6
|
Ednie AR, Deng W, Yip KP, Bennett ES. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J 2018; 33:1248-1261. [PMID: 30138037 DOI: 10.1096/fj.201801057r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein glycosylation is an essential posttranslational modification that affects a myriad of physiologic processes. Humans with genetic defects in glycosylation, which result in truncated glycans, often present with significant cardiac deficits. Acquired heart diseases and their associated risk factors were also linked to aberrant glycosylation, highlighting its importance in human cardiac disease. In both cases, the link between causation and corollary remains enigmatic. The glycosyltransferase gene, mannosyl (α-1,3-)-glycoprotein β-1,2- N-acetylglucosaminyltransferase (Mgat1), whose product, N-acetylglucosaminyltransferase 1 (GlcNAcT1) is necessary for the formation of hybrid and complex N-glycan structures in the medial Golgi, was shown to be at reduced levels in human end-stage cardiomyopathy, thus making Mgat1 an attractive target for investigating the role of hybrid/complex N-glycosylation in cardiac pathogenesis. Here, we created a cardiomyocyte-specific Mgat1 knockout (KO) mouse to establish a model useful in exploring the relationship between hybrid/complex N-glycosylation and cardiac function and disease. Biochemical and glycomic analyses showed that Mgat1KO cardiomyocytes produce predominately truncated N-glycan structures. All Mgat1KO mice died significantly younger than control mice and demonstrated chamber dilation and systolic dysfunction resembling human dilated cardiomyopathy (DCM). Data also indicate that a cardiomyocyte L-type voltage-gated Ca2+ channel (Cav) subunit (α2δ1) is a GlcNAcT1 target, and Mgat1KO Cav activity is shifted to more-depolarized membrane potentials. Consistently, Mgat1KO cardiomyocyte Ca2+ handling is altered and contraction is dyssynchronous compared with controls. The data demonstrate that reduced hybrid/complex N-glycosylation contributes to aberrant cardiac function at whole-heart and myocyte levels drawing a direct link between altered glycosylation and heart disease. Thus, the Mgat1KO provides a model for investigating the relationship between systemic reductions in glycosylation and cardiac disease, showing that clinically relevant changes in cardiomyocyte hybrid/complex N-glycosylation are sufficient to cause DCM and early death.-Ednie, A. R., Deng, W., Yip, K.-P., Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| | - Wei Deng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| |
Collapse
|
10
|
Terentyev D, Rees CM, Li W, Cooper LL, Jindal HK, Peng X, Lu Y, Terentyeva R, Odening KE, Daley J, Bist K, Choi BR, Karma A, Koren G. Hyperphosphorylation of RyRs underlies triggered activity in transgenic rabbit model of LQT2 syndrome. Circ Res 2014; 115:919-28. [PMID: 25249569 DOI: 10.1161/circresaha.115.305146] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss-of-function mutations in human ether go-go (HERG) potassium channels underlie long QT syndrome type 2 (LQT2) and are associated with fatal ventricular tachyarrhythmia. Previously, most studies focused on plasma membrane-related pathways involved in arrhythmogenesis in long QT syndrome, whereas proarrhythmic changes in intracellular Ca(2+) handling remained unexplored. OBJECTIVE We investigated the remodeling of Ca(2+) homeostasis in ventricular cardiomyocytes derived from transgenic rabbit model of LQT2 to determine whether these changes contribute to triggered activity in the form of early after depolarizations (EADs). METHODS AND RESULTS Confocal Ca(2+) imaging revealed decrease in amplitude of Ca(2+) transients and sarcoplasmic reticulum Ca(2+) content in LQT2 myocytes. Experiments using sarcoplasmic reticulum-entrapped Ca(2+) indicator demonstrated enhanced ryanodine receptor (RyR)-mediated sarcoplasmic reticulum Ca(2+) leak in LQT2 cells. Western blot analyses showed increased phosphorylation of RyR in LQT2 myocytes versus controls. Coimmunoprecipitation experiments demonstrated loss of protein phosphatases type 1 and type 2 from the RyR complex. Stimulation of LQT2 cells with β-adrenergic agonist isoproterenol resulted in prolongation of the plateau of action potentials accompanied by aberrant Ca(2+) releases and EADs, which were abolished by inhibition of Ca(2+)/calmodulin-dependent protein kinase type 2. Computer simulations showed that late aberrant Ca(2+) releases caused by RyR hyperactivity promote EADs and underlie the enhanced triggered activity through increased forward mode of Na(+)/Ca(2+) exchanger type 1. CONCLUSIONS Hyperactive, hyperphosphorylated RyRs because of reduced local phosphatase activity enhance triggered activity in LQT2 syndrome. EADs are promoted by aberrant RyR-mediated Ca(2+) releases that are present despite a reduction of sarcoplasmic reticulum content. Those releases increase forward mode Na(+)/Ca(2+) exchanger type 1, thereby slowing repolarization and enabling L-type Ca(2+) current reactivation.
Collapse
Affiliation(s)
- Dmitry Terentyev
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.).
| | - Colin M Rees
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Weiyan Li
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Leroy L Cooper
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Hitesh K Jindal
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Xuwen Peng
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Yichun Lu
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Radmila Terentyeva
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Katja E Odening
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Jean Daley
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Kamana Bist
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Bum-Rak Choi
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Alain Karma
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Gideon Koren
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.).
| |
Collapse
|