1
|
Herrmann L, Brenker C, Mittermair T, Bojovic V, Münchow J, Zhu WF, Trugge C, Fußhöller D, Jikeli J, Temme L, Kaupp UB, Strünker T. Chemosensory signalling in human sperm is controlled by Ca 2+ influx via CatSper and Ca 2+ clearance via plasma membrane Ca 2+ ATPases. Br J Pharmacol 2025; 182:2694-2712. [PMID: 40016153 DOI: 10.1111/bph.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Loss of function of the sperm-specific Ca2+ channel CatSper is a common channelopathy that causes male infertility. CatSper controls the intracellular Ca2+ concentration and, thereby, the motility of human sperm. Activation of CatSper by oviductal ligands evokes a transient Ca2+ increase, which entails changes in the flagellar beat that are required for fertilisation. The CatSper-mediated Ca2+ influx has been studied extensively, whereas the mechanisms underlying Ca2+ clearance and recovery from Ca2+ influx have remained ill-defined. EXPERIMENTAL APPROACH We examined how pharmacological suppression of Ca2+ export from the cytosol into the extracellular space or Ca2+ uptake into intracellular stores affects the resting Ca2+ concentration and CatSper-mediated Ca2+ signals in human sperm. We studied sperm of healthy volunteers and infertile men lacking functional CatSper channels, using kinetic Ca2+- and pH-fluorometry as well as patch-clamp recordings. KEY RESULTS We show that Ca2+ entering human sperm via CatSper is predominantly, if not exclusively, exported by plasma membrane Ca2+ ATPases (PMCAs). Na+/Ca2+ exchange and Ca2+ uptake into intracellular stores or mitochondria play no or only a negligible role in Ca2+ clearance in human sperm. CONCLUSIONS AND IMPLICATIONS Ca2+ signalling in human sperm is controlled by the functional interplay of CatSper and PMCAs, that is, the balance between Ca2+ influx and Ca2+ export that is required for human sperm function and fertilisation.
Collapse
Affiliation(s)
- Leonie Herrmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Teresa Mittermair
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- GRK 2515, Chemical Biology of Ion Channels (Chembion), University of Münster, Münster, Germany
| | - Vesna Bojovic
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jens Münchow
- GRK 2515, Chemical Biology of Ion Channels (Chembion), University of Münster, Münster, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | - W Felix Zhu
- GRK 2515, Chemical Biology of Ion Channels (Chembion), University of Münster, Münster, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | - Carla Trugge
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - David Fußhöller
- Molecular Sensory Systems, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Jan Jikeli
- Molecular Sensory Systems, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Louisa Temme
- GRK 2515, Chemical Biology of Ion Channels (Chembion), University of Münster, Münster, Germany
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - U Benjamin Kaupp
- Molecular Sensory Systems, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- Life and Medical Sciences Institute (LIMES), University Bonn, Bonn, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- GRK 2515, Chemical Biology of Ion Channels (Chembion), University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Wehrli L, Altevogt H, Brenker C, Zufferey F, Rossier MF, Strünker T, Nef S, Rahban R. The major phytocannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), affect the function of CatSper calcium channels in human sperm. Hum Reprod 2025; 40:796-807. [PMID: 40078063 PMCID: PMC12046078 DOI: 10.1093/humrep/deaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/19/2024] [Indexed: 03/14/2025] Open
Abstract
STUDY QUESTION Do the main psychoactive phytocannabinoid delta-9-tetrahydrocannabinol (THC) and its non-psychoactive analog cannabidiol (CBD) affect human sperm function? SUMMARY ANSWER THC and CBD affect the sperm-specific Ca2+ channel CatSper, suppress activation of the channel by progesterone (P4) and prostaglandin E1 (PGE1), and THC also alters human sperm function in vitro. WHAT IS KNOWN ALREADY Marijuana (Cannabis sativa) is one of the most commonly used recreational drugs worldwide. Although the effects of phytocannabinoids on semen parameters have been studied, there is no evidence of a direct impact of THC and CBD on human sperm. STUDY DESIGN, SIZE, DURATION We investigated the effects of the major psychoactive phytocannabinoid, THC, its non-psychoactive analog, CBD, and their major metabolites on Ca2+ influx via CatSper in human spermatozoa. THC and CBD were selected to further evaluate their action on P4-, PGE1-, and pH-induced activation of CatSper. The effects of THC and CBD on sperm motility, penetration into viscous media, and acrosome reaction (AR) were also assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS The effects of phytocannabinoids on CatSper activity were investigated on semen samples from healthy volunteers and men with homozygous deletion of the CATSPER2 gene using kinetic Ca2+ fluorimetry and patch-clamp recordings. Motility was assessed by computer-assisted sperm analysis (CASA). Sperm penetration into viscous media was assessed using a modified Kremer test. The AR was evaluated by flow cytometry using Pisum sativum agglutinin-stained spermatozoa. MAIN RESULTS AND THE ROLE OF CHANCE Both THC and CBD increased the intracellular calcium concentration with CBD inducing a greater increase compared to THC. These Ca2+ signals were abolished in men with homozygous deletion of the CATSPER2 gene demonstrating that they are mediated through CatSper. THC suppressed the P4- and the PGE1-induced Ca2+ increase with a half-maximal inhibitory concentration (IC50) of 1.88 ± 1.15 µM and 0.98 ± 1.10, respectively. CBD also suppressed the P4- and PGE1-induced Ca2+ signal with an IC50 of 2.47 ± 1.12 µM and 6.14 ± 1.08 µM, respectively. The P4 and PGE1 responses were also suppressed by THC and CBD metabolites, yet with greatly reduced potency and/or efficacy. THC and CBD were found to inhibit the Ca2+ influx evoked by intracellular alkalization via NH4Cl, with THC featuring a higher potency compared to CBD. In conclusion, THC and CBD inhibit both the ligand-dependent and -independent activation of CatSper in a dose-dependent manner. This indicates that these phytocannabinoids are genuine CatSper inhibitors rather than P4 and PGE1 antagonists. Finally, THC, but not CBD, impaired sperm hyperactivation and penetration into viscous media and induced a small increase in AR. LIMITATIONS, REASONS FOR CAUTION Future studies are needed to assess whether cannabis consumption can affect fertility since this study was in vitro. WIDER IMPLICATIONS OF THE FINDINGS The action of THC and CBD on CatSper in human sperm may interfere with the fertilization process, but the impact on fertility remains to be elucidated. THC inhibits the P4 and the PGE1 response more potently than CBD and most previously described CatSper inhibitors. THC can be used as a starting point for the development of non-hormonal contraceptives targeting CatSper. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Swiss Center for Applied Human Toxicology (SCAHT), the Département de l'Instruction Publique (DIP) of the State of Geneva and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). The authors declare that no conflicts of interest have been identified that might affect the impartiality of the research reported. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Hannah Altevogt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Fanny Zufferey
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Service of Clinical Chemistry and Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Michel F Rossier
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Service of Clinical Chemistry and Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
3
|
Yu X, Yao R, Yao R, Jin X, Huang J, Liang Q, Jin LN, Sun J. Mechanistic understanding of the toxic effects of tri-n-butyl phosphate (TnBP) and tricresyl phosphate (TCP) to Escherichia coli: Evidence from alterations in biomarker expression and perturbations of the metabolic network. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110211. [PMID: 40286830 DOI: 10.1016/j.cbpc.2025.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Tri-n-butyl phosphate (TnBP) and tricresyl phosphate (TCP), emerging flame retardants and plasticizers, have garnered increasing attention due to their potential risks to ecosystem. A few researches regarding the toxicological mechanisms of TnBP and TCP had been performed, while molecular-level toxic effects of them and metabolic response using microbial models are the lack of relevant investigation. Thus, we investigated the cytotoxicity, oxidative stress response, and metabolic response in E. coli exposed to TnBP and TCP. Exposure to them significantly increased the activities of antioxidant enzymes, indicating activation of the antioxidant defense system. Excessive accumulation of reactive oxygen species (ROS) triggered various biological events, including a reduction in membrane potential (MP), decrease of adenosine triphosphatase (ATPase) activity, and increased malondialdehyde (MDA) content. These findings suggested that oxidative damage compromised membrane proteins function, membrane stability, and intracellular homeostasis. GC-MS and LC-MS-based metabolomics analyses revealed that TnBP and TCP strongly disrupted multiple metabolic pathways, including carbohydrate metabolism, nucleotide metabolism, lipid metabolism, beta-alanine metabolism, pyruvate metabolism and oxidative phosphorylation. These disruptions highlighted the inhibitory effects on molecular functions and metabolic processes. Notably, lipids biomarkers e.g., PC(11:0/16:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(17:0/14:1(9Z)), and LysoPE(0:0/18:1(11Z)) were significantly altered, verifying that the regulation of lipid-associated metabolite synthesis plays a protective role in maintaining cellular membrane function. In summary, this study enhances our understanding of TnBP and TCP toxicity in E. coli, providing novel insights into their toxicological mechanisms at molecular and network levels. These findings underscore the ecological risks posed by organophosphate flame retardants in aquatic ecosystem.
Collapse
Affiliation(s)
- Xiaolong Yu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Runlin Yao
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Ruipu Yao
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xu Jin
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jiahui Huang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Qianwei Liang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling N Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Jianteng Sun
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| |
Collapse
|
4
|
Sánchez-Cárdenas C, Oliver EI, Chávez JC, Luque GM, Hernández-Cruz A, Buffone MG, Darszon A, Visconti PE, Romarowski A. Ion channels and transporters involved in calcium flux regulation in mammalian sperm. Curr Top Dev Biol 2025; 162:351-385. [PMID: 40180515 DOI: 10.1016/bs.ctdb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
After ejaculation, mammalian spermatozoa are not capable of fertilizing a metaphase II-arrested egg. They require to undergo a series of biochemical and physiological processes collectively known as capacitation. In all these processes, the regulation of calcium ions fluxes plays essential roles and involves participation of many channels and transporters localized in the plasma membrane as well as in the membrane of intracellular organelles. In mammalian sperm, a fraction of these molecules has been proposed to contribute to mature sperm function. However, in many cases, the evidence for the presence of a given protein is based on the use of agonists and antagonists with more than one target. In this review, we will critically analyze the published evidence supporting the presence of these molecules in mammalian sperm with special emphasis to methods involving tandem mass spectrometry identification, electrophysiological evidence and controlled immunoassays.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico.
| | - Enrique I Oliver
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Departamento de Neuropatología Molecular y Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States.
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Kuwabara MF, Klemptner J, Muth J, De Martino E, Oliver D, Berger TK. Zinc inhibits the voltage-gated proton channel HCNL1. Biophys J 2024; 123:4256-4265. [PMID: 39210595 DOI: 10.1016/j.bpj.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Voltage-gated ion channels allow ion flux across biological membranes in response to changes in the membrane potential. HCNL1 is a recently discovered voltage-gated ion channel that selectively conducts protons through its voltage-sensing domain (VSD), reminiscent of the well-studied depolarization-activated Hv1 proton channel. However, HCNL1 is activated by hyperpolarization, allowing the influx of protons, which leads to an intracellular acidification in zebrafish sperm. Zinc ions (Zn2+) are important cofactors in many proteins and essential for sperm physiology. Proton channels such as Hv1 and Otopetrin1 are inhibited by Zn2+. We investigated the effect of Zn2+ on heterologously expressed HCNL1 channels using electrophysiological and fluorometric techniques. Extracellular Zn2+ inhibits HCNL1 currents with an apparent half-maximal inhibition (IC50) of 26 μM. Zn2+ slows voltage-dependent current kinetics, shifts the voltage-dependent activation to more negative potentials, and alters hyperpolarization-induced conformational changes of the voltage sensor. Our data suggest that extracellular Zn2+ inhibits HCNL1 currents by multiple mechanisms, including modulation of channel gating. Two histidine residues located at the extracellular side of the VSD might weakly contribute to Zn2+ coordination: mutants with either histidine replaced with alanine show modest shifts of the IC50 values to higher concentrations. Interestingly, Zn2+ inhibits HCNL1 at even lower concentrations from the intracellular side (IC50 ≈ 0.5 μM). A histidine residue at the intracellular end of S1 (position 50) is important for Zn2+ binding: much higher Zn2+ concentrations are required to inhibit the mutant HCNL1-H50A (IC50 ≈ 106 μM). We anticipate that Zn2+ will be a useful ion to study the structure-function relationship of HCNL1 as well as the physiological role of HCNL1 in zebrafish sperm.
Collapse
Affiliation(s)
- Makoto F Kuwabara
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Joschua Klemptner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Julia Muth
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Emilia De Martino
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Thomas K Berger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Kaupp UB, Kendall O. David Garbers' Contributions to Chemotaxis Signaling in Sperm. Mol Reprod Dev 2024; 91:e23774. [PMID: 39445585 DOI: 10.1002/mrd.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
This review focuses on the contribution of the late David Garbers to chemotaxis of sperm, in particular from sea urchin. We will describe his discovery of chemotactic peptides and their cognate receptors, his discovery of a sperm-specific, unique Na+/H+ exchanger that represents a chimera between a solute carrier (SLC) and an ion channel. Finally, we will discuss his contributions to the understanding of cAMP signaling in sperm via soluble adenylyl cyclase (sAC) and its control by Ca2+ ions.
Collapse
Affiliation(s)
- U B Kaupp
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Olivia Kendall
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Lorenz J, Eisenhardt C, Mittermair T, Kulle AE, Holterhus PM, Fobker M, Boenigk W, Nordhoff V, Behre HM, Strünker T, Brenker C. The sperm-specific K + channel Slo3 is inhibited by albumin and steroids contained in reproductive fluids. Front Cell Dev Biol 2024; 12:1275116. [PMID: 39310227 PMCID: PMC11413451 DOI: 10.3389/fcell.2024.1275116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/19/2024] [Indexed: 09/25/2024] Open
Abstract
To locate and fertilize the egg, sperm probe the varying microenvironment prevailing at different stages during their journey across the female genital tract. To this end, they are equipped with a unique repertoire of mostly sperm-specific proteins. In particular, the flagellar Ca2+ channel CatSper has come into focus as a polymodal sensor used by human sperm to register ligands released into the female genital tract. Here, we provide the first comprehensive study on the pharmacology of the sperm-specific human Slo3 channel, shedding light on its modulation by reproductive fluids and their constituents. We show that seminal fluid and contained prostaglandins and Zn2+ do not affect the channel, whereas human Slo3 is inhibited in a non-genomic fashion by diverse steroids as well as by albumin, which are released into the oviduct along with the egg. This indicates that not only CatSper but also Slo3 harbours promiscuous ligand-binding sites that can accommodate structurally diverse molecules, suggesting that Slo3 is involved in chemosensory signalling in human sperm.
Collapse
Affiliation(s)
- Johannes Lorenz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Clara Eisenhardt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Teresa Mittermair
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alexandra E. Kulle
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Paul Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital, Münster, Germany
| | - Wolfgang Boenigk
- Max Planck Institute for Neurobiology of Behaviour—Caesar, Bonn, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Iacovacci V, Diller E, Ahmed D, Menciassi A. Medical Microrobots. Annu Rev Biomed Eng 2024; 26:561-591. [PMID: 38594937 DOI: 10.1146/annurev-bioeng-081523-033131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
Collapse
Affiliation(s)
- Veronica Iacovacci
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| | - Eric Diller
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon, Switzerland
| | - Arianna Menciassi
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| |
Collapse
|
9
|
Yazdan Parast F, Veeraragavan S, Gaikwad AS, Powar S, Prabhakar R, O'Bryan MK, Nosrati R. Viscous Loading Regulates the Flagellar Energetics of Human and Bull Sperm. SMALL METHODS 2024; 8:e2300928. [PMID: 38135876 DOI: 10.1002/smtd.202300928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Indexed: 12/24/2023]
Abstract
The viscoelastic properties of the female reproductive tract influence sperm swimming behavior, but the exact role of these rheological changes in regulating sperm energetics remains unknown. Using high-speed dark-field microscopy, the flagellar dynamics of free-swimming sperm across a physiologically relevant range of viscosities is resolved. A transition from 3D to 2D slither swimming under an increased viscous loading is revealed, in the absence of any geometrical or chemical stimuli. This transition is species-specific, aligning with viscosity variations within each species' reproductive tract. Despite substantial drag increase, 2D slithering sperm maintain a steady swimming speed across a wide viscosity range (20-250 and 75-1000 mPa s for bull and human sperm) by dissipating over sixfold more energy into the fluid without elevating metabolic activity, potentially by altering the mechanisms of dynein motor activity. This energy-efficient motility mode is ideally suited for the viscous environment of the female reproductive tract.
Collapse
Affiliation(s)
- Farin Yazdan Parast
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shibani Veeraragavan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Avinash S Gaikwad
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
- School of BioSciences and Bio21 Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sushant Powar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
10
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
11
|
Jin X, Yao R, Yu X, Wu H, Liu H, Huang J, Dai Y, Sun J. Global responses to tris(1-chloro-2-propyl) phosphate and tris(2-butoxyethyl) phosphate in Escherichia coli: Evidences from biomarkers, and metabolic disturbance using GC-MS and LC-MS metabolomics analyses. CHEMOSPHERE 2024; 358:142177. [PMID: 38679182 DOI: 10.1016/j.chemosphere.2024.142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Haochuan Wu
- School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yicheng Dai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
12
|
Yahyavi SK, Boisen IM, Cui Z, Jorsal MJ, Kooij I, Holt R, Juul A, Blomberg Jensen M. Calcium and vitamin D homoeostasis in male fertility. Proc Nutr Soc 2024; 83:95-108. [PMID: 38072394 DOI: 10.1017/s002966512300486x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Calcium and vitamin D have well-established roles in maintaining calcium balance and bone health. Decades of research in human subjects and animals have revealed that calcium and vitamin D also have effects on many other organs including male reproductive organs. The presence of calcium-sensing receptor, vitamin D receptor, vitamin D activating and inactivating enzymes and calcium channels in the testes, male reproductive tract and human spermatozoa suggests that vitamin D and calcium may modify male reproductive function. Functional animal models have shown that vitamin D deficiency in male rodents leads to a decrease in successful mating and fewer pregnancies, often caused by impaired sperm motility and poor sperm morphology. Human studies have to a lesser extent validated these findings; however, newer studies suggest a positive effect of vitamin D supplementation on semen quality in cases with vitamin D deficiency, which highlights the need for initiatives to prevent vitamin D deficiency. Calcium channels in male reproductive organs and spermatozoa contribute to the regulation of sperm motility and capacitation, both essential for successful fertilisation, which supports a need to avoid calcium deficiency. Studies have demonstrated that vitamin D, as a regulator of calcium homoeostasis, influences calcium influx in the testis and spermatozoa. Emerging evidence suggests a potential link between vitamin D deficiency and male infertility, although further investigation is needed to establish a definitive causal relationship. Understanding the interplay between vitamin D, calcium and male reproductive health may open new avenues for improving fertility outcomes in men.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zhihui Cui
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ireen Kooij
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
13
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
15
|
Wehrli L, Galdadas I, Voirol L, Smieško M, Cambet Y, Jaquet V, Guerrier S, Gervasio FL, Nef S, Rahban R. The action of physiological and synthetic steroids on the calcium channel CatSper in human sperm. Front Cell Dev Biol 2023; 11:1221578. [PMID: 37547474 PMCID: PMC10397409 DOI: 10.3389/fcell.2023.1221578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.
Collapse
Affiliation(s)
- Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Ioannis Galdadas
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Voirol
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yves Cambet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Guerrier
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
- Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
16
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Pozdyshev DV, Kombarova NA, Muronetz VI. Biochemical Features of X or Y Chromosome-Bearing Spermatozoa for Sperm Sexing. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:655-666. [PMID: 37331711 DOI: 10.1134/s0006297923050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/20/2023]
Abstract
This review presents information on biochemical features of spermatozoa bearing X or Y chromosome, enabling production of a sperm fraction with pre-defined sex chromosome. The almost only technology currently used for such separation (called sexing) is based on the fluorescence-activated cell sorting of sperm depending on DNA content. In addition to the applied aspects, this technology made it possible to analyze properties of the isolated populations of spermatozoa bearing X or Y chromosome. In recent years, existence of the differences between these populations at the transcriptome and proteome level have been reported in a number of studies. It is noteworthy that these differences are primarily related to the energy metabolism and flagellar structural proteins. New methods of sperm enrichment with X or Y chromosome cells are based on the differences in motility between the spermatozoa with different sex chromosomes. Sperm sexing is a part of the widespread protocol of artificial insemination of cows with cryopreserved semen, it allows to increase proportion of the offspring with the required sex. In addition, advances in the separation of X and Y spermatozoa may allow this approach to be applied in clinical practice to avoid sex-linked diseases.
Collapse
Affiliation(s)
- Denis V Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Nina A Kombarova
- Head Center for Reproduction of Agricultural Animals, 142143 Bykovo, Moscow Region, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
18
|
Schierling T, Tosi B, Eisenhardt C, Reining S, Daniliuc CG, Brenker C, Strünker T, Wünsch B. Synthesis and Functional Characterization of Novel RU1968-Derived CatSper Inhibitors with Reduced Stereochemical Complexity. ACS Pharmacol Transl Sci 2023; 6:115-127. [PMID: 36654752 PMCID: PMC9841779 DOI: 10.1021/acsptsci.2c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/03/2022]
Abstract
The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration and, thereby, the swimming behavior of sperm from many species. The steroidal ethylenediamine RU1968 (1) represents a well-characterized, potent, and fairly selective cross-species inhibitor of CatSper. Due to its two additional centers of chirality in the amine-bearing side chain, RU1968 is a mixture of diastereomeric pairs of enantiomers and, thus, difficult to synthesize. This has hampered the use of this commercially not available inhibitor as a powerful tool for research. Here, simplifying both structure and synthesis, we introduced novel stereochemically less complex and enantiomerically pure aminomethyl RU1968 analogues lacking the C-21 CH3 moiety. Starting from (+)-estrone, a five-step synthesis was developed comprising a Wittig reaction as the key step, leading to a diastereomerically pure 17β-configured aldehyde. Subsequent reductive amination yielded diastereomerically and enantiomerically pure amines. Compared to RU1968, the novel ethylenediamine 2d and homologous trimethylenediamine derivative 2e inhibited CatSper with similar and even twofold enhanced potency, respectively. Considering that these aminomethyl analogues are enantiomerically pure and much easier to synthesize than RU1968, we envisage their common use in future studies investigating the physiology of CatSper in sperm.
Collapse
Affiliation(s)
- Tobias Schierling
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Beatrice Tosi
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Clara Eisenhardt
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Sophie Reining
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität
Münster, Corrensstraße
40, Münster 48149, Germany
| | - Christoph Brenker
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Timo Strünker
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Bernhard Wünsch
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| |
Collapse
|
19
|
Paquin-Lefebvre F, Toste S, Holcman D. How large the number of redundant copies should be to make a rare event probable. Phys Rev E 2022; 106:064402. [PMID: 36671081 DOI: 10.1103/physreve.106.064402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The redundancy principle provides a framework to study how rare events are made possible with probability 1 in accelerated time, by making many copies of similar random searchers. However, what is a large n? To estimate large n with respect to the geometrical properties of a domain and the dynamics, we present here a criterion based on splitting probabilities between a small fraction of the exploration space associated with an activation process and other absorbing regions where trajectories can be terminated. We obtain explicit computations especially when there is a killing region located inside the domain that we compare with stochastic simulations. We also present examples of extreme trajectories with killing in dimension 2. For a large n, the optimal trajectories avoid penetrating inside the killing region. Finally, we discuss some applications to cell biology.
Collapse
Affiliation(s)
- F Paquin-Lefebvre
- Group of Data Modeling, Computational Biology and Applied Mathematics, Ecole Normale Supérieure-PSL, 75005 Paris, France
| | - S Toste
- Group of Data Modeling, Computational Biology and Applied Mathematics, Ecole Normale Supérieure-PSL, 75005 Paris, France
| | - D Holcman
- Group of Data Modeling, Computational Biology and Applied Mathematics, Ecole Normale Supérieure-PSL, 75005 Paris, France
- Churchill College, DAMTP, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
20
|
Castro-Arnau J, Chauvigné F, Cerdà J. Role of Ion Channels in the Maintenance of Sperm Motility and Swimming Behavior in a Marine Teleost. Int J Mol Sci 2022; 23:ijms232012113. [PMID: 36292967 PMCID: PMC9603624 DOI: 10.3390/ijms232012113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
In oviparous marine fishes, the hyperosmotic induction of sperm motility in seawater (SW) is well established, however, the potential function of ion channels in the maintenance of post activated spermatozoon swimming performance remains largely unknown. Here, we investigated the influence of ion channels on the spermatozoon swimming parameters using the gilthead seabream (Sparus aurata) as a model for modern marine teleosts. Our data show that the SW-induced activation of seabream sperm motility requires three concomitant processes, the hyperosmotic shock, an ion-flux independent increase of the intracellular concentration of Ca2+ ([Ca2+]i), but not of [K+]i or [Na+]i, and the alkalization of the cytosol. The combination of all three processes is obligatory to trigger flagellar beating. However, the time-course monitoring of sperm motion kinetics and changes in the [Ca2+]i, [K+]i and [Na+]i in SW or in non-ionic activation media, showed that the post activated maintenance of spermatozoa motility is dependent on extracellular Ca2+ and K+. A meta-analysis of a seabream sperm transcriptome uncovered the expression of multiple ion channels, some of which were immunolocalized in the head and/or tail of the spermatozoon. Selective pharmacological inhibition of these ion channel families impaired the long-term motility, progressivity, and velocity of SW-activated spermatozoa. The data further revealed that some antagonists of K+-selective or Ca2+-selective channels, as well as of stretch-activated and mechanosensitive channels, altered the trajectory of spermatozoa, suggesting that these ion channels are likely involved in the control of the swimming pattern of the post activated spermatozoon. These combined findings provide new insight into the signaling pathways regulating spermatozoon activation and swimming performance in marine fishes.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
21
|
Dobramysl U, Holcman D. Computational methods and diffusion theory in triangulation sensing to model neuronal navigation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:104601. [PMID: 36075196 DOI: 10.1088/1361-6633/ac906b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Computational methods are now recognized as powerful and complementary approaches in various applied sciences such as biology. These computing methods are used to explore the gap between scales such as the one between molecular and cellular. Here we present recent progress in the development of computational approaches involving diffusion modeling, asymptotic analysis of the model partial differential equations, hybrid methods and simulations in the generic context of cell sensing and guidance via external gradients. Specifically, we highlight the reconstruction of the location of a point source in two and three dimensions from the steady-state diffusion fluxes arriving to narrow windows located on the cell. We discuss cases in which these windows are located on the boundary of a two-dimensional plane or three-dimensional half-space, on a disk in free space or inside a two-dimensional corridor, or a ball in three dimensions. The basis of this computational approach is explicit solutions of the Neumann-Green's function for the mentioned geometry. This analysis can be used to design hybrid simulations where Brownian paths are generated only in small regions in which the local spatial organization is relevant. Particle trajectories outside of this region are only implicitly treated by generating exit points at the boundary of this domain of interest. This greatly accelerates the simulation time by avoiding the explicit computation of Brownian paths in an infinite domain and serves to generate statistics, without following all trajectories at the same time, a process that can become numerically expensive quickly. Moreover, these computational approaches are used to reconstruct a point source and estimating the uncertainty in the source reconstruction due to an additive noise perturbation present in the fluxes. We also discuss the influence of various window configurations (cluster vs uniform distributions) on recovering the source position. Finally, the applications in developmental biology are formulated into computational principles that could underly neuronal navigation in the brain.
Collapse
Affiliation(s)
- Ulrich Dobramysl
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - David Holcman
- Group of Data Modeling and Computational Biology, IBENS-PSL Ecole Normale Superieure, Paris, France
| |
Collapse
|
22
|
Male contraceptive development: A medicinal chemistry perspective. Eur J Med Chem 2022; 243:114709. [DOI: 10.1016/j.ejmech.2022.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
23
|
Chen C, Li B, Huang R, Dong S, Zhou Y, Song J, Zeng X, Zhang X. Involvement of Ca 2+ and ROS signals in nickel-impaired human sperm function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113181. [PMID: 35026585 DOI: 10.1016/j.ecoenv.2022.113181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
As one of the main environmental pollutants and occupational hazards, nickel has been reported to have mutagenic, carcinogenic, and teratogenic properties, as well as reproductive toxicity. However, how nickel affects human reproduction is still unclear. In this study, the toxicity of nickel on human sperm and the underlying mechanisms were evaluated in vitro. We found that NiCl2 (10, 50, and 250 μM) impaired sperm total motility and progressive motility in a dose- and time-dependent manner. In addition, sperm hyperactivation and the ability of human sperm to penetrate a viscous medium were found to be compromised after nickel exposure. Mechanically, NiCl2 significantly inhibited the basal intracellular Ca2+ signaling. Besides, reactive oxygen species (ROS), superoxide, and malondialdehyde levels were increased in human sperm after exposure to different concentrations of NiCl2. Consistently, eliminating excess ROS by N-acetyl-L-cysteine or tocopherol significantly alleviated nickel-impaired sperm motility. Taken together, these results revealed that nickel could compromise sperm functions by interfering with Ca2+ signaling and inducing excessive oxidative stress. These findings suggest that, in the high and occupational nickel exposure environments, the contribution of nickel toxicity to the males who wish to preserve their fertility is worthy of careful evaluation.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Bingqian Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Rongzu Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Yang Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Jian Song
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
24
|
Rahban R, Rehfeld A, Schiffer C, Brenker C, Egeberg Palme DL, Wang T, Lorenz J, Almstrup K, Skakkebaek NE, Strünker T, Nef S. The antidepressant Sertraline inhibits CatSper Ca2+ channels in human sperm. Hum Reprod 2021; 36:2638-2648. [PMID: 34486673 PMCID: PMC8450872 DOI: 10.1093/humrep/deab190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Do selective serotonin reuptake inhibitor (SSRI) antidepressants affect the function of human sperm? SUMMARY ANSWER The SSRI antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. WHAT IS KNOWN ALREADY In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+ and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. STUDY DESIGN, SIZE, DURATION We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH- and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. MAIN RESULTS AND THE ROLE OF CHANCE Several SSRIs affected [Ca2+]i and attenuated ligand-induced Ca2+ influx via CatSper. In particular, the SSRI Sertraline almost completely suppressed Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits the channel. Finally, Sertraline impaired ligand-induced acrosome reaction and sperm penetration into viscous media. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Swiss Centre for Applied Human Toxicology (SCAHT), the Département de l’Instruction Publique of the State of Geneva, the German Research Foundation (CRU326), the Interdisciplinary Center for Clinical Research, Münster (IZKF; Str/014/21), the Innovation Fund Denmark (grant numbers 14-2013-4) and the EDMaRC research grant from the Kirsten and Freddy Johansen’s Foundation. The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Anders Rehfeld
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Johannes Lorenz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Kristian Almstrup
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Niels E Skakkebaek
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| |
Collapse
|
25
|
Dobramysl U, Holcman D. Reconstructing a point source from diffusion fluxes to narrow windows in three dimensions. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We develop a computational approach to locate the source of a steady-state gradient of diffusing particles from the fluxes through narrow windows distributed either on the boundary of a three-dimensional half-space or on a sphere. This approach is based on solving the mixed boundary stationary diffusion equation with Neumann–Green’s function. The method of matched asymptotic expansions enables the computation of the probability fluxes. To explore the range of validity of this expansion, we develop a fast analytical-Brownian numerical scheme. This scheme accelerates the simulation time by avoiding the explicit computation of Brownian trajectories in the infinite domain. The results obtained from our derived analytical formulae and the fast numerical simulation scheme agree on a large range of parameters. Using the analytical representation of the particle fluxes, we show how to reconstruct the location of the point source. Furthermore, we investigate the uncertainty in the source reconstruction due to additive fluctuations present in the fluxes. We also study the influence of various window configurations: clustered versus uniform distributions on recovering the source position. Finally, we discuss possible applications for cell navigation in biology.
Collapse
Affiliation(s)
- U. Dobramysl
- Wellcome Trust / Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - D. Holcman
- Group of Applied Mathematics, data modeling and computational biology, IBENS-PSL Ecole Normale Superieure, Paris, France
| |
Collapse
|
26
|
Does the Rainbow Trout Ovarian Fluid Promote the Spermatozoon on Its Way to the Egg? Int J Mol Sci 2021; 22:ijms22179519. [PMID: 34502430 PMCID: PMC8430650 DOI: 10.3390/ijms22179519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the "turn-and-run" behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)-sperm interaction reflect the specific features of the spawning process in this species.
Collapse
|
27
|
Abstract
Sperm selection is a clinical need for guided fertilization in men with low-quality semen. In this regard, microfluidics can provide an enabling platform for the precise manipulation and separation of high-quality sperm cells through applying various stimuli, including chemical agents, mechanical forces, and thermal gradients. In addition, microfluidic platforms can help to guide sperms and oocytes for controlled in vitro fertilization or sperm sorting using both passive and active methods. Herein, we present a detailed review of the use of various microfluidic methods for sorting and categorizing sperms for different applications. The advantages and disadvantages of each method are further discussed and future perspectives in the field are given.
Collapse
|
28
|
Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:18. [PMID: 33683488 PMCID: PMC7940315 DOI: 10.1140/epje/s10189-021-00031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 05/16/2023]
Abstract
Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
29
|
RAC1 controls progressive movement and competitiveness of mammalian spermatozoa. PLoS Genet 2021; 17:e1009308. [PMID: 33539343 PMCID: PMC7861394 DOI: 10.1371/journal.pgen.1009308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
Mammalian spermatozoa employ calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) signaling in generating flagellar beat. However, how sperm direct their movement towards the egg cells has remained elusive. Here we show that the Rho small G protein RAC1 plays an important role in controlling progressive motility, in particular average path velocity and linearity. Upon RAC1 inhibition of wild type sperm with the drug NSC23766, progressive movement is impaired. Moreover, sperm from mice homozygous for the genetically variant t-haplotype region (tw5/tw32), which are sterile, show strongly enhanced RAC1 activity in comparison to wild type (+/+) controls, and quickly become immotile in vitro. Sperm from heterozygous (t/+) males, on the other hand, display intermediate RAC1 activity, impaired progressive motility and transmission ratio distortion (TRD) in favor of t-sperm. We show that t/+-derived sperm consist of two subpopulations, highly progressive and less progressive. The majority of highly progressive sperm carry the t-haplotype, while most less progressive sperm contain the wild type (+) chromosome. Dosage-controlled RAC1 inhibition in t/+ sperm by NSC23766 rescues progressive movement of (+)-sperm in vitro, directly demonstrating that impairment of progressive motility in the latter is caused by enhanced RAC1 activity. The combined data show that RAC1 plays a pivotal role in controlling progressive motility in sperm, and that inappropriate, enhanced or reduced RAC1 activity interferes with sperm progressive movement. Differential RAC1 activity within a sperm population impairs the competitiveness of sperm cells expressing suboptimal RAC1 activity and thus their fertilization success, as demonstrated by t/+-derived sperm. In conjunction with t-haplotype triggered TRD, we propose that Rho GTPase signaling is essential for directing sperm towards the egg cells.
Collapse
|
30
|
Ahmed D, Sukhov A, Hauri D, Rodrigue D, Gian M, Harting J, Nelson B. Bio-inspired Acousto-magnetic Microswarm Robots with Upstream Motility. NAT MACH INTELL 2021; 3:116-124. [PMID: 34258513 PMCID: PMC7611213 DOI: 10.1038/s42256-020-00275-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022]
Abstract
The ability to propel against flows, i.e., to perform positive rheotaxis, can provide exciting opportunities for applications in targeted therapeutics and non-invasive surgery. To date, no biocompatible technologies exist for navigating microparticles upstream when they are in a background fluid flow. Inspired by many naturally- occurring microswimmers such as bacteria, spermatozoa, and plankton that utilize the non-slip boundary conditions of the wall to exhibit upstream propulsion, here, we report on the design and characterization of self-assembled microswarms that can execute upstream motility in a combination of external acoustic and magnetic fields. Both acoustic and magnetic fields are safe to humans, non-invasive, can penetrate deeply into the human body, and are well-developed in clinical settings. The combination of both fields can overcome the limitations encountered by single actuation methods. The design criteria of the acoustically-induced reaction force of the microswarms, which is needed to perform rolling-type motion, are discussed. We show quantitative agreement between experimental data and our model that captures the rolling behaviour. The upstream capability provides a design strategy for delivering small drug molecules to hard-to-reach sites and represents a fundamental step toward the realization of micro- and nanosystem-navigation against the blood flow.
Collapse
Affiliation(s)
- Daniel Ahmed
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Alexander Sukhov
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 90429 Nürnberg, Germany
| | - David Hauri
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dubon Rodrigue
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maranta Gian
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jens Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 90429 Nürnberg, Germany
| | - Bradley Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
31
|
Rahban R, Nef S. CatSper: The complex main gate of calcium entry in mammalian spermatozoa. Mol Cell Endocrinol 2020; 518:110951. [PMID: 32712386 DOI: 10.1016/j.mce.2020.110951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium ions (Ca2+) are involved in nearly every aspect of cellular life. They are one of the most abundant elements in mammals and play a vital role in physiological and biochemical processes acting mainly as intracellular messengers. In spermatozoa, several key functions are regulated by cytoplasmic Ca2+ concentration such as sperm capacitation, chemotaxis, hyperactive motility, and acrosome reaction. The sperm-specific ion channel CatSper is the principal calcium channel in sperm mediating the calcium influx into the sperm flagellum and acting as an essential modulator of downstream mechanisms involved in fertilization. This review aims to provide insights into the structure, localization, and function of the mammalian CatSper channel, primarily human and mice. The activation of CatSper by progesterone and prostaglandins, as well as the ligand-independent regulation of the channel by a change in the membrane voltage and intracellular pH are going to be addressed. Finally, major questions, challenges, and perspectives are discussed.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
32
|
Evans JP, Lymbery RA. Sexual selection after gamete release in broadcast spawning invertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200069. [PMID: 33070722 DOI: 10.1098/rstb.2020.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Broadcast spawning invertebrates offer highly tractable models for evaluating sperm competition, gamete-level mate choice and sexual conflict. By displaying the ancestral mating strategy of external fertilization, where sexual selection is constrained to act after gamete release, broadcast spawners also offer potential evolutionary insights into the cascade of events that led to sexual reproduction in more 'derived' groups (including humans). Moreover, the dynamic reproductive conditions faced by these animals mean that the strength and direction of sexual selection on both males and females can vary considerably. These attributes make broadcast spawning invertebrate systems uniquely suited to testing, extending, and sometimes challenging classic and contemporary ideas in sperm competition, many of which were first captured in Parker's seminal papers on the topic. Here, we provide a synthesis outlining progress in these fields, and highlight the burgeoning potential for broadcast spawners to provide both evolutionary and mechanistic understanding into gamete-level sexual selection more broadly across the animal kingdom. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia
| |
Collapse
|
33
|
Dobramysl U, Holcman D. Triangulation Sensing to Determine the Gradient Source from Diffusing Particles to Small Cell Receptors. PHYSICAL REVIEW LETTERS 2020; 125:148102. [PMID: 33064548 DOI: 10.1103/physrevlett.125.148102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
How does a cell locate the source of molecular guidance cues from within a concentration gradient? We present a computational approach to recover the source from the absorbed fluxes at narrow receptor windows located on the surface of the cell. In the limit of fast binding, we solve the steady-state diffusion equation using an asymptotic approach and hybrid stochastic-analytical simulations. We show that the sensitivity to the gradient direction decays too rapidly to enable long-distance sensing. We illustrate how this constraint can be alleviated when triangulating the source with an increasing number of receptor windows and quantify the susceptibility of this process to flux perturbations.
Collapse
Affiliation(s)
- Ulrich Dobramysl
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - David Holcman
- Group Computational Biology and Data modeling, IBENS, Ecole Normale Superieure - PSL, Paris, France
| |
Collapse
|
34
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Abstract
Understanding the evolution of sex determination mechanisms and sex chromosomes is of fundamental importance in biology. Here we have reconstructed the evolution of the sex-determining region in the Atlantic herring. The region is small and contains only three intact genes. The candidate sex-determining factor BMPR1BBY is an evolutionary innovation in the herring lineage. It encodes a truncated form of a BMP type I receptor, which originated by gene duplication and underwent rapid protein evolution. The receptor has maintained its kinase activity and has the potential to induce development of testis. The other two genes in the sex-determining region, CATSPERG and CATSPER3Y, are male beneficial genes because they encode proteins predicted to be essential for sperm to fertilize the egg. The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.
Collapse
|
36
|
Chen R, Hong X, Yan S, Zha J. Three organophosphate flame retardants (OPFRs) reduce sperm quality in Chinese rare minnows (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114525. [PMID: 32289612 DOI: 10.1016/j.envpol.2020.114525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate flame retardants (OPFRs) are widespread in the aquatic environment, but the effects of these chemicals on reproductive toxicity are far from clear. In this study, sperm quality in adult male Chinese rare minnows after exposure to tris-(2-butoxyethyl) phosphate (TBOEP), tris-(1,3-dichloro-2-propyl) phosphate (TDCIPP), and triphenyl phosphate (TPHP) was investigated. No obvious change in sperm concentration and vitality was observed after treatments, whereas significant changes in sperm velocity and morphology were found following all treatments (P < 0.05). Moreover, OPFR exposure significantly increased the apoptosis ratios in testis cells. Analysis of the transcriptomic data revealed that Na+/K+ ATPase (NKA) related genes were significantly downregulated, and the NKA enzyme activities after all treatments were significantly inhibited (P < 0.05). However, no obvious change in hormone levels in the groups exposed to TBOEP and TDCIPP was observed. These findings indicate that the OPFR-induced reduction of sperm quality might be due to the effects of OPFRs on NKA enzyme instead of changes in hormone levels.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
37
|
Rehfeld A, Mendoza N, Ausejo R, Skakkebæk NE. Bisphenol A Diglycidyl Ether (BADGE) and Progesterone Do Not Induce Ca 2+ Signals in Boar Sperm Cells. Front Physiol 2020; 11:785. [PMID: 32774306 PMCID: PMC7381341 DOI: 10.3389/fphys.2020.00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Aim Exposure of boar sperm cells to Bisphenol A diglycidyl ether (BADGE) has been shown to lead to reproductive failure in sows, however, the mode of action is unknown. As we have recently shown that BADGE can interfere with Ca2 + signaling in human sperm cells through an action on CatSper, and as CatSper has been shown to be expressed in boar sperm cells, we hypothesized that a similar mechanism in the boar sperm cells could be responsible for the reproductive failure. Methods Direct effects of BADGE and the endogenous ligand of human CatSper, progesterone, on Ca2+ signaling in human and boar sperm cells were evaluated side-by-side using a Ca2+ fluorimetric assay measuring changes in intracellular Ca2+. Effects of BADGE on Ca2+ signaling in boar sperm were furthermore assessed by flow cytometry by an independent laboratory. Results The exact same solutions of BADGE and progesterone induced transient biphasic Ca2+ signals in human sperm cells, but failed to do so in both non-capacitated and capacitated boar sperm cells. BADGE also failed to induce transient biphasic Ca2+ signals in boar sperm cells in the flow cytometric assay. Conclusion BADGE and progesterone failed to induce Ca2+ signals in boar sperm cells. This indicates that the signaling mechanisms leading to activation of CatSper differs between human and boar sperm cells, and suggests that the mode of action by which exposure of boar sperm cells to BADGE can lead to reproductive failure in sows does not involve effects on Ca2+ signaling.
Collapse
Affiliation(s)
- Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Noelia Mendoza
- Department of Research and Development, Magapor SL, Zaragoza, Spain
| | - Raquel Ausejo
- Department of Research and Development, Magapor SL, Zaragoza, Spain
| | - Niels Erik Skakkebæk
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Wobig L, Wolfenstetter T, Fechner S, Bönigk W, Körschen HG, Jikeli JF, Trötschel C, Feederle R, Kaupp UB, Seifert R, Berger TK. A family of hyperpolarization-activated channels selective for protons. Proc Natl Acad Sci U S A 2020; 117:13783-13791. [PMID: 32467169 PMCID: PMC7306766 DOI: 10.1073/pnas.2001214117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Proton (H+) channels are special: They select protons against other ions that are up to a millionfold more abundant. Only a few proton channels have been identified so far. Here, we identify a family of voltage-gated "pacemaker" channels, HCNL1, that are exquisitely selective for protons. HCNL1 activates during hyperpolarization and conducts protons into the cytosol. Surprisingly, protons permeate through the channel's voltage-sensing domain, whereas the pore domain is nonfunctional. Key to proton permeation is a methionine residue that interrupts the series of regularly spaced arginine residues in the S4 voltage sensor. HCNL1 forms a tetramer and thus contains four proton pores. Unlike classic HCN channels, HCNL1 is not gated by cyclic nucleotides. The channel is present in zebrafish sperm and carries a proton inward current that acidifies the cytosol. Our results suggest that protons rather than cyclic nucleotides serve as cellular messengers in zebrafish sperm. Through small modifications in two key functional domains, HCNL1 evolutionarily adapted to a low-Na+ freshwater environment to conserve sperm's ability to depolarize.
Collapse
Affiliation(s)
- Lea Wobig
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Thérèse Wolfenstetter
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Sylvia Fechner
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Wolfgang Bönigk
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Heinz G Körschen
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Jan F Jikeli
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany;
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinhard Seifert
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany;
| | - Thomas K Berger
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany;
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
39
|
Chen X, Zheng Y, Lei A, Zhang H, Niu H, Li X, Zhang P, Liao M, Lv Y, Zhu Z, Pan C, Dong W, Chen H, Wu D, Liu W, Hamer G, Zeng S, Zeng W. Early cleavage of preimplantation embryos is regulated by tRNA Gln-TTG-derived small RNAs present in mature spermatozoa. J Biol Chem 2020; 295:10885-10900. [PMID: 32487749 DOI: 10.1074/jbc.ra120.013003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
tRNA-derived small RNAs (tsRNAs) from spermatozoa could act as acquired epigenetic factors and contribute to offspring phenotypes. However, the roles of specific tsRNAs in early embryo development remain to be elucidated. Here, using pigs as a research model, we probed the tsRNA dynamics during spermatogenesis and sperm maturation and demonstrated the delivery of tsRNAs from semen-derived exosomes to spermatozoa. By microinjection of antisense sequences into in vitro fertilized oocytes and subsequent single-cell RNA-seq of embryos, we identified a specific functional tsRNA group (termed here Gln-TTGs) that participate in the early cleavage of porcine preimplantation embryos, probably by regulating cell cycle-associated genes and retrotransposons. We conclude that specific tsRNAs present in mature spermatozoa play significant roles in preimplantation embryo development.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Hanxue Zhang
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huimin Niu
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueliang Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhendong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanying Pan
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wuzi Dong
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an Chengdu, China
| | - Wansheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Shenming Zeng
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
40
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Darszon A, Nishigaki T, López-González I, Visconti PE, Treviño CL. Differences and Similarities: The Richness of Comparative Sperm Physiology. Physiology (Bethesda) 2020; 35:196-208. [PMID: 32293232 PMCID: PMC11960811 DOI: 10.1152/physiol.00033.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
Species preservation depends on the success of fertilization. Sperm are uniquely equipped to fulfill this task, and, although several mechanisms are conserved among species, striking functional differences have evolved to contend with particular sperm-egg environmental characteristics. This review highlights similarities and differences in sperm strategies, with examples within internal and external fertilizers, pointing out unresolved issues.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
42
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
43
|
Kadlec M, Ros-Santaella JL, Pintus E. The Roles of NO and H 2S in Sperm Biology: Recent Advances and New Perspectives. Int J Mol Sci 2020; 21:E2174. [PMID: 32245265 PMCID: PMC7139502 DOI: 10.3390/ijms21062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Collapse
Affiliation(s)
| | | | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.K.); (J.L.R.-S.)
| |
Collapse
|
44
|
Priego-Espinosa DA, Darszon A, Guerrero A, González-Cota AL, Nishigaki T, Martínez-Mekler G, Carneiro J. Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm. PLoS Comput Biol 2020; 16:e1007605. [PMID: 32119665 PMCID: PMC7067495 DOI: 10.1371/journal.pcbi.1007605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/12/2020] [Accepted: 12/13/2019] [Indexed: 11/18/2022] Open
Abstract
Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion. Fertilisation in marine invertebrates, such as the sea urchin, occurs during broadcast spawning events in which males and females of co-localised species ejaculate sperm and spawn eggs synchronously. During these events, spermatozoa have to find and fertilise conspecific eggs in the midst of all the other ones, which is a remarkable navigation and mating choice achievement. Sperm cells do this by navigating towards the source of species-specific peptides released by the egg, steered by spatial and temporally orchestrated peaks in intracellular calcium concentration that trigger sudden reorientations. How these calcium spikes are regulated and timed remains elusive. Different calcium channels have been implicated by indirect experimental evidence giving rise to a complex network of putative interacting components. We gained insight into the structure and function of this network by modelling it as a set of candidate modules that could be studied separately. By using this ‘divide and conquer’ approach to the complexity of the network, we could characterise the potential dynamics of each module and confront these dynamics with specific quantitative data. Our results indicate that the channel mediating calcium signals in sea urchin sperm is likely CatSper, a calcium channel necessary for human male fertility.
Collapse
Affiliation(s)
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Adán Guerrero
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ana Laura González-Cota
- Washington University School of Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, St. Louis, Missouri, United States of America
| | - Takuya Nishigaki
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Martínez-Mekler
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Ciencias de la Complejidad UNAM, CDMX, México
- Laboratoire de Physique Statistique, Départment de Physique, Ecole Normale Supérieure, Paris, France
- * E-mail: (GMM); (JC)
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (GMM); (JC)
| |
Collapse
|
45
|
Vyklicka L, Lishko PV. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr Opin Cell Biol 2020; 63:154-161. [PMID: 32097833 DOI: 10.1016/j.ceb.2020.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/28/2023]
Abstract
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.
Collapse
Affiliation(s)
- Lenka Vyklicka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
46
|
Gong A, Rode S, Kaupp UB, Gompper G, Elgeti J, Friedrich BM, Alvarez L. The steering gaits of sperm. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190149. [PMID: 31884910 PMCID: PMC7017342 DOI: 10.1098/rstb.2019.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Sperm are highly specialized cells, which have been subject to substantial evolutionary pressure. Whereas some sperm features are highly conserved, others have undergone major modifications. Some of these variations are driven by adaptation to mating behaviours or fitness at the organismic level. Others represent alternative solutions to the same task. Sperm must find the egg for fertilization. During this task, sperm rely on long slender appendages termed flagella that serve as sensory antennas, propellers and steering rudders. The beat of the flagellum is periodic. The resulting travelling wave generates the necessary thrust for propulsion in the fluid. Recent studies reveal that, for steering, different species rely on different fundamental features of the beat wave. Here, we discuss some examples of unity and diversity across sperm from different species with a particular emphasis on the steering mechanisms. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- A. Gong
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - S. Rode
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - U. B. Kaupp
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - G. Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - J. Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - B. M. Friedrich
- Biological Algorithms Group, TU Dresden, Biological Systems Path of the Center for Advancing Electronics Dresden (CFAED), Helmholtzstrasse 18, 01069 Dresden, Germany
| | - L. Alvarez
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
47
|
Trötschel C, Hamzeh H, Alvarez L, Pascal R, Lavryk F, Bönigk W, Körschen HG, Müller A, Poetsch A, Rennhack A, Gui L, Nicastro D, Strünker T, Seifert R, Kaupp UB. Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 2020; 39:e102723. [PMID: 31880004 PMCID: PMC7024835 DOI: 10.15252/embj.2019102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.
Collapse
Affiliation(s)
- Christian Trötschel
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Fedir Lavryk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Astrid Müller
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Ansgar Poetsch
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
- Present address:
Center for Marine and Molecular BiotechnologyQNLMQindaoChina
- Present address:
College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Andreas Rennhack
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Long Gui
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Timo Strünker
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Center of Reproductive Medicine and AndrologyUniversity Hospital MünsterMünsterGermany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Life& Medical Sciences Institute (LIMES)University of BonnBonnGermany
| |
Collapse
|
48
|
Schiffer C, Rieger S, Brenker C, Young S, Hamzeh H, Wachten D, Tüttelmann F, Röpke A, Kaupp UB, Wang T, Wagner A, Krallmann C, Kliesch S, Fallnich C, Strünker T. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca 2+ signaling. EMBO J 2020; 39:e102363. [PMID: 31957048 PMCID: PMC7024840 DOI: 10.15252/embj.2019102363] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 12/23/2022] Open
Abstract
Navigation of sperm in fluid flow, called rheotaxis, provides long‐range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+) influx via the sperm‐specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark‐field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper‐deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+‐signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux.
Collapse
Affiliation(s)
- Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Steffen Rieger
- Optical Technologies Group, Institute of Applied Physics, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Hussein Hamzeh
- Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - U Benjamin Kaupp
- Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Alice Wagner
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Institute of Human Genetics, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Carsten Fallnich
- Optical Technologies Group, Institute of Applied Physics, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), Münster, Germany
| |
Collapse
|
49
|
Panigrahi B, Chen CY. Microfluidic retention of progressively motile zebrafish sperms. LAB ON A CHIP 2019; 19:4033-4042. [PMID: 31746882 DOI: 10.1039/c9lc00534j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic manipulation of zebrafish results in thousands of mutant strains and to efficiently preserve them for future use, zebrafish sperms have been cryopreserved in various cryopreservation centers. However, cryopreservation protocols are known to alter genetic entities. Therefore, there is an urgent need for an efficient method that can select morphologically superior and progressively motile zebrafish sperms after their activation for in vitro fertilization success. However, unlike those of other mammalian species, fish sperms do not take any physical or chemical cues to travel towards the egg. Their inertness towards any external cues makes the control of their orientation in a microfluidic environment difficult. In this aspect, a new microfluidic concept was demonstrated where PDMS baffles were inserted in the sidewalls to form microscale confinement creating a flow stagnation zone towards sperm retention. Two distinct microfluidic device designs were selected to evidence the improvement in sperm retention through the unique hydrodynamic feature provided by the microchannel design. Under similar flow conditions, 44% improvement was noticed for the device with a modified baffle design in terms of sperm retrieving efficiency. It was further noticed that with a flow tuning of 0.7 μL min-1, 80% of the total sperms swimming into the retention zones was retained within a specific time window. The present work further explains the significance of the hydrodynamic dependency of zebrafish sperm kinematics that paves the way for highly efficient spermatozoan manipulation.
Collapse
Affiliation(s)
- Bivas Panigrahi
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan.
| | - Chia-Yuan Chen
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan.
| |
Collapse
|
50
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|