proteins has been well characterized by the ER-associated protein degradation (ERAD) pathway, but very little is known about turnover of resident INM proteins. Here we show that the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase, regulates the degradation of Mps3, a conserved integral protein of the INM. Turnover of Mps3 requires the ubiquitin-conjugating enzyme Ubc7, but was independent of the known ERAD ubiquitin ligases Doa10 and Hrd1 as well as the recently discovered Asi1–Asi3 complex. Using a genetic approach, we have found that Cdh1, a coactivator of APC/C, modulates Mps3 stability. APC/C controls Mps3 degradation through Mps3’s N terminus, which resides in the nucleoplasm and possesses two putative APC/C-dependent destruction motifs. Accumulation of Mps3 at the INM impairs nuclear morphological changes and cell division. Our findings therefore reveal an unexpected mechanism of APC/C-mediated protein degradation at the INM that coordinates nuclear morphogenesis and cell cycle progression.
Collapse
Affiliation(s)
- Bailey A Koch
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Hui Jin
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
43
|
Distribution of Proteins at the Inner Nuclear Membrane Is Regulated by the Asi1 E3 Ligase in Saccharomyces cerevisiae. Genetics 2019; 211:1269-1282. [PMID: 30709848 PMCID: PMC6456303 DOI: 10.1534/genetics.119.301911] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Inner nuclear membrane (INM) protein composition regulates nuclear function, affecting processes such as gene expression, chromosome organization, nuclear shape, and stability. Mechanisms that drive changes in the INM proteome are poorly understood, in part because it is difficult to definitively assay INM composition rigorously and systematically. Using a split-GFP complementation system to detect INM access, we examined the distribution of all C-terminally tagged Saccharomyces cerevisiae membrane proteins in wild-type cells and in mutants affecting protein quality control pathways, such as INM-associated degradation (INMAD), ER-associated degradation, and vacuolar proteolysis. Deletion of the E3 ligase Asi1 had the most specific effect on the INM compared to mutants in vacuolar or ER-associated degradation pathways, consistent with a role for Asi1 in the INMAD pathway. Our data suggest that Asi1 not only removes mistargeted proteins at the INM, but also controls the levels and distribution of native INM components, such as the membrane nucleoporin Pom33. Interestingly, loss of Asi1 does not affect Pom33 protein levels but instead alters Pom33 distribution in the nuclear envelope through Pom33 ubiquitination, which drives INM redistribution. Taken together, our data demonstrate that the Asi1 E3 ligase has a novel function in INM protein regulation in addition to protein turnover.
Collapse
|
44
|
Targeting of LRRC59 to the Endoplasmic Reticulum and the Inner Nuclear Membrane. Int J Mol Sci 2019; 20:ijms20020334. [PMID: 30650545 PMCID: PMC6359192 DOI: 10.3390/ijms20020334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/12/2023] Open
Abstract
LRRC59 (leucine-rich repeat-containing protein 59) is a tail-anchored protein with a single transmembrane domain close to its C-terminal end that localizes to the endoplasmic reticulum (ER) and the nuclear envelope. Here, we investigate the mechanisms of membrane integration of LRRC59 and its targeting to the inner nuclear membrane (INM). Using purified microsomes, we show that LRRC59 can be post-translationally inserted into ER-derived membranes. The TRC-pathway, a major route for post-translational membrane insertion, is not required for LRRC59. Like emerin, another tail-anchored protein, LRRC59 reaches the INM, as demonstrated by rapamycin-dependent dimerization assays. Using different approaches to inhibit importin α/β-dependent nuclear import of soluble proteins, we show that the classic nuclear transport machinery does not play a major role in INM-targeting of LRRC59. Instead, the size of the cytoplasmic domain of LRRC59 is an important feature, suggesting that targeting is governed by passive diffusion.
Collapse
|
45
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
46
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
47
|
Taniyama T, Tsuda N, Sueda S. Fluorescent Labeling of the Nuclear Envelope by Localizing Green Fluorescent Protein on the Inner Nuclear Membrane. ACS Chem Biol 2018; 13:1463-1469. [PMID: 29782140 DOI: 10.1021/acschembio.8b00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.
Collapse
Affiliation(s)
- Toshiyuki Taniyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
| | - Natsumi Tsuda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
| | - Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
- Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
48
|
Lu L, Madugula V. Mechanisms of ciliary targeting: entering importins and Rabs. Cell Mol Life Sci 2018; 75:597-606. [PMID: 28852774 PMCID: PMC11105572 DOI: 10.1007/s00018-017-2629-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Primary cilium is a rod-like plasma membrane protrusion that plays important roles in sensing the cellular environment and initiating corresponding signaling pathways. The sensory functions of the cilium critically depend on the unique enrichment of ciliary residents, which is maintained by the ciliary diffusion barrier. It is still unclear how ciliary cargoes specifically enter the diffusion barrier and accumulate within the cilium. In this review, the organization and trafficking mechanism of the cilium are compared to those of the nucleus, which are much better understood at the moment. Though the cilium differs significantly from the nucleus in terms of molecular and cellular functions, analogous themes and principles in the membrane organization and cargo trafficking are notable between them. Therefore, knowledge in the nuclear trafficking can likely shed light on our understanding of the ciliary trafficking. Here, with a focus on membrane cargoes in mammalian cells, we briefly review various ciliary trafficking pathways from the Golgi to the periciliary membrane. Models for the subsequent import translocation across the diffusion barrier and the enrichment of cargoes within the ciliary membrane are discussed in detail. Based on recent discoveries, we propose a Rab-importin-based model in an attempt to accommodate various observations on ciliary targeting.
Collapse
Affiliation(s)
- Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Viswanadh Madugula
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
49
|
Abstract
This study compares the native structures of cytosolic and nuclear proteasomes, visualized directly within cells. The assembly states and functional states of proteasomes in each compartment were similar, indicating comparable levels of proteolytic activity per proteasome. Nuclear proteasomes were tethered to two different sites at the nuclear pore complex (NPC): the inner nuclear membrane and the NPC basket. Structural analysis revealed mechanistic details of the two tethering interactions. These results present direct evidence that proteasomes bind at NPCs, establishing a cellular hub for protein degradation at the gateway between the nucleus and cytoplasm. This work demonstrates how cryo-electron tomography can reveal biological mechanisms by directly observing the interactions between molecular complexes within the native cellular environment. The partitioning of cellular components between the nucleus and cytoplasm is the defining feature of eukaryotic life. The nuclear pore complex (NPC) selectively gates the transport of macromolecules between these compartments, but it is unknown whether surveillance mechanisms exist to reinforce this function. By leveraging in situ cryo-electron tomography to image the native cellular environment of Chlamydomonas reinhardtii, we observed that nuclear 26S proteasomes crowd around NPCs. Through a combination of subtomogram averaging and nanometer-precision localization, we identified two classes of proteasomes tethered via their Rpn9 subunits to two specific NPC locations: binding sites on the NPC basket that reflect its eightfold symmetry and more abundant binding sites at the inner nuclear membrane that encircle the NPC. These basket-tethered and membrane-tethered proteasomes, which have similar substrate-processing state frequencies as proteasomes elsewhere in the cell, are ideally positioned to regulate transcription and perform quality control of both soluble and membrane proteins transiting the NPC.
Collapse
|
50
|
Bailer SM. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane. Cells 2017; 6:cells6040046. [PMID: 29186822 PMCID: PMC5755504 DOI: 10.3390/cells6040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/29/2023] Open
Abstract
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Collapse
Affiliation(s)
- Susanne M. Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart 70174, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany;
| |
Collapse
|