1
|
Liu Y, Hu Y, Shan ZL. Mitochondrial DNA release mediates metabolic-associated steatohepatitis via activation of inflammatory pathways. Shijie Huaren Xiaohua Zazhi 2025; 33:344-360. [DOI: 10.11569/wcjd.v33.i5.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Affiliation(s)
- Ying Liu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Yang Hu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Zhao-Liang Shan
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| |
Collapse
|
2
|
Zhou T, Li H, Zhang Q, Cheng S, Zhang Q, Yao Y, Dong K, Xu Z, Shu W, Zhang J, Wang H. Integrating Bioinformatics and Experimental Validation to Identify Mitochondrial Permeability Transition-Driven Necrosis-Related lncRNAs that can Serve as Prognostic Biomarkers and Therapeutic Targets in Endometrial Carcinoma. Reprod Sci 2025; 32:876-894. [PMID: 39352634 PMCID: PMC11870901 DOI: 10.1007/s43032-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/06/2024] [Indexed: 03/03/2025]
Abstract
Endometrial carcinoma (EC) is a common malignant tumor in women with high mortality and relapse rates. Mitochondrial permeability transition (MPT)-driven necrosis is a novel form of programmed cell death. The MPT-driven necrosis related lncRNAs (MRLs) involved in EC development remain unclear. We aimed to predict the outcomes of patients with EC by constructing a novel prognostic model based on MRLs and explore potential molecular functions. A risk prognostic model was developed utilizing multi-Cox regression in conjunction with the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, which was based on MRLs. The predictive efficacy of the model was evaluated through receiver operating characteristic (ROC) curve analysis, as well as nomogram and concordance index (C-index) assessments. Patients were categorized into high- and low-risk groups based on their median risk scores. Notably, the high-risk group exhibited significantly poorer overall survival (OS) outcomes. Gene ontology (GO) and Gene set enrichment analysis (GSEA) demonstrated that Hedgehog and cell cycle pathways were enriched in the high-risk group. Tumor Immune Dysfunction and Exclusion (TIDE) displayed that patients in the high-risk group showed a high likelihood of immune evasion and less effective immunotherapy. A significant disparity in immune function was also observed between two groups. Based on the nine-MRLs, drug sensitivity analysis identified several anticancer drugs with potential efficacy in prognosis. Meanwhile, the results demonstrated that OGFRP1 plays a carcinogenic role by affecting mitochondrial membrane permeability in EC. Therefore, the risk model constructed by nine MRLs could be used to predict the clinical outcomes and therapeutic responses in patients with EC effectively.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zheng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, Hubei, China.
| |
Collapse
|
3
|
Liu J, Wei T, Quan L, Dou M, Yue J, Yuan P. Identification and multi-dimensional validation of mitochondrial permeability transition-driven necrosis-related model to assess the prognosis and immunotherapy value in breast cancer. Eur J Med Res 2025; 30:113. [PMID: 39966932 PMCID: PMC11834492 DOI: 10.1186/s40001-025-02370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Breast cancer is a highly prevalent tumor worldwide. Mitochondrial permeability transition (MPT)-driven necrosis is a novel type of cell death induced by mitochondrial membrane disruption. The roles of MPT-driven necrosis in breast cancer remain unclear. METHODS Gene expression and clinicopathologic features were extracted from The Cancer Genome Atlas and Gene Expression Omnibus. We performed a genome landscape analysis of MPT-driven necrosis (MPTdn)-related genes, and a consensus clustering analysis was conducted to construct MPTdn clusters. Next, a risk model was established based on the differentially expressed genes related to MPTdn. We grouped and used external data sets to verify the stability of the model. Subsequently, immune correlation analysis, clinical correlation assessment and drug sensitivity analysis were conducted. Finally, candidate genes were validated in the protein and mRNA levels. RESULTS A total of 39 MPTdn-related genes were identified in our analysis. Most MPTdn-related genes had different expression levels and somatic mutations in breast cancer, and a close interaction was noted among them. A risk model composed of BCL2A1, SCUBE2, NPY1R and CLIC6 was constructed. The low-risk group had better overall survival and higher immune infiltration levels. All three external data sets achieved excellent predictive efficacy. Finally, the immunohistochemistry results indicated that BCL2A1, SCUBE2, NPY1R and CLIC6 were expressed at significantly lower levels in breast cancer tissues, and the transcriptome sequencing results revealed that BCL2A1 and SCUBE2 mRNA expression levels were greater in the nonrecurrence group. CONCLUSIONS We developed a risk model with excellent predictive efficacy based on MPTdn and revealed that BCL2A1, SCUBE2, NPY1R and CLIC6 could be used as the biomarkers, laying a solid foundation for investigations of therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liuliu Quan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Min Dou
- Bengbu Medical University, BengBu, 233030, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Papagiouvannis G, Theodosis-Nobelos P, Rekka EA. A Review on Therapeutic Strategies against Parkinson's Disease: Current Trends and Future Perspectives. Mini Rev Med Chem 2025; 25:96-111. [PMID: 38918988 DOI: 10.2174/0113895575303788240606054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Parkinson's Disease (PD) is the most common neurodegenerative disorder after Alzheimer's Disease and is clinically expressed by movement disorders, such as tremor, bradykinesia, and rigidity. It occurs mainly in the extrapyramidal system of the brain and is characterized by dopaminergic neuron degeneration. L-DOPA, dopaminergic agonists, anticholinergic drugs, and MAO-B inhibitors are currently used as therapeutic agents against PD, however, they have only symptomatic efficacy, mainly due to the complex pathophysiology of the disease. This review summarizes the main aspects of PD pathology, as well as, discusses the most important biochemical dysfunctions during PD, and presents novel multi-targeting compounds, which have been tested for their activity against various targets related to PD. This review selects various research articles from main databases concerning multi-targeting compounds against PD. Molecules targeting more than one biochemical pathway involved in PD, expected to be more effective than the current treatment options, are discussed. A great number of research groups have designed novel compounds following the multi-targeting drug approach. They include structures combining antioxidant, antiinflammatory, and metal-chelating properties. These compounds could be proven useful for effective multi-targeted PD treatment. Multi-targeting drugs could be a useful tool for the design of effective antiparkinson agents. Their efficacy towards various targets implicated in PD could be the key to the radical treatment of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, 1036, Cyprus
| | | | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
5
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
6
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
7
|
Wang LY, Liu XJ, Li QQ, Zhu Y, Ren HL, Song JN, Zeng J, Mei J, Tian HX, Rong DC, Zhang SH. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem 2024; 479:2255-2272. [PMID: 37851176 DOI: 10.1007/s11010-023-04873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Xing-Jian Liu
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Qiu-Qi Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Hui-Li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Jia-Nan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Hui-Xiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Ding-Chao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, People's Republic of China.
| | - Shao-Hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Yi C, Yang J, Zhang T, Xie Z, Xiong Q, Chen D, Jiang S. lncRNA signature mediates mitochondrial permeability transition-driven necrosis in regulating the tumor immune microenvironment of cervical cancer. Sci Rep 2024; 14:17406. [PMID: 39075098 PMCID: PMC11286791 DOI: 10.1038/s41598-024-65990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis (MPTDN) was a regulated variant of cell death triggered by specific stimuli. It played a crucial role in the development of organisms and the pathogenesis of diseases, and may provide new strategies for treating various diseases. However, there was limited research on the mechanisms of MPTDN in cervical cancer (CESC) at present. In this study, Weighted Gene Co-expression Network Analysis (WGCNA) was performed on differentially expressed genes in CESC. The module MEyellow, which showed the highest correlation with the phenotype, was selected for in-depth analysis. It was found that the genes in the MEyellow module may be associated with the tumor immune microenvironment (TIME). Through COX univariate regression and LASSO regression analysis, 6 key genes were identified. These genes were further investigated from multiple perspectives, including their independent diagnostic value, prognostic value, specific regulatory mechanisms in the tumor immune microenvironment, drug sensitivity analysis, and somatic mutation analysis. This study provided a comprehensive exploration of the mechanisms of action of these 6 key genes in CESC patients. And qRT-PCR validation was also conducted. Through COX univariate regression and LASSO coefficient screening of the MEyellow module, 6 key genes were identified: CHRM3-AS2, AC096734.1, BISPR, LINC02446, LINC00944, and DGUOK-AS1. Evaluation of the independent diagnostic value of these 6 key genes revealed that they can serve as independent diagnostic biomarkers. Through correlation analysis among these 6 genes, a potential regulatory mechanism among them was identified. Therefore, a risk prognostic model was established based on the collective action of these 6 genes, and the model showed good performance in predicting the survival period of CESC patients. By studying the relationship between these 6 key genes and the tumor microenvironment of CESC patients from multiple angles, it was found that these 6 genes are key regulatory factors in the tumor immune microenvironment of CESC patients. Additionally, 16 drugs that are associated with these 6 key genes were identified, and 8 small molecule drugs were predicted based on the lncRNA-mRNA network. The 6 key genes can serve as independent biomarkers for diagnosis, and the Risk score of these genes when acting together can be used as an indicator for predicting the clinical survival period of CESC patients. Additionally, these 6 key genes were closely related to the tumor immune microenvironment of CESC patients and were the important regulatory factors in the tumor immune microenvironment of CESC patients.
Collapse
Affiliation(s)
- Chen Yi
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Zilu Xie
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
10
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Lin P, Lu Y, Zheng J, Lin Y, Zhao X, Cui L. Strategic disruption of cancer's powerhouse: precise nanomedicine targeting of mitochondrial metabolism. J Nanobiotechnology 2024; 22:318. [PMID: 38849914 PMCID: PMC11162068 DOI: 10.1186/s12951-024-02585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Nesci S, Algieri C, Tallarida MA, Stanzione R, Marchi S, Pietrangelo D, Trombetti F, D'Ambrosio L, Forte M, Cotugno M, Nunzi I, Bigi R, Maiuolo L, De Nino A, Pinton P, Romeo G, Rubattu S. Molecular mechanisms of naringenin modulation of mitochondrial permeability transition acting on F 1F O-ATPase and counteracting saline load-induced injury in SHRSP cerebral endothelial cells. Eur J Cell Biol 2024; 103:151398. [PMID: 38368729 DOI: 10.1016/j.ejcb.2024.151398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Naringenin (NRG) was characterized for its ability to counteract mitochondrial dysfunction which is linked to cardiovascular diseases. The F1FO-ATPase can act as a molecular target of NRG. The interaction of NRG with this enzyme can avoid the energy transmission mechanism of ATP hydrolysis, especially in the presence of Ca2+ cation used as cofactor. Indeed, NRG was a selective inhibitor of the hydrophilic F1 domain displaying a binding site overlapped with quercetin in the inside surface of an annulus made by the three α and the three β subunits arranged alternatively in a hexamer. The kinetic constant of inhibition suggested that NRG preferred the enzyme activated by Ca2+ rather than the F1FO-ATPase activated by the natural cofactor Mg2+. From the inhibition type mechanism of NRG stemmed the possibility to speculate that NRG can prevent the activation of F1FO-ATPase by Ca2+. The event correlated to the protective role in the mitochondrial permeability transition pore opening by NRG as well as to the reduction of ROS production probably linked to the NRG chemical structure with antioxidant action. Moreover, in primary cerebral endothelial cells (ECs) obtained from stroke prone spontaneously hypertensive rats NRG had a protective effect on salt-induced injury by restoring cell viability and endothelial cell tube formation while also rescuing complex I activity.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy.
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | | | | | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | - Donatella Pietrangelo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00189, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina 04100, Italy
| | | | | | - Ilaria Nunzi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | - Rachele Bigi
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome 00189, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola 48033, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara 44121, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna 40126, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli 86077, Italy; Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00189, Italy
| |
Collapse
|
14
|
Olowofolahan A, Fatunsin O, Olorunsogo O. Modulatory effect of ciprofloxacin, a broad spectrum antibacterial drug, on mPT pore using rat model with estradiol benzoate-induced endometrial hyperplasia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3331-3341. [PMID: 37943297 DOI: 10.1007/s00210-023-02824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial permeability transition (mPT) pore has become a motive for drug evolvement pertinent to dysregulated apoptosis situations. Some chemical compounds impede tumor/cancer via the inception of mPT pore opening. Ciprofloxacin has been demonstrated to hinder growth and effect apoptosis in some cancer cells. However, using a rat model, this study investigated its effect on mitochondrial-mediated cell death via mPT pore opening and estradiol benzoate (EB)-induced endometrial hyperplasia. Mitochondria were isolated using differential centrifugation. The opening of the pore, cytochrome c release (CCR), mitochondrial ATPase (mATPase) activity, mitochondrial lipid peroxidation (mLPO), caspases 3 and 9 levels, and hepatic DNA fragmentation were determined. Histological evaluation of hepatic and uterine sections and immunoexpression levels of Bax, caspase 3, and anti-apoptotic Bcl-2 levels were quantified. The results show that ciprofloxacin caused mPT pore opening, CCR, mATPase activity, effected mLPO, caspases 3 and 9 activations, and hepatic DNA fragmentation. The histology of the liver section showed moderate to marked disseminated congestion at 100 mg/kg, while higher doses showed severe hepatic damage. Severe EH was detected in the EB-treated rats which was attenuated by ciprofloxacin in the treatment group. The Bax and caspase expressions were upregulated by ciprofloxacin while anti-apoptotic Bcl-2 was downregulated. Ciprofloxacin induces mitochondrial-mediated cell death via mPT pore opening and mitigates EB-induced EH in rat models via Bax/caspase/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Adeola Olowofolahan
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Omowumi Fatunsin
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunso Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Ricardez‐Garcia C, Reyes‐Becerril M, Mosqueda‐Martinez E, Mendez‐Romero O, Ruiz‐Ramírez A, Uribe‐Carvajal S. Tissue-specific differences in Ca 2+ sensitivity of the mitochondrial permeability transition pore (PTP). Experiments in male rat liver and heart. Physiol Rep 2024; 12:e16056. [PMID: 38777811 PMCID: PMC11111423 DOI: 10.14814/phy2.16056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Permeability transition pore (PTP) opening dissipates ion and electron gradients across the internal mitochondrial membrane (IMM), including excess Ca2+ in the mitochondrial matrix. After opening, immediate PTP closure must follow to prevent outer membrane disruption, loss of cytochrome c, and eventual apoptosis. Flickering, defined as the rapid alternative opening/closing of PTP, has been reported in heart, which undergoes frequent, large variations in Ca2+. In contrast, in tissues that undergo depolarization events less often, such as the liver, PTP would not need to be as dynamic and thus these tissues would not be as resistant to stress. To evaluate this idea, it was decided to follow the reversibility of the permeability transition (PT) in isolated murine mitochondria from two different tissues: the very dynamic heart, and the liver, which suffers depolarizations less frequently. It was observed that in heart mitochondria PT remained reversible for longer periods and at higher Ca2+ loads than in liver mitochondria. In all cases, Ca2+ uptake was inhibited by ruthenium red and PT was delayed by Cyclosporine A. Characterization of this phenomenon included measuring the rate of oxygen consumption, organelle swelling and Ca2+ uptake and retention. Results strongly suggest that there are tissue-specific differences in PTP physiology, as it resists many more Ca2+ additions before opening in a highly active organ such as the heart than in an organ that seldom suffers Ca2+ loading, such as the liver.
Collapse
Affiliation(s)
- Carolina Ricardez‐Garcia
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Mauricio Reyes‐Becerril
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Edson Mosqueda‐Martinez
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Ofelia Mendez‐Romero
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | - Angelica Ruiz‐Ramírez
- Departamento de Biomedicina CardiovascularInstituto Nacional de Cardiología Ignacio ChávezMexico CityMexico
| | - Salvador Uribe‐Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| |
Collapse
|
16
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Turrin G, Lo Cascio E, Giacon N, Fantinati A, Cristofori V, Illuminati D, Preti D, Morciano G, Pinton P, Agyapong ED, Trapella C, Arcovito A. Spiropiperidine-Based Oligomycin-Analog Ligands To Counteract the Ischemia-Reperfusion Injury in a Renal Cell Model. J Med Chem 2024; 67:586-602. [PMID: 37991993 PMCID: PMC10789258 DOI: 10.1021/acs.jmedchem.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Finding a therapy for ischemia-reperfusion injury, which consists of cell death following restoration of blood flowing into the artery affected by ischemia, is a strong medical need. Nowadays, only the use of broad-spectrum molecular therapies has demonstrated a partial efficacy in protecting the organs following reperfusion, while randomized clinical trials focused on more specific drug targets have failed. In order to overcome this problem, we applied a combination of molecular modeling and chemical synthesis to identify novel spiropiperidine-based structures active in mitochondrial permeability transition pore opening inhibition as a key process to enhance cell survival after blood flow restoration. Our results were confirmed by biological assay on an in vitro cell model on HeLa and human renal proximal tubular epithelial cells and pave the way to further investigation on an in vivo model system.
Collapse
Affiliation(s)
- Giulia Turrin
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Ettore Lo Cascio
- Dipartimento
di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Noah Giacon
- Dipartimento
di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Anna Fantinati
- Department
of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Virginia Cristofori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Davide Illuminati
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Delia Preti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Giampaolo Morciano
- Department
of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
- Laboratory
for Technologies of Advanced Therapies (LTTA), Via Fossato di Mortara,70, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department
of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
- Laboratory
for Technologies of Advanced Therapies (LTTA), Via Fossato di Mortara,70, 44121 Ferrara, Italy
| | - Esther Densu Agyapong
- Department
of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
- Laboratory
for Technologies of Advanced Therapies (LTTA), Via Fossato di Mortara,70, 44121 Ferrara, Italy
| | - Alessandro Arcovito
- Dipartimento
di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione
Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
18
|
Wu Z, Xu N, Li G, Yang W, Zhang C, Zhong H, Wu G, Chen F, Li D. Multi-omics analysis of the oncogenic role of optic atrophy 1 in human cancer. Aging (Albany NY) 2023; 15:12982-12997. [PMID: 37980164 PMCID: PMC10713406 DOI: 10.18632/aging.205214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE To investigate the prognostic significance of optic atrophy 1 (OPA1) in pan-cancer and analyze the relationship between OPA1 and immune infiltration in cancer. RESULTS OPA1 exhibited high expression levels or mutations in various types of tumor cells, and its expression levels were significantly correlated with the survival rate of tumor patients. In different tumor tissues, there was a notable positive correlation between OPA1 expression levels and the infiltration of cancer-associated fibroblasts in the immune microenvironment. Additionally, OPA1 and its related genes were found to be involved in several crucial biological processes, including protein phosphorylation, protein import into the nucleus, and protein binding. CONCLUSION OPA1 is highly expressed or mutated in numerous tumors and is strongly associated with protein phosphorylation, patient prognosis, and immune cell infiltration. OPA1 holds promise as a novel prognostic marker with potential clinical utility across various tumor types. METHODS We examined OPA1 expression in pan-cancer at both the gene and protein levels using various databases, including Tumor Immune Estimation Resource 2.0 (TIMER 2.0), Gene Expression Profiling Interactive Analysis (GEPIA2), UALCAN, and The Human Protein Atlas (HPA). We utilized the Kaplan-Meier plotter and GEPIA datasets to analyze the relationship between OPA1 expression levels and patient prognosis. Through the cBioPortal database, we detected OPA1 mutations in tumors and examined their relationship with patient prognosis. We employed the TIMER 2.0 database to explore the correlation between OPA1 expression levels in tumor tissue and the infiltration of cancer-associated fibroblasts in the immune microenvironment. Furthermore, we conducted a gene search associated with OPA1 and performed enrichment analysis to identify the main signaling pathways and biological processes linked to them.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Nuo Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guoqing Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wen Yang
- The Department of Network Center, Hainan Normal University, Haikou, Hainan 571158, China
| | - Chen Zhang
- Department of Emergency, The Fourth People’s Hospital of Zigong, Zigong, Sichuan 643000, China
| | - Hua Zhong
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Gen Wu
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Fei Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Dianqing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
19
|
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, Nesci S. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med 2023; 21:757. [PMID: 37884933 PMCID: PMC10605416 DOI: 10.1186/s12967-023-04627-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.
Collapse
Affiliation(s)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | | | | | - Harvey J Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
20
|
Hosler J, Hoang N, Edwards KS. The cyclic lipopeptide micafungin induces rupture of isolated mitochondria by reprograming the mitochondrial inner membrane anion channel. Mitochondrion 2023; 71:50-62. [PMID: 37201620 PMCID: PMC10524837 DOI: 10.1016/j.mito.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
The antifungal activity of the drug micafungin, a cyclic lipopeptide that interacts with membrane proteins, may involve inhibition of fungal mitochondria. In humans, mitochondria are spared by the inability of micafungin to cross the cytoplasmic membrane. Using isolated mitochondria, we find that micafungin initiates the uptake of salts, causing rapid swelling and rupture of mitochondria with release of cytochrome c. The inner membrane anion channel (IMAC) is altered by micafungin to transfer both cations and anions. We propose that binding of anionic micafungin to IMAC attracts cations into the ion pore for the rapid transfer of ion pairs.
Collapse
Affiliation(s)
- Jonathan Hosler
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, United States
| | - Ngoc Hoang
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, United States
| | - Kristin Shirey Edwards
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, United States.
| |
Collapse
|
21
|
Ramon-Luing LA, Palacios Y, Ruiz A, Téllez-Navarrete NA, Chavez-Galan L. Virulence Factors of Mycobacterium tuberculosis as Modulators of Cell Death Mechanisms. Pathogens 2023; 12:839. [PMID: 37375529 PMCID: PMC10304248 DOI: 10.3390/pathogens12060839] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) modulates diverse cell death pathways to escape the host immune responses and favor its dissemination, a complex process of interest in pathogenesis-related studies. The main virulence factors of Mtb that alter cell death pathways are classified according to their origin as either non-protein (for instance, lipomannan) or protein (such as the PE family and ESX secretion system). The 38 kDa lipoprotein, ESAT-6 (early antigen-secreted protein 6 kDa), and another secreted protein, tuberculosis necrotizing toxin (TNT), induces necroptosis, thereby allowing mycobacteria to survive inside the cell. The inhibition of pyroptosis by blocking inflammasome activation by Zmp1 and PknF is another pathway that aids the intracellular replication of Mtb. Autophagy inhibition is another mechanism that allows Mtb to escape the immune response. The enhanced intracellular survival (Eis) protein, other proteins, such as ESX-1, SecA2, SapM, PE6, and certain microRNAs, also facilitate Mtb host immune escape process. In summary, Mtb affects the microenvironment of cell death to avoid an effective immune response and facilitate its spread. A thorough study of these pathways would help identify therapeutic targets to prevent the survival of mycobacteria in the host.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| | - Yadira Palacios
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico;
- Department of Biological Systems, Universidad Autónoma Metropolitana, Campus Xochimilco, Mexico City 04960, Mexico
| | - Andy Ruiz
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| | - Norma A. Téllez-Navarrete
- Department of Healthcare Coordination, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| |
Collapse
|
22
|
Liu J, Zhang M, Sun Q, Qin X, Gao T, Xu Y, Han S, Zhang Y, Guo Z. Construction of a novel MPT-driven necrosis-related lncRNAs signature for prognosis prediction in laryngeal squamous cell carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26996-1. [PMID: 37249774 DOI: 10.1007/s11356-023-26996-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/09/2023] [Indexed: 05/31/2023]
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis, a type of programmed cell death, has recently gained much attention in a variety of tumor types. Few studies have been performed to explore the role of MPT-driven necrosis-related lncRNAs (MPTDNRlncRNAs) in laryngeal squamous cell carcinoma (LSCC). The purpose of our study is to screen MPTDNRlncRNAs with prognostic value and to explore their potential roles in LSCC. The RNA-sequencing data and the corresponding clinical data of LSCC patients were obtained from the TCGA database, and those MPT-driven necrosis-related genes were extracted from the Gene Set Enrichment Analysis (GSEA) database. We identified MPTDNRlncRNAs differentially expressed in LSCC. Also, we gained MPT-driven necrosis-related prognostic lncRNAs by univariate cox regression analysis. A novel MPTDNRlncRNAs signature was constructed by LASSO-COX. The accuracy and utility of the MPTDNRlncRNAs signature were evaluated via a variety of statistical methods. Multiple bioinformatics tools were used to explore the underlying difference in biological functions and signaling pathways between the different risk groups. The expressions levels of MPTDNRlncRNAs were analyzed using RT-qPCR in LSCC cell line. Finally, we identified A 5 MPTDNRlncRNAs signature in LSCC. Our prognostic model demonstrated an efficient ability to predict outcomes. The proportion difference of immune cells in the subgroups were significant, such as M0 macrophage and T follicular helper cells. The in vitro experiments suggested that our MPTDNRlncRNAs were significantly different. This 5 MPTDNRlncRNAs signature is a prognostic biomarker for LSCC. More importantly, the novel biologic prognostic model can be utilized for personalized immunotherapy in LSCC patients.
Collapse
Affiliation(s)
- Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Min Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan, 41000, People's Republic of China
| | - Qing Sun
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Xuemei Qin
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Tianle Gao
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yinwei Xu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Shuhui Han
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yujie Zhang
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
23
|
Laudisi F, Stolfi C. Advances in Immunotherapy and Innovative Therapeutic Approaches for Cancer Treatment: Editorial to the Special Issue "State-of-the-Art Molecular Oncology in Italy". Int J Mol Sci 2023; 24:ijms24108929. [PMID: 37240286 DOI: 10.3390/ijms24108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains one of the most common causes of death worldwide, mainly due to late diagnosis and the lack of efficient therapeutic options for patients with advanced diseases [...].
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
24
|
Flores-Romero H, Dadsena S, García-Sáez AJ. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell 2023; 83:843-856. [PMID: 36931255 DOI: 10.1016/j.molcel.2023.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are cellular organelles with a major role in many cellular processes, including not only energy production, metabolism, and calcium homeostasis but also regulated cell death and innate immunity. Their proteobacterial origin makes them a rich source of potent immune agonists, normally hidden within the mitochondrial membrane barriers. Alteration of mitochondrial permeability through mitochondrial pores thus provides efficient mechanisms not only to communicate mitochondrial stress to the cell but also as a key event in the integration of cellular responses. In this regard, eukaryotic cells have developed diverse signaling networks that sense and respond to the release of mitochondrial components into the cytosol and play a key role in controlling cell death and inflammatory pathways. Modulating pore formation at mitochondria through direct or indirect mechanisms may thus open new opportunities for therapy. In this review, we discuss the current understanding of the structure and molecular mechanisms of mitochondrial pores and how they function at the interface between cell death and inflammatory signaling to regulate cellular outcomes.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Li Y, Ouyang Q, Chen W, Liu K, Zhang B, Yao J, Zhang S, Ding J, Cong M, Xu A. An iron-dependent form of non-canonical ferroptosis induced by labile iron. SCIENCE CHINA. LIFE SCIENCES 2023; 66:516-527. [PMID: 36515861 DOI: 10.1007/s11427-022-2244-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death characterized by reactive oxygen species (ROS) generation and lipid peroxidation. Here, we report a novel iron-dependent form of ferroptosis induced by labile iron and investigate the mechanism underlying this process. We find that labile iron-induced ferroptosis is distinct from canonical ferroptosis and is linked to the mitochondrial pathway. Specifically, the mitochondrial calcium uniporter mediates the ferroptosis induced by labile iron. Interestingly, cells undergoing labile iron-induced ferroptosis exhibit cytoplasmic features of oncosis and nuclear features of apoptosis. Furthermore, labile iron-induced ferroptosis involves a unique set of genes. Finally, labile iron-induced ferroptosis was observed in liver subjected to acute iron overload in vivo. Our study reveals a novel form of ferroptosis that may be implicated in diseases caused by acute injury.
Collapse
Affiliation(s)
- Yanmeng Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qin Ouyang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Chen
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ke Liu
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Bei Zhang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jingyi Yao
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Anjian Xu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
26
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
27
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
28
|
Algieri V, Algieri C, Costanzo P, Fiorani G, Jiritano A, Olivito F, Tallarida MA, Trombetti F, Maiuolo L, De Nino A, Nesci S. Novel Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles and Biochemical Valuation on F 1F O-ATPase and Mitochondrial Permeability Transition Pore Formation. Pharmaceutics 2023; 15:498. [PMID: 36839821 PMCID: PMC9967880 DOI: 10.3390/pharmaceutics15020498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
An efficient, eco-compatible, and very cheap method for the construction of fully substituted pyrazoles (Pzs) via eliminative nitrilimine-alkene 1,3-dipolar cycloaddition (ENAC) reaction was developed in excellent yield and high regioselectivity. Enaminones and nitrilimines generated in situ were selected as dipolarophiles and dipoles, respectively. A deep screening of the employed base, solvent, and temperature was carried out to optimize reaction conditions. Recycling tests of ionic liquid were performed, furnishing efficient performance until six cycles. Finally, a plausible mechanism of cycloaddition was proposed. Then, the effect of three different structures of Pzs was evaluated on the F1FO-ATPase activity and mitochondrial permeability transition pore (mPTP) opening. The Pz derivatives' titration curves of 6a, 6h, and 6o on the F1FO-ATPase showed a reduced activity of 86%, 35%, and 31%, respectively. Enzyme inhibition analysis depicted an uncompetitive mechanism with the typical formation of the tertiary complex enzyme-substrate-inhibitor (ESI). The dissociation constant of the ESI complex (Ki') in the presence of the 6a had a lower order of magnitude than other Pzs. The pyrazole core might set the specific mechanism of inhibition with the F1FO-ATPase, whereas specific functional groups of Pzs might modulate the binding affinity. The mPTP opening decreased in Pz-treated mitochondria and the Pzs' inhibitory effect on the mPTP was concentration-dependent with 6a and 6o. Indeed, the mPTP was more efficiently blocked with 0.1 mM 6a than with 1 mM 6a. On the contrary, 1 mM 6o had stronger desensitization of mPTP formation than 0.1 mM 6o. The F1FO-ATPase is a target of Pzs blocking mPTP formation.
Collapse
Affiliation(s)
- Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Mitochondrial Biochemistry Lab, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Giulia Fiorani
- Department Molecular Sciences and Nanosystems, University Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, VE, Italy
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Matteo Antonio Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Mitochondrial Biochemistry Lab, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Mitochondrial Biochemistry Lab, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
29
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Ruisoto P, Navarro-Jiménez E, Ramos-Campo DJ, Tornero-Aguilera JF. Metabolic Health, Mitochondrial Fitness, Physical Activity, and Cancer. Cancers (Basel) 2023; 15:814. [PMID: 36765772 PMCID: PMC9913323 DOI: 10.3390/cancers15030814] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer continues to be a significant global health issue. Traditional genetic-based approaches to understanding and treating cancer have had limited success. Researchers are increasingly exploring the impact of the environment, specifically inflammation and metabolism, on cancer development. Examining the role of mitochondria in this context is crucial for understanding the connections between metabolic health, physical activity, and cancer. This study aimed to review the literature on this topic through a comprehensive narrative review of various databases including MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. The review highlighted the importance of mitochondrial function in overall health and in regulating key events in cancer development, such as apoptosis. The concept of "mitochondrial fitness" emphasizes the crucial role of mitochondria in cell metabolism, particularly their oxidative functions, and how proper function can prevent replication errors and regulate apoptosis. Engaging in high-energy-demanding movement, such as exercise, is a powerful intervention for improving mitochondrial function and increasing resistance to environmental stressors. These findings support the significance of considering the role of the environment, specifically inflammation and metabolism, in cancer development and treatment. Further research is required to fully understand the mechanisms by which physical activity improves mitochondrial function and potentially reduces the risk of cancer.
Collapse
Affiliation(s)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n Villaviciosa de Odón, 28670 Madrid, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Navarre, Spain
| | | | | | | |
Collapse
|
30
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
31
|
Zhang K, Fu J, Liu X, Guo Y, Han M, Liu M, Wang X. Mitochondrial-Targeted Triphenylphosphonium-Hydroxycamptothecin Conjugate and Its Nano-Formulations for Breast Cancer Therapy: In Vitro and In Vivo Investigation. Pharmaceutics 2023; 15:pharmaceutics15020388. [PMID: 36839710 PMCID: PMC9961676 DOI: 10.3390/pharmaceutics15020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are involved in various stages of cancer cell diffusion and metastasis. Therefore, targeting tumor mitochondria with antineoplastic medicines to cause mitochondria to initiate apoptosis may be an effective strategy for cancer therapy. Here, in order to enhance the anti-tumor efficacy of the antineoplastic agent hydroxycamptothecin (HCPT), the mitochondrial targeting ligand 4-(carboxybutyl) triphenylphosphine bromide (TPP) was attached to HCPT by an ester linkage. The resultant TPP-HCPT (TH) conjugate could self-assemble into nano-aggregates, with a mean particle size of 203.2 nm and a polydispersity index (PDI) value of 0.312. The TH conjugate could also co-assembly with mPEG3000-PLGA5000 into nanoparticles (TH-NPs), with a mean diameter of 86.41 nm, a PDI value of 0.256 and a zeta potential of -0.125 mV. In contrast to HCPT injections, TH aggregates displayed enhanced cellular uptake, mitochondria-targetability and cytotoxicity against 4T1 cells, while TH-NPs showed even better improvement than TH aggregates. In the in vivo study, TH aggregates displayed higher anti-tumor efficacy in 4T1 tumor-bearing mice than HCPT injections (tumor inhibition rate, 55.71% vs. 69.17%), and TH-NPs displayed more superior anti-tumor effects (tumor inhibition rate, 80.02%). In conclusion, our research demonstrated that the TPP-HCPT conjugate and its nano-formulations, including TH aggregates and TH-NPs, may be a promising mitochondria-targeting anticancer medicine for cancer therapy. As far as we know, this is the first report in which TPP and HCPT have been conjugated directly for this aim.
Collapse
Affiliation(s)
- Kunfeng Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaorui Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: (M.L.); (X.W.)
| | - Xiangtao Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (X.W.)
| |
Collapse
|
32
|
Gonzalez-Alcocer A, Duarte-Jurado AP, Soto-Dominguez A, Loera-Arias MDJ, Villarreal-Silva EE, Saucedo-Cardenas O, de Oca-Luna RM, Garcia-Garcia A, Rodriguez-Rocha H. Unscrambling the Role of Redox-Active Biometals in Dopaminergic Neuronal Death and Promising Metal Chelation-Based Therapy for Parkinson's Disease. Int J Mol Sci 2023; 24:1256. [PMID: 36674772 PMCID: PMC9867532 DOI: 10.3390/ijms24021256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Biometals are all metal ions that are essential for all living organisms. About 40% of all enzymes with known structures require biometals to function correctly. The main target of damage by biometals is the central nervous system (CNS). Biometal dysregulation (metal deficiency or overload) is related to pathological processes. Chronic occupational and environmental exposure to biometals, including iron and copper, is related to an increased risk of developing Parkinson's disease (PD). Indeed, biometals have been shown to induce a dopaminergic neuronal loss in the substantia nigra. Although the etiology of PD is still unknown, oxidative stress dysregulation, mitochondrial dysfunction, and inhibition of both the ubiquitin-proteasome system (UPS) and autophagy are related to dopaminergic neuronal death. Herein, we addressed the involvement of redox-active biometals, iron, and copper, as oxidative stress and neuronal death inducers, as well as the current metal chelation-based therapy in PD.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Ana Patricia Duarte-Jurado
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Adolfo Soto-Dominguez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Eliud Enrique Villarreal-Silva
- Servicio de Neurocirugía y Terapia Endovascular Neurológica, Hospital Universitario, Dr. Jose Eleuterio Gonzalez, Monterrey 64460, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| |
Collapse
|
33
|
Mitochondrial Dysfunction: The Hidden Player in the Pathogenesis of Atherosclerosis? Int J Mol Sci 2023; 24:ijms24021086. [PMID: 36674602 PMCID: PMC9861427 DOI: 10.3390/ijms24021086] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a multifactorial inflammatory pathology that involves metabolic processes. Improvements in therapy have drastically reduced the prognosis of cardiovascular disease. Nevertheless, a significant residual risk is still relevant, and is related to unmet therapeutic targets. Endothelial dysfunction and lipid infiltration are the primary causes of atherosclerotic plaque progression. In this contest, mitochondrial dysfunction can affect arterial wall cells, in particular macrophages, smooth muscle cells, lymphocytes, and endothelial cells, causing an increase in reactive oxygen species (ROS), leading to oxidative stress, chronic inflammation, and intracellular lipid deposition. The detection and characterization of mitochondrial DNA (mtDNA) is crucial for assessing mitochondrial defects and should be considered the goal for new future therapeutic interventions. In this review, we will focus on a new idea, based on the analysis of data from many research groups, namely the link between mitochondrial impairment and endothelial dysfunction and, in particular, its effect on atherosclerosis and aging. Therefore, we discuss known and novel mitochondria-targeting therapies in the contest of atherosclerosis.
Collapse
|
34
|
Wang X, Li Y, Li X, Sun L, Feng Y, Sa F, Ge Y, Yang S, Liu Y, Li W, Cheng X. Transcriptome and metabolome profiling unveils the mechanisms of naphthalene acetic acid in promoting cordycepin synthesis in Cordyceps militaris. Front Nutr 2023; 10:1104446. [PMID: 36875834 PMCID: PMC9977999 DOI: 10.3389/fnut.2023.1104446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cordycepin, an important active substance in Cordyceps militaris, possesses antiviral and other beneficial activities. In addition, it has been reported to effectively promote the comprehensive treatment of COVID-19 and thus has become a research hotspot. The addition of naphthalene acetic acid (NAA) is known to significantly improve the yield of cordycepin; however, its related molecular mechanism remains unclear. We conducted a preliminary study on C. militaris with different concentrations of NAA. We found that treatment with different concentrations of NAA inhibited the growth of C. militaris, and an increase in its concentration significantly improved the cordycepin content. In addition, we conducted a transcriptome and metabolomics association analysis on C. militaris treated with NAA to understand the relevant metabolic pathway of cordycepin synthesis under NAA treatment and elucidate the relevant regulatory network of cordycepin synthesis. Weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analysis revealed that genes and metabolites encoding cordycepin synthesis in the purine metabolic pathway varied significantly with the concentration of NAA. Finally, we proposed a metabolic pathway by analyzing the relationship between gene-gene and gene-metabolite regulatory networks, including the interaction of cordycepin synthesis key genes; key metabolites; purine metabolism; TCA cycle; pentose phosphate pathway; alanine, aspartate, and glutamate metabolism; and histidine metabolism. In addition, we found the ABC transporter pathway to be significantly enriched. The ABC transporters are known to transport numerous amino acids, such as L-glutamate, and participate in the amino acid metabolism that affects the synthesis of cordycepin. Altogether, multiple channels work together to double the cordycepin yield, thereby providing an important reference for the molecular network relationship between the transcription and metabolism of cordycepin synthesis.
Collapse
Affiliation(s)
- Xin Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Xiue Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Lei Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Fangping Sa
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yupeng Ge
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Shude Yang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yu Liu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Weihuan Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
35
|
Wen X, Wang Y, Zhu Z, Guo S, Qian J, Zhu J, Yang Z, Qiu W, Li G, Huang L, Jiang M, Tan L, Zheng H, Shu Q, Li Y. Mechanosensitive channel MscL induces non-apoptotic cell death and its suppression of tumor growth by ultrasound. Front Chem 2023; 11:1130563. [PMID: 36936526 PMCID: PMC10014542 DOI: 10.3389/fchem.2023.1130563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Mechanosensitive channel of large conductance (MscL) is the most thoroughly studied mechanosensitive channel in prokaryotes. Owing to its small molecular weight, clear mechanical gating mechanism, and nanopore forming ability upon opening, accumulating studies are implemented in regulating cell function by activating mechanosensitive channel of large conductance in mammalian cells. This study aimed to investigate the potentials of mechanosensitive channel of large conductance as a nanomedicine and a mechano-inducer in non-small cell lung cancer (NSCLC) A549 cells from the view of molecular pathways and acoustics. The stable cytoplasmic vacuolization model about NSCLC A549 cells was established via the targeted expression of modified mechanosensitive channel of large conductance channels in different subcellular organelles. Subsequent morphological changes in cellular component and expression levels of cell death markers are analyzed by confocal imaging and western blots. The permeability of mitochondrial inner membrane (MIM) exhibited a vital role in cytoplasmic vacuolization formation. Furthermore, mechanosensitive channel of large conductance channel can be activated by low intensity focused ultrasound (LIFU) in A549 cells, and the suppression of A549 tumors in vivo was achieved by LIFU with sound pressure as low as 0.053 MPa. These findings provide insights into the mechanisms underlying non-apoptotic cell death, and validate the nanochannel-based non-invasive ultrasonic strategy for cancer therapy.
Collapse
Affiliation(s)
- Xiaoxu Wen
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Wang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenya Zhu
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuangshuang Guo
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Qian
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjun Zhu
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenni Yang
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China
| | - Guofeng Li
- School of Biomedical Engineering, Guangdong Medical University, Songshan Lake Science and Technology Park, Dongguan, China
| | - Li Huang
- School of Biomedical Engineering, Guangdong Medical University, Songshan Lake Science and Technology Park, Dongguan, China
| | - Mizu Jiang
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhua Tan
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Correspondence: Qiang Shu, ; Yuezhou Li,
| | - Yuezhou Li
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Correspondence: Qiang Shu, ; Yuezhou Li,
| |
Collapse
|
36
|
Algieri C, Bernardini C, Marchi S, Forte M, Tallarida MA, Bianchi F, La Mantia D, Algieri V, Stanzione R, Cotugno M, Costanzo P, Trombetti F, Maiuolo L, Forni M, De Nino A, Di Nonno F, Sciarretta S, Volpe M, Rubattu S, Nesci S. 1,5-disubstituted-1,2,3-triazoles counteract mitochondrial dysfunction acting on F 1F O-ATPase in models of cardiovascular diseases. Pharmacol Res 2023; 187:106561. [PMID: 36410676 DOI: 10.1016/j.phrs.2022.106561] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The compromised viability and function of cardiovascular cells are rescued by small molecules of triazole derivatives (Tzs), identified as 3a and 3b, by preventing mitochondrial dysfunction. The oxidative phosphorylation improves the respiratory control rate in the presence of Tzs independently of the substrates that energize the mitochondria. The F1FO-ATPase, the main candidate in mitochondrial permeability transition pore (mPTP) formation, is the biological target of Tzs and hydrophilic F1 domain of the enzyme is depicted as the binding region of Tzs. The protective effect of Tz molecules on isolated mitochondria was corroborated by immortalized cardiomyocytes results. Indeed, mPTP opening was attenuated in response to ionomycin. Consequently, increased mitochondrial roundness and reduction of both length and interconnections between mitochondria. In in-vitro and ex-vivo models of cardiovascular pathologies (i.e., hypoxia-reoxygenation and hypertension) were used to evaluate the Tzs cardioprotective action. Key parameters of porcine aortic endothelial cells (pAECs) oxidative metabolism and cell viability were not affected by Tzs. However, in the presence of either 1 μM 3a or 0.5 μM 3b the impaired cell metabolism of pAECs injured by hypoxia-reoxygenation was restored to control respiratory profile. Moreover, endothelial cells isolated from SHRSP exposed to high-salt treatment rescued the Complex I activity and the endothelial capability to form vessel-like tubes and vascular function in presence of Tzs. As a result, the specific biochemical mechanism of Tzs to block Ca2+-activated F1FO-ATPase protected cell viability and preserved the pAECs bioenergetic metabolism upon hypoxia-reoxygenation injury. Moreover, SHRSP improved vascular dysfunction in response to a high-salt treatment.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | | | | | | | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | - Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | | | | | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna 40126, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Cosenza 87036, Italy
| | | | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli 86077, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina 04100, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00189, Italy; IRCCS San Raffaele, Rome 00163, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli 86077, Italy; Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00189, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia 40064, Italy.
| |
Collapse
|
37
|
Liu H, Fan H, He P, Zhuang H, Liu X, Chen M, Zhong W, Zhang Y, Zhen C, Li Y, Jiang H, Meng T, Xu Y, Zhao G, Feng D. Prohibitin 1 regulates mtDNA release and downstream inflammatory responses. EMBO J 2022; 41:e111173. [PMID: 36245295 PMCID: PMC9753472 DOI: 10.15252/embj.2022111173] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 01/15/2023] Open
Abstract
Exposure of mitochondrial DNA (mtDNA) to the cytosol activates innate immune responses. But the mechanisms by which mtDNA crosses the inner mitochondrial membrane are unknown. Here, we found that the inner mitochondrial membrane protein prohibitin 1 (PHB1) plays a critical role in mtDNA release by regulating permeability across the mitochondrial inner membrane. Loss of PHB1 results in alterations in mitochondrial integrity and function. PHB1-deficient macrophages, serum from myeloid-specific PHB1 KO (Phb1MyeKO) mice, and peripheral blood mononuclear cells from neonatal sepsis patients show increased interleukin-1β (IL-1β) levels. PHB1 KO mice are also intolerant of lipopolysaccharide shock. Phb1-depleted macrophages show increased cytoplasmic release of mtDNA and inflammatory responses. This process is suppressed by cyclosporine A and VBIT-4, which inhibit the mitochondrial permeability transition pore (mPTP) and VDAC oligomerization. Inflammatory stresses downregulate PHB1 expression levels in macrophages. Under normal physiological conditions, the inner mitochondrial membrane proteins, AFG3L2 and SPG7, are tethered to PHB1 to inhibit mPTP opening. Downregulation of PHB1 results in enhanced interaction between AFG3L2 and SPG7, mPTP opening, mtDNA release, and downstream inflammatory responses.
Collapse
Affiliation(s)
- Hao Liu
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Hualin Fan
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- Department of Cardiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of CardiologyHeyuan People's HospitalHeyuanChina
| | - Haixia Zhuang
- Department of AnesthesiologySecond Clinical College of Guangzhou Medical UniversityGuangzhouChina
| | - Xiao Liu
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Meiting Chen
- Emergency DepartmentThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenwei Zhong
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Yi Zhang
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Cien Zhen
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- Department of Cardiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yanling Li
- Emergency DepartmentThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huilin Jiang
- Emergency DepartmentThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Tian Meng
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Yiming Xu
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Guojun Zhao
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
| | - Du Feng
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
38
|
Yang J, Xiao B, Li Y, Liu X, Zhang M, Luo Y, Wang B, Liu H. A novel biflavone from Reineckia carnea induces apoptosis of human renal cancer 786-O cells. Front Pharmacol 2022; 13:1053184. [PMID: 36532756 PMCID: PMC9756134 DOI: 10.3389/fphar.2022.1053184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system, which is highly invasive, metastatic, and insensitive to radiotherapy and chemotherapy. Chinese herbal medicine has always been an important source of anti-tumor drug development. Reineckia carnea Kunth is a traditional herb commonly used by the Miao nationality in southwest China. In this study, the extract of Reineckia carnea was isolated and purified by reverse phase preparative chromatography and other chromatographic techniques. According to the physicochemical properties and spectral data, the structure of the compound was identified, and a novel biflavone compound named Reineckia-biflavone A (RFA) was obtained. The result of antiproliferative activity showed that RFA had cytotoxicity on 786-O cells with an IC50 value of 19.34 μmol/L. The results of CCK-8 and hemolysis assays showed that RFA was not significantly cytotoxic to both red blood cells (RBC) and peripheral blood mononuclear cells (PBMC). By Hoechst 33258 apoptosis staining, typical apoptotic morphology was observed under fluorescence microscope. RFA could induce the apoptosis of 786-O cells with the increase of apoptosis rate. The cell cycle tests showed that the cell proportion was obviously arrested in the S phase. At the same time, RFA could decrease the mitochondrial membrane potential and increase the intracellular free Ca2+ concentration. Western blot showed that the expression levels of pro-apoptotic proteins (Bax, Caspase-3, Cleaved Caspase-3, and Cytochrome c) in cells rose, while the expression level of anti-apoptotic proteins (Bcl-2) declined significantly. In conclusion, this study suggests that the RFA is a new biflavone determined by SciFinder retrieval. The apoptosis may be triggered by RFA through the mitochondrial pathway, which is mediated by up-regulating the intracellular calcium ion, down-regulating the mitochondrial membrane potential, and changing the apoptosis-related proteins.
Collapse
Affiliation(s)
- Jianqiong Yang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Yamei Li
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoxuan Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yaoling Luo
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Biao Wang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Hai Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China
| |
Collapse
|
39
|
Yu I, Wu R, Tokumaru Y, Terracina KP, Takabe K. The Role of the Microbiome on the Pathogenesis and Treatment of Colorectal Cancer. Cancers (Basel) 2022; 14:5685. [PMID: 36428777 PMCID: PMC9688177 DOI: 10.3390/cancers14225685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiome has long been known to play a role in various aspects of health modulation, including the pathogenesis of colorectal cancer (CRC). With immunotherapy recently emerging as a successful treatment in microsatellite instability high (MSI-high) CRC, and with a newly demonstrated involvement of the gut microbiome in the modulation of therapeutic responses, there has been an explosion of research into the mechanisms of microbial effects on CRC. Harnessing and reprogramming the microbiome may allow for the expansion of these successes to broader categories of CRC, the prevention of CRC in high-risk patients, and the enhancement of standard treatments. In this review, we pull together both well-documented phenomena and recent discoveries that pertain to the microbiome and CRC. We explore the microbial mechanisms associated with CRC pathogenesis and progression, recent advancements in CRC systemic therapy, potential options for diagnosis and prevention, as well as directions for future research.
Collapse
Affiliation(s)
- Irene Yu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
40
|
Peterson AA, Rangwala AM, Thakur MK, Ward PS, Hung C, Outhwaite IR, Chan AI, Usanov DL, Mootha VK, Seeliger MA, Liu DR. Discovery and molecular basis of subtype-selective cyclophilin inhibitors. Nat Chem Biol 2022; 18:1184-1195. [PMID: 36163383 PMCID: PMC9596378 DOI: 10.1038/s41589-022-01116-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Although cyclophilins are attractive targets for probing biology and therapeutic intervention, no subtype-selective cyclophilin inhibitors have been described. We discovered novel cyclophilin inhibitors from the in vitro selection of a DNA-templated library of 256,000 drug-like macrocycles for cyclophilin D (CypD) affinity. Iterated macrocycle engineering guided by ten X-ray co-crystal structures yielded potent and selective inhibitors (half maximal inhibitory concentration (IC50) = 10 nM) that bind the active site of CypD and also make novel interactions with non-conserved residues in the S2 pocket, an adjacent exo-site. The resulting macrocycles inhibit CypD activity with 21- to >10,000-fold selectivity over other cyclophilins and inhibit mitochondrial permeability transition pore opening in isolated mitochondria. We further exploited S2 pocket interactions to develop the first cyclophilin E (CypE)-selective inhibitor, which forms a reversible covalent bond with a CypE S2 pocket lysine, and exhibits 30- to >4,000-fold selectivity over other cyclophilins. These findings reveal a strategy to generate isoform-selective small-molecule cyclophilin modulators, advancing their suitability as targets for biological investigation and therapeutic development.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aziz M Rangwala
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Patrick S Ward
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Christie Hung
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Ian R Outhwaite
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Alix I Chan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Dmitry L Usanov
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy. Int J Mol Sci 2022; 23:ijms231911343. [PMID: 36232638 PMCID: PMC9569617 DOI: 10.3390/ijms231911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.
Collapse
|
42
|
Drummond-Main CD, Ahn Y, Kesler M, Gavrilovici C, Kim DY, Kiroski I, Baglot SL, Chen A, Sharkey KA, Hill MN, Teskey GC, Rho JM. Cannabidiol Impairs Brain Mitochondrial Metabolism and Neuronal Integrity. Cannabis Cannabinoid Res 2022; 8:283-298. [PMID: 36108318 PMCID: PMC10061329 DOI: 10.1089/can.2022.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The mechanisms underlying the clinical effects of CBD remain poorly understood. Given the increasing evidence for CBD's effects on mitochondria, we sought to examine in more detail whether CBD impacts mitochondrial function and neuronal integrity. Methods: We utilized BE(2)-M17 neuroblastoma cells or acutely isolated brain mitochondria from rodents using a Seahorse extracellular flux analyzer and a fluorescent spectrofluorophotometer assay. Mitochondrial ion channel activity and hippocampal long-term potentiation were measured using standard cellular electrophysiological methods. Spatial learning/memory function was evaluated using the Morris water maze task. Plasma concentrations of CBD were assessed with liquid chromatography-mass spectrometry, and cellular viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction neuronal injury assay. Results: At low micromolar concentrations, CBD reduced mitochondrial respiration, the threshold for mitochondrial permeability transition, and calcium uptake, blocked a novel mitochondrial chloride channel, and reduced the viability of hippocampal cells. These effects were paralleled by in vitro and in vivo learning/memory deficits. We further found that these effects were independent of cannabinoid receptor 1 and mitochondrial G-protein-coupled receptor 55. Conclusion: Our results provide evidence for concentration- and dose-dependent toxicological effects of CBD, findings that may bear potential relevance to clinical populations.
Collapse
Affiliation(s)
- Christopher D. Drummond-Main
- Cell Biology & Anatomy, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Younghee Ahn
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Mitchell Kesler
- Cell Biology & Anatomy, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Alberta Children Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Cezar Gavrilovici
- Department of Neurosciences, University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
- Department of Pediatrics, and University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
| | - Do Young Kim
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ivana Kiroski
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Samantha L. Baglot
- Cell Biology & Anatomy, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Amy Chen
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Matthew N. Hill
- Cell Biology & Anatomy, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - G. Campbell Teskey
- Cell Biology & Anatomy, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Neurosciences, University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
- Department of Pediatrics, and University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
| | - Jong M. Rho
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Department of Pharmacology, University of California San Diego, Rady Children's Hospital, San Diego, San Diego, California, USA
| |
Collapse
|
43
|
Cao Z, Lin J, Fu G, Niu L, Yang Z, Cai W. An integrated bioinformatic investigation of mitochondrial energy metabolism genes in colon adenocarcinoma followed by preliminary validation of CPT2 in tumor immune infiltration. Front Immunol 2022; 13:959967. [PMID: 36177002 PMCID: PMC9513322 DOI: 10.3389/fimmu.2022.959967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background The prognosis for colon adenocarcinoma (COAD) today remains poor. Changes in mitochondria-related genes and metabolic reprogramming are related to tumor growth, metastasis, and immune evasion and are key factors in tumor genesis and development. Methods TCGA database was used to analyze the differentially expressed mitochondrial energy metabolism pathway-related genes (MMRGs) in COAD patients, and the mutation of MMRG in tumor cells, the biological processes involved, and the correlation with tumor immunity were also analyzed. Then, MMRG and MMRG-related genes were used to divide COAD patients into different subtypes, and immunocorrelation analysis and survival analysis were performed. Finally, univariate regression analysis and LASSO regression analysis were used to construct a prognostic risk model for COAD patients, which was verified by the GEO database and evaluated by Kaplan–Meier (K-M) and receiver operating characteristic (ROC) curves, and the correlation between the risk model and immunity and clinical subtypes based on MMRG was analyzed. Results In this study, the MMRG patterns and tumor immune microenvironment characteristics in COAD patients were systematically evaluated by clustering the expression of 188 MMRGs. We identified two subtypes of COAD with different clinical and immunological characteristics. Eight of the 28 differentially expressed MMRG genes were used to construct risk scores. ROC and K-M curves suggested that the risk model could well predict the prognosis of COAD patients, and the risk model was related to immune cell infiltration and immune function. Conclusions The two COAD subtypes identified by MMRG are helpful for the clinical differentiation of patients with different prognoses and tumor progressions, and the risk score can assist the clinical evaluation of patient prognosis. Our results suggest that CPT2 contributes to the recruitment and regulation of neutrophils in COAD. CPT2 may act as a valuable biomarker for COAD immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Cai
- *Correspondence: Zheyu Yang, ; Wei Cai,
| |
Collapse
|
44
|
Cell death affecting the progression of gastric cancer. Cell Death Dis 2022; 8:377. [PMID: 36038533 PMCID: PMC9424204 DOI: 10.1038/s41420-022-01161-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/07/2022]
Abstract
Gastric cancer is a gastrointestinal tumor with high morbidity and mortality rates. Several factors influence its progression, cell death being an important element. In this review, we summarized the effects of necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, and eight less common cell death modalities on gastric cancer cells and the tumor microenvironment, detailed the molecular mechanisms of various cell death and their major regulatory pathways in gastric cancer, explored the prevalence and complexity of cell death in gastric cancer progression and highlighted the potentials of cell death-related therapies in gastric cancer.
Collapse
|
45
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
46
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
47
|
Mitochondrial DNA Efflux Maintained in Gingival Fibroblasts of Patients with Periodontitis through ROS/mPTP Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1000213. [PMID: 35720188 PMCID: PMC9201712 DOI: 10.1155/2022/1000213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022]
Abstract
Mitochondria have their own mitochondrial DNA (mtDNA). Aberrant mtDNA is associated with inflammatory diseases. mtDNA is believed to induce inflammation via the abnormal mtDNA release. Periodontitis is an infectious, oral inflammatory disease. Human gingival fibroblasts (HGFs) from patients with chronic periodontitis (CP) have shown to generate higher reactive oxygen species (ROS) that cause oxidative stress and have decreased mtDNA copy number. Firstly, cell-free mtDNA was identified in plasma from CP mice through qRT-PCR. Next, we investigated whether mtDNA efflux was maintained in primary cultures of HGFs from CP patients and the possible underlying mechanisms using adenovirus-mediated transduction live cell imaging and qRT-PCR analysis. Here, we reported that mtDNA was increased in plasma from the CP mice. Additionally, we confirmed that CP HGFs had significant mtDNA efflux from mitochondria compared with healthy HGFs. Furthermore, lipopolysaccharide (LPS) from Porphyromonas gingivalis can also cause mtDNA release in healthy HGFs. Mechanistically, LPS upregulated ROS levels and mitochondrial permeability transition pore (mPTP) opening by inhibition of pyruvate dehydrogenase kinase (PDK)2 expression, resulting in mtDNA release. Importantly, mtDNA efflux was even persistent in HGFs after LPS was removed and cells were passaged to the next three generations, indicating that mtDNA abnormalities were retained in HGFs in vitro, similar to the primary hosts. Taken together, our results elucidate that mtDNA efflux was maintained in HGFs from periodontitis patients through abnormal ROS/mPTP activity. Therefore, our work indicates that persistent mtDNA efflux may be a possible diagnostic and therapeutic target for patients with periodontitis.
Collapse
|
48
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
49
|
Loftus LV, Amend SR, Pienta KJ. Interplay between Cell Death and Cell Proliferation Reveals New Strategies for Cancer Therapy. Int J Mol Sci 2022; 23:4723. [PMID: 35563113 PMCID: PMC9105727 DOI: 10.3390/ijms23094723] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Cell division and cell death are fundamental processes governing growth and development across the tree of life. This relationship represents an evolutionary link between cell cycle and cell death programs that is present in all cells. Cancer is characterized by aberrant regulation of both, leading to unchecked proliferation and replicative immortality. Conventional anti-cancer therapeutic strategies take advantage of the proliferative dependency of cancer yet, in doing so, are triggering apoptosis, a death pathway to which cancer is inherently resistant. A thorough understanding of how therapeutics kill cancer cells is needed to develop novel, more durable treatment strategies. While cancer evolves cell-intrinsic resistance to physiological cell death pathways, there are opportunities for cell cycle agnostic forms of cell death, for example, necroptosis or ferroptosis. Furthermore, cell cycle independent death programs are immunogenic, potentially licensing host immunity for additional antitumor activity. Identifying cell cycle independent vulnerabilities of cancer is critical for developing alternative strategies that can overcome therapeutic resistance.
Collapse
Affiliation(s)
- Luke V. Loftus
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J. Pienta
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
50
|
Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Nesci S. Mitochondria Bioenergetic Functions and Cell Metabolism Are Modulated by the Bergamot Polyphenolic Fraction. Cells 2022; 11:1401. [PMID: 35563707 PMCID: PMC9099917 DOI: 10.3390/cells11091401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
The bergamot polyphenolic fraction (BPF) was evaluated in the F1FO-ATPase activity of swine heart mitochondria. In the presence of a concentration higher than 50 µg/mL BPF, the ATPase activity of F1FO-ATPase, dependent on the natural cofactor Mg2+, increased by 15%, whereas the enzyme activity in the presence of Ca2+ was inhibited by 10%. By considering this opposite BPF effect, the F1FO-ATPase activity involved in providing ATP synthesis in oxidative phosphorylation and triggering mitochondrial permeability transition pore (mPTP) formation has been evaluated. The BPF improved the catalytic coupling of oxidative phosphorylation in the presence of a substrate at the first phosphorylation site, boosting the respiratory control ratios (state 3/state 4) by 25% and 85% with 50 µg/mL and 100 µg/mL BPF, respectively. Conversely, the substrate at the second phosphorylation site led to the improvement of the state 3/state 4 ratios by 15% only with 100 µg/mL BPF. Moreover, the BPF carried out its beneficial effect on the mPTP phenomenon by desensitizing the pore opening. The acute effect of the BPF on the metabolism of porcine aortica endothelial cells (pAECs) showed an ATP rate index greater than one, which points out a prevailing mitochondrial oxidative metabolism with respect to the glycolytic pathway, and this ratio rose by about three times with 100 µg/mL BPF. Consistently, the mitochondrial ATP turnover, in addition to the basal and maximal respiration, were higher in the presence of the BPF than in the controls, and the MTT test revealed an increase in cell viability with a BPF concentration above 200 µg/mL. Therefore, the molecule mixture of the BPF aims to ensure good performance of the mitochondrial bioenergetic parameters.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovanni Romeo
- Department Gynecological, Obstetrical and Pediatric Sciences, Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, 40126 Bologna, Italy;
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| |
Collapse
|