1
|
Ma XX, Zhou XY, Feng MG, Ji YT, Song FF, Tang QC, He Q, Zhang YF. Dual Role of IGF2BP2 in Osteoimmunomodulation during Periodontitis. J Dent Res 2024; 103:208-217. [PMID: 38193302 DOI: 10.1177/00220345231216115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Periodontitis is a complex disease characterized by distinct inflammatory stages, with a peak of inflammation in the early phase and less prominent inflammation in the advanced phase. The insulin-like growth factor 2-binding proteins 2 (IGF2BP2) has recently been identified as a new m6A reader that protects m6A-modified messenger RNAs (mRNAs) from decay, thus participating in multiple biological processes. However, its role in periodontitis remains unexplored. Here, we investigated the role of IGF2BP2 in inflammation and osteoclast differentiation using a ligature-induced periodontitis model. Our findings revealed that IGF2BP2 responded to bacterial-induced inflammatory stimuli and exhibited differential expression patterns in early and advanced periodontitis stages, suggesting its dual role in regulating this disease. Depletion of Igf2bp2 contributed to increased release of inflammatory cytokines, thereby exacerbating periodontitis after 3 d of ligature while suppressing osteoclast differentiation and ameliorating periodontitis after 14 d of ligature. Mechanistically, we demonstrated that IGF2BP2 directly interacted with Cd5l and Cd36 mRNA via RNA immunoprecipitation assay. Overexpression of CD36 or recombinant CD5L rescued the osteoclast differentiation ability of Igf2bp2-null cells upon lipopolysaccharide stimulus, and thus the downregulation of Cd36 and Cd5l effectively reversed periodontitis in the advanced stage. Altogether, this study deepens our understanding of the potential mechanistic link among the dysregulated m6A reader IGF2BP2, immunomodulation, and osteoclastogenesis during different stages of periodontitis.
Collapse
Affiliation(s)
- X X Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X Y Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - M G Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y T Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - F F Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q C Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y F Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
3
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
4
|
Wang Q, Wang H, Yan H, Tian H, Wang Y, Yu W, Dai Z, Chen P, Liu Z, Tang R, Jiang C, Fan S, Liu X, Lin X. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. SCIENCE ADVANCES 2022; 8:eabn3333. [PMID: 35767605 PMCID: PMC9242458 DOI: 10.1126/sciadv.abn3333] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Redundancy of multinucleated mature osteoclasts, which results from the excessive fusion of mononucleated preosteoclasts (pOCs), leads to osteolytic diseases such as osteoporosis. Unfortunately, the currently available clinical drugs completely inhibit osteoclasts, thus interfering with normal physiological bone turnover. pOC-specific regulation may be more suitable for maintaining bone homeostasis. Here, circBBS9, a previously unidentified circular RNA, was found to exert regulatory effects via the circBBS9/miR-423-3p/Traf6 axis in pOCs. To overcome the long-standing challenge of spatiotemporal RNA delivery to cells, we constructed biomimetic nanoparticles to achieve the pOC-specific targeted delivery of circBBS9. pOC membranes (POCMs) were extracted to camouflage cationic polymer for RNA interference with circBBS9 (POCM-NPs@siRNA/shRNAcircBBS9). POCM-NPs endowed the nanocarriers with improved stability, accurate pOC targeting, fusogenic uptake, and reactive oxygen species-responsive release. In summary, our findings may provide an alternative strategy for multinucleated cell-related diseases that involves restriction of mononucleated cell multinucleation through a spatiotemporally selective delivery system.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Wei Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| |
Collapse
|
5
|
Notch2 Blockade Mitigates Methotrexate Chemotherapy-Induced Bone Loss and Marrow Adiposity. Cells 2022; 11:cells11091521. [PMID: 35563828 PMCID: PMC9103078 DOI: 10.3390/cells11091521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Childhood cancer methotrexate (MTX) chemotherapy often causes bone growth impairments, bone loss, and increased risks of fractures during or after treatment, for which the pathobiology is unclear and there is a lack of specific treatment. Our time course analyses of long bones from rats receiving intensive MTX treatment (mimicking a clinical protocol) found decreased trabecular bone volume, increased osteoclast formation and activity, increased adipogenesis in the expense of osteogenesis from the bone marrow stromal cells at days 6 and 9 following the first of five daily MTX doses. For exploring potential mechanisms, PCR array expression of 91 key factors regulating bone homeostasis was screened with the bone samples, which revealed MTX treatment-induced upregulation of Notch receptor NOTCH2, activation of which is known to be critical in skeletal development and bone homeostasis. Consistently, increased Notch2 activation in bones of MTX-treated rats was confirmed, accompanied by increased expression of Notch2 intracellular domain protein and Notch target genes HEY1, HES1 and HEYL. To confirm the roles of Notch2 signalling, a neutralising anti-Notch2 antibody or a control IgG was administered to rats during MTX treatment. Microcomputed tomography analyses demonstrated that trabecular bone volume was preserved by MTX+anti-Notch2 antibody treatment. Anti-Notch2 antibody treatment ameliorated MTX treatment-induced increases in osteoclast density and NFATc1 and RANKL expression, and attenuated MTX-induced bone marrow adiposity via regulating Wnt/β-catenin signalling and PPARγ expression. Thus, Notch2 signalling plays an important role in mediating MTX treatment-induced bone loss and bone marrow adiposity, and targeting Notch2 could be a potential therapeutic option.
Collapse
|
6
|
Feng W, Jin Q, Ming-Yu Y, Yang H, Xu T, You-Xing S, Xu-Ting B, Wan C, Yun-Jiao W, Huan W, Ai-Ning Y, Yan L, Hong T, Pan H, Mi-Duo M, Gang H, Mei Z, Xia K, Kang-Lai T. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength. Biomaterials 2021; 279:121242. [PMID: 34768151 DOI: 10.1016/j.biomaterials.2021.121242] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteolysis at the tendon-bone interface can impair pullout strength during tendon-bone healing and lead to surgery failure, but the effects of clinical treatments are not satisfactory. Mesenchymal stem cell (MSC)-derived exosomes have been used as potent and feasible natural nanocarriers for drug delivery and have been proven to enhance tendon-bone healing strength, indicating that MSC-derived exosomes could be a promising therapeutic strategy. In this study, we explored Scleraxis (Scx) dynamically expressed in PDGFRα(+) bone marrow-derived mesenchymal stem cells (BMMSCs) during natural tendon-bone healing. Then, we investigated the role of PDGFRα(+) BMMSCs in tendon-bone healing after Scx overexpression as well as the underlying mechanisms. Our data demonstrated that Scx-overexpressing PDGFRα(+) BMMSCs (BMMSCScx) could efficiently inhibit peritunnel osteolysis and enhance tendon-bone healing strength by preventing osteoclastogenesis in an exosomes-dependent manner. Exosomal RNA-seq revealed that the abundance of a novel miRNA, miR-6924-5p, was highest among miRNAs. miR-6924-5p could directly inhibit osteoclast formation by binding to the 3'-untranslated regions (3'UTRs) of OCSTAMP and CXCL12. Inhibition of miR-6924-5p expression reversed the prevention of osteoclastogenic differentiation by BMMSCScx derived exosomes (BMMSCScx-exos). Local injection of BMMSCScx-exos or miR-6924-5p dramatically reduced osteoclast formation and improved tendon-bone healing strength. Furthermore, delivery of miR-6924-5p efficiently inhibited the osteoclastogenesis of human monocytes. In brief, our study demonstrates that BMMSCScx-exos or miR-6924-5p could serve as a potential therapy for the treatment of osteolysis during tendon-bone healing and improve the outcome.
Collapse
Affiliation(s)
- Wang Feng
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Qian Jin
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Ming-Yu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Yang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tao Xu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Shi You-Xing
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Bian Xu-Ting
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Chen Wan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Yun-Jiao
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Huan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Yang Ai-Ning
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Li Yan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tang Hong
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Huang Pan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Mu Mi-Duo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Gang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Zhou Mei
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Kang Xia
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Tang Kang-Lai
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China.
| |
Collapse
|
7
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Su YW, Fan J, Fan CM, Peymanfar Y, Zhang YL, Xian CJ. Roles of apoptotic chondrocyte-derived CXCL12 in the enhanced chondroclast recruitment following methotrexate and/or dexamethasone treatment. J Cell Physiol 2021; 236:5966-5979. [PMID: 33438203 DOI: 10.1002/jcp.30278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.
Collapse
Affiliation(s)
- Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ya-Li Zhang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
10
|
Negri S, Wang Y, Sono T, Lee S, Hsu GC, Xu J, Meyers CA, Qin Q, Broderick K, Witwer KW, Peault B, James AW. Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Transl Med 2020; 9:1617-1630. [PMID: 32697440 PMCID: PMC7695633 DOI: 10.1002/sctm.20-0152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The vascular wall stores mesenchymal progenitor cells which are able to induce bone regeneration, via direct and paracrine mechanisms. Although much is known regarding perivascular cell regulation of osteoblasts, their regulation of osteoclasts, and by extension utility in states of high bone resorption, is not known. Here, human perivascular stem cells (PSCs) were used as a means to prevent autograft resorption in a gonadectomy-induced osteoporotic spine fusion model. Furthermore, the paracrine regulation by PSCs of osteoclast formation was evaluated, using coculture, conditioned medium, and purified extracellular vesicles. Results showed that PSCs when mixed with autograft bone induce an increase in osteoblast:osteoclast ratio, promote bone matrix formation, and prevent bone graft resorption. The confluence of these factors resulted in high rates of fusion in an ovariectomized rat lumbar spine fusion model. Application of PSCs was superior across metrics to either the use of unpurified, culture-defined adipose-derived stromal cells or autograft bone alone. Under coculture conditions, PSCs negatively regulated osteoclast formation and did so via secreted, nonvesicular paracrine factors. Total RNA sequencing identified secreted factors overexpressed by PSCs which may explain their negative regulation of graft resorption. In summary, PSCs reduce osteoclast formation and prevent bone graft resorption in high turnover states such as gonadectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Stefano Negri
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, DentistryPaediatrics and Gynaecology of the University of VeronaVeronaItaly
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Takashi Sono
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seungyong Lee
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Qizhi Qin
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kristen Broderick
- Department of Plastic SurgeryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and NeurologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesCaliforniaUSA
- Center for Cardiovascular Science and MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Aaron W. James
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
11
|
Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer. Curr Med Chem 2020; 27:5543-5561. [PMID: 31724498 DOI: 10.2174/0929867326666191113113110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic "seeds") to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment ("soil") and kill the cancer cells, particularly the cancer stem/progenitor cells ("seeds"), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University; Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
Fan J, Su YW, Hassanshahi M, Fan CM, Peymanfar Y, Piergentili A, Del Bello F, Quaglia W, Xian CJ. β-Catenin signaling is important for osteogenesis and hematopoiesis recovery following methotrexate chemotherapy in rats. J Cell Physiol 2020; 236:3740-3751. [PMID: 33078406 DOI: 10.1002/jcp.30114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the β-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without β-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of β-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+ hematopoietic progenitor cell contents. Thus, β-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.
Collapse
Affiliation(s)
- Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Cory J Xian
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China.,UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Ponte F, Kim HN, Iyer S, Han L, Almeida M, Manolagas SC. Cxcl12 Deletion in Mesenchymal Cells Increases Bone Turnover and Attenuates the Loss of Cortical Bone Caused by Estrogen Deficiency in Mice. J Bone Miner Res 2020; 35:1441-1451. [PMID: 32154948 PMCID: PMC7725417 DOI: 10.1002/jbmr.4002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
CXCL12 is abundantly expressed in reticular cells associated with the perivascular niches of the bone marrow (BM) and is indispensable for B lymphopoiesis. Cxcl12 promotes osteoclastogenesis and has been implicated in pathologic bone resorption. We had shown earlier that estrogen receptor α deletion in osteoprogenitors and estrogen deficiency in mice increase Cxcl12 mRNA and protein levels in the BM plasma, respectively. We have now generated female and male mice with conditional deletion of a Cxcl12 allele in Prrx1 targeted cells (Cxcl12∆Prrx1 ) and show herein that they have a 90% decrease in B lymphocytes but increased erythrocytes and adipocytes in the marrow. Ovariectomy increased the expression of Cxcl12 and B-cell number in the Cxcl12f/f control mice, but these effects were abrogated in the Cxcl12∆Prrx1 mice. Cortical bone mass was not affected in Cxcl12∆Prrx1 mice. Albeit, the cortical bone loss caused by ovariectomy was greatly attenuated. Most unexpectedly, the rate of bone turnover in sex steroid-sufficient female or male Cxcl12∆Prrx1 mice was dramatically increased, as evidenced by a more than twofold increase in several osteoblast- and osteoclast-specific mRNAs, as well as increased mineral apposition and bone formation rate and increased osteoclast number in the endosteal surface. The magnitude of the Cxcl12∆Prrx1 -induced changes were much greater than those caused by ovariectomy or orchidectomy in the Cxcl12f/f mice. These results strengthen the evidence that CXCL12 contributes to the loss of cortical bone mass caused by estrogen deficiency. Moreover, they reveal for the first time that in addition to its effects on hematopoiesis, CXCL12 restrains bone turnover-without changing the balance between resorption and formation-by suppressing osteoblastogenesis and the osteoclastogenesis support provided by cells of the osteoblast lineage. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Filipa Ponte
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Srividhya Iyer
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,The Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,The Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
14
|
Adapala NS, Root S, Lorenzo J, Aguila H, Sanjay A. PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF-1-mediated osteoclast precursor migration. Bone Rep 2019; 10:100203. [PMID: 30989092 PMCID: PMC6449702 DOI: 10.1016/j.bonr.2019.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
Our previous studies showed that in a mouse model in which PI3K-AKT activation was increased (YF mice), osteoclast numbers and levels of SDF-1, a chemokine, were augmented. The purpose of this study was to delineate the role of PI3K activation in regulating SDF-1 production and examine whether SDF-1 can stimulate differentiation and/or migration of osteoclast precursors. Using flow cytometric analysis, we demonstrated that compared to wild type mice, bone marrow of YF mice had increased numbers of CXCL12 abundant reticular (CAR) cells, that are a major cell type responsible for producing SDF-1. At the molecular level, transcription factor specificity protein 1 (Sp1) induced an increased transcription of SDF-1 that was dependent on PI3K/AKT activation. YF mice also contained an increased number of osteoclast precursors, in which expression of CXCR4, a major receptor for SDF-1, was increased. SDF-1 did not induce differentiation of osteoclast precursors into mature osteoclasts; compared to cells derived from WT mice, cells obtained from YF mice were more responsive to SDF-1. In conclusion, we demonstrate that PI3K activation resulted in increased SDF-1, increased the number of osteoclast precursors, and enhanced osteoclast precursor migration in response to SDF-1. PI3K activation regulates the number of CAR cells in mouse bone marrow. PI3K activation regulates SDF-1/CXCL12 production by CAR cells in bone marrow. PI3K/AKT activation mediates transcription of SDF-1 by regulating transcription factor Sp1. SDF-1 enhances migration of osteoclast precursors via CXCR4.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopaedic Surgery, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Sierra Root
- Department of Immunology, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Joseph Lorenzo
- Department of Endocrinology and Metabolism, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Hector Aguila
- Department of Immunology, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| |
Collapse
|
15
|
Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 From Apoptotic Skeletal Cells Contributes to Bone Growth Defects Following Dexamethasone Therapy in Rats. J Bone Miner Res 2019; 34:310-326. [PMID: 30395366 DOI: 10.1002/jbmr.3597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.,Ningbo No. 6 Hospital, Ningbo, 315040, China
| |
Collapse
|
16
|
Kim HR, Kim KW, Kim BM, Lee KA, Lee SH. N-acetyl-l-cysteine controls osteoclastogenesis through regulating Th17 differentiation and RANKL production in rheumatoid arthritis. Korean J Intern Med 2019; 34:210-219. [PMID: 28286938 PMCID: PMC6325425 DOI: 10.3904/kjim.2016.329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS This study aimed to determine the regulatory role of N-acetyl-l-cysteine (NAC), an antioxidant, in interleukin 17 (IL-17)-induced osteoclast differentiation in rheumatoid arthritis (RA). METHODS After RA synovial fibroblasts were stimulated by IL-17, the expression and production of receptor activator of nuclear factor κ-B ligand (RANKL) was determined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis was also determined after co-cultures of IL-17-stimulated RA synovial fibroblasts, Th17 cells and various concentrations of NAC with monocytes. After human peripheral CD4+ T cells were cultured with NAC under Th17 condition, IL-17, interferon γ, IL-4, Foxp3, RANKL, and IL-2 expression and production was determined by flow cytometry or ELISA. RESULTS When RA synovial fibroblasts were stimulated by IL-17, IL-17 stimulated the production of RANKL, and NAC reduced the IL-17-induced RANKL production in a dose-dependent manner. NAC decreased IL-17-activated phosphorylation of mammalian target of rapamycin, c-Jun N-terminal kinase, and inhibitor of κB. When human peripheral blood CD14+ monocytes were cultured with macrophage colony-stimulating factor and IL-17 or RANKL, osteoclasts were differentiated, and NAC reduced the osteoclastogenesis. After human peripheral CD4+ T cells were co-cultured with IL-17-pretreated RA synovial fibroblasts or Th17 cells, NAC reduced their osteoclastogenesis. Under Th17 polarizing condition, NAC decreased Th17 cell differentiation and IL-17 and RANKL production. CONCLUSION NAC inhibits the IL-17-induced RANKL production in RA synovial fibroblasts and IL-17-induced osteoclast differentiation. NAC also reduced Th17 polarization. NAC could be a supplementary therapeutic option for inflammatory and bony destructive processes in RA.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Sang-Heon Lee, M.D. Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea Tel: +82-2-2030-7541 Fax: +82-2-2030-7748 E-mail:
| |
Collapse
|
17
|
Manolagas SC. The Quest for Osteoporosis Mechanisms and Rational Therapies: How Far We've Come, How Much Further We Need to Go. J Bone Miner Res 2018; 33:371-385. [PMID: 29405383 PMCID: PMC6816306 DOI: 10.1002/jbmr.3400] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
During the last 40 years, understanding of bone biology and the pathogenesis of osteoporosis, the most common and impactful bone disease of old age, has improved dramatically thanks to basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies. Culprits of osteoporosis are no longer a matter of speculation based on in vitro observations. Instead, they can be identified and dissected at the cellular and molecular level using genetic approaches; and their effect on distinct bone envelopes and anatomic regions can be functionally assessed in vivo. The landscape of pharmacotherapies for osteoporosis has also changed profoundly with the emergence of several potent antiresorptive drugs as well as anabolic agents, displacing estrogen replacement as the treatment of choice. In spite of these major positive developments, the optimal duration of the available therapies and their long-term safety remain matters of conjecture and some concern. Moreover, antiresorptive therapies are used indiscriminately for patients of all ages on the assumption that suppressing remodeling is always beneficial for bone, but rebound remodeling upon their discontinuation suggests otherwise. In this invited perspective, I highlight the latest state of knowledge of bone-intrinsic and extrinsic mechanisms responsible for the development of osteoporosis in both sexes; differences between the mechanisms responsible for the effects of aging and estrogen deficiency; and the role of old osteocytes in the development of cortical porosity. In addition, I highlight advances toward the goal of developing drugs for several degenerative diseases of old age at once, including osteoporosis, by targeting shared mechanisms of aging. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
18
|
Tong L, Zhu G, Wang J, Sun R, He F, Zhai J. Suppressing angiogenesis regulates the irradiation-induced stimulation on osteoclastogenesis in vitro. J Cell Physiol 2017; 233:3429-3438. [PMID: 28941279 DOI: 10.1002/jcp.26196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023]
Abstract
Ionizing radiation-induced bone loss is a potential health concern in radiotherapy, occupational exposure, and astronauts. Although impaired bone vasculature and reduced proliferation of bone-forming osteoblasts has been implicated in this process, it has not been clearly characterized that whether radiation affects the growth of bone-resorbing osteoclasts. The molecular crosstalk between different cell populations in the skeletal system has not yet been elucidated in detail, especially between the increased bone resorption at early stage of post-irradiation and bone marrow-derived endothelial progenitor cells (BM-EPCs). In order to further understand the mechanisms involved in radiation-induced bone loss at the cellular level, we assessed the effects of irradiation on angiogenesis of BM-EPCs and osteoclastogenesis of receptor activator for nuclear factor-κB ligand (RANKL)-stimulated RAW 264.7 cells and crosstalk between these cell populations. We herein found significantly dysfunction of BM-EPCs in response to irradiation at a dose of 2 Gy, including inhibited proliferation, migration, tube-forming abilities, and downregulated expression of pro-angiogenesis vascular endothelial growth factors A (VEGF A). Meanwhile, we observed that irradiation promoted osteoclastogenesis of RANKL-stimulated RAW 264.7 cells directly or indirectly. These results provide quantitative evidences of irradiation induced osteoclastogenesis at a cellular level, and strongly suggest the involvement of osteoclastogenesis, angiogenesis and crosstalk between bone marrow cells in the radiation-induced bone loss. This study may provide new insights for the early diagnosis and intervention of bone loss post-irradiation.
Collapse
Affiliation(s)
- Ling Tong
- Institute of Radiation Medicine, Fudan University, Shanghai, P.R. China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, P.R. China
| | - Jianping Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, P.R. China
| | - Ruilian Sun
- Institute of Radiation Medicine, Fudan University, Shanghai, P.R. China
| | - Feilong He
- Institute of Radiation Medicine, Fudan University, Shanghai, P.R. China
| | - Jianglong Zhai
- Institute of Radiation Medicine, Fudan University, Shanghai, P.R. China
| |
Collapse
|
19
|
Furue K, Sena K, Sakoda K, Nakamura T, Noguchi K. Involvement of the phosphoinositide 3-kinase/Akt signaling pathway in bone morphogenetic protein 9-stimulated osteogenic differentiation and stromal cell-derived factor 1 production in human periodontal ligament fibroblasts. Eur J Oral Sci 2017; 125:119-126. [DOI: 10.1111/eos.12336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Kirara Furue
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Kotaro Sena
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Kenji Sakoda
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Toshiaki Nakamura
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Kazuyuki Noguchi
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| |
Collapse
|
20
|
Luo T, Liu H, Feng W, Liu D, Du J, Sun J, Wang W, Han X, Guo J, Amizuka N, Li X, Li M. Adipocytes enhance expression of osteoclast adhesion-related molecules through the CXCL12/CXCR4 signalling pathway. Cell Prolif 2016; 50. [PMID: 27868262 DOI: 10.1111/cpr.12317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate effects of adipocytes on osteoclast adhesion-related molecules. MATERIALS AND METHODS ST2 cells, a cloned stromal cell line from mouse bone marrow, able to differentiate into adipocytes, were cultured in serum-free α-MEM which was then collected to be used as adipocyte-conditioned medium (ADIPO CM). RAW264.7 cells were cultured in ADIPO CM in the presence of RANKL, and bone marrow-derived macrophages were cultured in ADIPO CM in the presence of RANKL and macrophage-colony stimulating factor to induce osteoclast differentiation. TRAP staining, resorption pit assay, qRT-PCR and western blotting assays were performed. RESULTS ELISAs revealed that CXCL12 was abundant in ADIPO CM and CCK-8 assay revealed no proliferation of RAW264.7 cells after exogenous CXCL12 treatment. ADIPO CM enhanced osteoclast formation and resorption, both by RAW264.7 cells and BMMs. In addition, exogenous CXCL12 efficiently potentiated formation of TRAP-positive osteoclast and resorption by RAW264.7 cells. Western blotting and qRT-PCR suggested that ADIPO CM or combined treatment with exogenous CXCL12 caused significant increase in expression of NFAT2, src and osteoclast adhesion-related molecules, including β3 integrin, CD44 and osteopontin. However, these promotional effects were largely abrogated on treatment of AMD3100, a CXCR4 antagonist. CONCLUSIONS Adipocytes promoted osteoclast differentiation, function and expression of adhesion-related molecules through the CXCL12/CXCR4 signalling pathway.
Collapse
Affiliation(s)
- Tingting Luo
- School of Stomatology, Shanxi Medical University, Taiyuan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Wei Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Di Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Juan Du
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Jing Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Xiuchun Han
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Jie Guo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Xianqi Li
- School of Stomatology, Shanxi Medical University, Taiyuan, China.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| |
Collapse
|
21
|
AMD3100 Attenuates Matrix Metalloprotease-3 and -9 Expressions and Prevents Cartilage Degradation in a Monosodium Iodo-Acetate-Induced Rat Model of Temporomandibular Osteoarthritis. J Oral Maxillofac Surg 2016; 74:927.e1-927.e13. [PMID: 26851314 DOI: 10.1016/j.joms.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/25/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE Temporomandibular joint osteoarthritis (TMJOA) is an important subtype of temporomandibular disorder. This study investigated the inflammatory role of the stromal cell-derived factor-1 (SDF-1) and C-X-C chemokine receptor-4 (CXCR4) axis and the probable signaling pathway involved in matrix metalloprotease (MMP)-3 and MMP-9 productions stimulated by the SDF-1-CXCR4 axis in an experimental rat model of TMJOA. MATERIALS AND METHODS Rats were randomly divided into a control group, a pathologic model group, and an AMD3100 group. Effects of the bicyclam derivative AMD3100 (the specific antagonist of SDF-1-CXCR4 axis) were studied in TMJOA experimentally induced by monosodium iodo-acetate. Productions of SDF-1 and CXCR4 were compared in the normal and pathologic model groups, and cartilage changes and expressions of MMP-3, MMP-9, and phosphorylated extracellular signal-regulated kinase (p-ERK) were compared in the control, pathologic model, and AMD3100 groups. RESULTS Expressions of SDF-1 and CXCR4 in the pathologic model group were increased compared with the control group (P < .05). Releases of MMP-3, MMP-9, and p-ERK and cartilage changes were downregulated in the AMD3100 group compared with the pathologic model group (P < .05), and these changes occurred in a dose-dependent manner with AMD3100 concentrations. Moreover, there were strong predictive relations between the expression of p-ERK with MMP-3 (r(2) = 0.419; P < .001) and with MMP-9 (r(2) = 0.542; P < .001). CONCLUSIONS The SDF-1-CXCR4 signaling pathway plays a proinflammatory role in experimental TMJOA, the bicyclam derivative AMD3100 can alleviate the severity of experimental TMJOA, and there might be a potential relation between the SDF-1-CXCR4 axis and the ERK signaling pathway.
Collapse
|
22
|
Li CH, Xu LL, Zhao JX, Sun L, Yao ZQ, Deng XL, Liu R, Yang L, Xing R, Liu XY. CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway. Inflamm Res 2015; 65:193-202. [PMID: 26621504 DOI: 10.1007/s00011-015-0905-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To explore the influence of chemokine, CXCL16, on the expression of the receptor activator nuclear factor κB ligand (RANKL) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS). METHODS The expression of CXCL16/CXCR6 and RANKL in RA or osteoarthritis (OA) patient synovia was examined by Western blot and immunohistochemistry. The serum concentration of CXCL16 and RANKL was measured by enzyme-linked immunosorbent assay (ELISA). RA-FLS were treated with recombinant CXCL16, and RANKL mRNA and protein were measured using PCR, Western blot and ELISA. RESULTS The synovial expression of CXCL16, CXCR6, and RANKL was higher in RA patients than in patients with OA. The serum CXCL16 and RANKL levels were higher in RA patients compared with OA patients and healthy controls. CXCL16 correlated with erythrocyte sedimentation rate, C reactive protein, disease activity, serum rheumatoid factor, and RANKL. RA-FLS treated with CXCL16 showed markedly increased expression of RANKL. When STAT3 or p38 activation was blocked by an inhibitor, CXCL16 failed to upregulate RANKL expression. In contrast, inhibiting the Akt or Erk pathway did not achieve the same effect. CONCLUSIONS CXCL16 upregulates RANKL expression in RA-FLS and these effects are mainly mediated by the JAK2/STAT3 and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Chang-hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin-lin Xu
- Department of Clinical Nutrition, First Hospital of Tsinghua Univiersity, Beijing, 100016, People's Republic of China
| | - Jin-xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zhong-qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiao-li Deng
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Rui Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiang-yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
23
|
|
24
|
Kim HR, Kim KW, Kim BM, Cho ML, Lee SH. The effect of vascular endothelial growth factor on osteoclastogenesis in rheumatoid arthritis. PLoS One 2015; 10:e0124909. [PMID: 25894998 PMCID: PMC4404365 DOI: 10.1371/journal.pone.0124909] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/09/2015] [Indexed: 11/30/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has angiogenic, inflammatory, and bone-destructive roles in rheumatoid arthritis (RA). We aimed to determine the unique role of VEGF in osteoclastogenesis in RA. VEGF-induced receptor activator of nuclear factor ҡB ligand (RANKL) expression was determined in RA synovial fibroblasts by real-time PCR, luciferase assays, and ELISA. Osteoclastogenesis in peripheral blood monocytes cultured with VEGF was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. Synovial fluid RANKL was correlated with VEGF concentration in the RA patients. VEGF stimulated the expression of RANKL in RA synovial fibroblasts. The RANKL promoter activity was upregulated by VEGF in the synovial fibroblasts transfected with RANKL-reporter plasmids. The VEGF-induced RANKL expression was decreased by the inhibition of both VEGF receptors (VEGFR) 1 and 2, Src, protein kinase C (PKC) and p38 MAPK. VEGF induced osteoclast differentiation from monocytes in the absence of RANKL and this was decreased by the inhibition of VEGFR1 and 2, Src, PKC and p38 MAPK. On coculturing with VEGF-prestimulated RA synovial fibroblasts, the monocytes differentiated into osteoclasts, and the osteoclastogenesis decreased by inhibition of Src and PKC pathways. VEGF plays dual roles on osteoclastogenesis in RA: direct induction of osteoclastogenesis from the precursors and stimulation of RANKL production in synovial fibroblasts, which is mediated by Src and PKC pathways. The axis of VEGF and RANKL could be a potential therapeutic target for RA-associated bone destruction.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung-Woon Kim
- Conversant Research Consortium in Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Conversant Research Consortium in Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Conversant Research Consortium in Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- * E-mail: (SHL); (MLC)
| | - Sang-Heon Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- * E-mail: (SHL); (MLC)
| |
Collapse
|
25
|
Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH. Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol 2014; 66:538-48. [PMID: 24574213 DOI: 10.1002/art.38286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Stromal cell-derived factor 1 (SDF-1) is a chemokine that is involved in the bone-destructive process in rheumatoid arthritis (RA) and bony metastasis in malignancy. This study was undertaken to determine the role and mechanism of SDF-1 in RA-associated osteoclastogenesis. METHODS The expression of SDF-1, tumor necrosis factor α (TNFα), and RANKL in RA synovial tissue was analyzed using confocal microscopy. After synovial fibroblasts and CD4+ T cells were treated with SDF-1, RANKL messenger RNA expression was determined by real-time and reverse transcription polymerase chain reaction. Osteoclastogenesis was assessed by counting tartrate-resistant acid phosphatase-positive multinucleated cells in CD14+ monocytes cultured with SDF-1 in the presence of anticytokine antibodies or signal inhibitors and in monocytes cocultured with SDF-1-pretreated synovial fibroblasts and CD4+ T cells. RESULTS RANKL, TNFα, and SDF-1 were coexpressed in the lining and sublining of RA synovium. SDF-1 stimulated RANKL expression in RA synovial fibroblasts and CD4+ T cells, and TNFα inhibition reduced this stimulation. When monocytes isolated from human peripheral blood were cultured with SDF-1, they were differentiated into osteoclasts in the absence of RANKL. Monocytes were also differentiated into osteoclasts when they were cocultured with SDF-1-pretreated synovial fibroblasts or CD4+T cells; however, this osteoclastogenesis was reduced by TNFα inhibition. CONCLUSION Our findings indicate that SDF-1 induces osteoclastogenesis directly and indirectly via up-regulating RANKL expression in RA synovial fibroblasts and CD4+ T cells, and that this is mediated by TNFα. The axis of SDF-1 and RANKL is a potential therapeutic target for RA-associated bone destruction.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
26
|
Li C, Zhao J, Sun L, Yao Z, Liu R, Huang J, Liu X. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis. Biochem Biophys Res Commun 2012; 429:156-62. [PMID: 23142594 DOI: 10.1016/j.bbrc.2012.10.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 10/27/2012] [Indexed: 11/16/2022]
Abstract
The receptor activator of nuclear factor-κB ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.
Collapse
Affiliation(s)
- Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Georgiou KR, Scherer MA, King TJ, Foster BK, Xian CJ. Deregulation of the CXCL12/CXCR4 axis in methotrexate chemotherapy-induced damage and recovery of the bone marrow microenvironment. Int J Exp Pathol 2012; 93:104-14. [PMID: 22220905 DOI: 10.1111/j.1365-2613.2011.00800.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cancer chemotherapy disrupts the bone marrow (BM) microenvironment affecting steady-state proliferation, differentiation and maintenance of haematopoietic (HSC) and stromal stem and progenitor cells; yet the underlying mechanisms and recovery potential of chemotherapy-induced myelosuppression and bone loss remain unclear. While the CXCL12/CXCR4 chemotactic axis has been demonstrated to be critical in maintaining interactions between cells of the two lineages and progenitor cell homing to regions of need upon injury, whether it is involved in chemotherapy-induced BM damage and repair is not clear. Here, a rat model of chemotherapy treatment with the commonly used antimetabolite methotrexate (MTX) (five once-daily injections at 0.75 mg/kg/day) was used to investigate potential roles of CXCL12/CXCR4 axis in damage and recovery of the BM cell pool. Methotrexate treatment reduced marrow cellularity, which was accompanied by altered CXCL12 protein levels (increased in blood plasma but decreased in BM) and reduced CXCR4 mRNA expression in BM HSC cells. Accompanying the lower marrow CXCL12 protein levels (despite its increased mRNA expression in stromal cells) was increased gene and protein levels of metalloproteinase MMP-9 in bone and BM. Furthermore, recombinant MMP-9 was able to degrade CXCL12 in vitro. These findings suggest that MTX chemotherapy transiently alters BM cellularity and composition and that the reduced cellularity may be associated with increased MMP-9 expression and deregulated CXCL12/CXCR4 chemotactic signalling.
Collapse
Affiliation(s)
- Kristen R Georgiou
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
28
|
Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev 2011; 31:209-19. [DOI: 10.1007/s10555-011-9335-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
PPARgamma2 Regulates a Molecular Signature of Marrow Mesenchymal Stem Cells. PPAR Res 2011; 2007:81219. [PMID: 18288266 PMCID: PMC2234088 DOI: 10.1155/2007/81219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/25/2007] [Indexed: 12/25/2022] Open
Abstract
Bone formation and hematopoiesis are anatomically juxtaposed and share common regulatory mechanisms. Bone marrow mesenchymal stromal/stem cells (MSC) contain a compartment that provides progeny with bone forming osteoblasts and fat laden adipocytes as well as fibroblasts, chondrocytes, and muscle cells. In addition, marrow MSC provide an environment for support of hematopoiesis, including the development of bone resorbing osteoclasts. The PPARgamma2 nuclear receptor is an adipocyte-specific transcription factor that controls marrow MSC lineage allocation toward adipocytes and osteoblasts. Increased expression of PPARgamma2 with aging correlates with changes in the MSC status in respect to both their intrinsic differentiation potential and production of signaling molecules that contribute to the formation of a specific marrow micro-environment. Here, we investigated the effect of PPARgamma2 on MSC molecular signature in respect to the expression of gene markers associated exclusively with stem cell phenotype, as well as genes involved in the formation of a stem cell supporting marrow environment. We found that PPARgamma2 is a powerful modulator of stem cell-related gene expression. In general, PPARgamma2 affects the expression of genes specific for the maintenance of stem cell phenotype, including LIF, LIF receptor, Kit ligand, SDF-1, Rex-1/Zfp42, and Oct-4. Moreover, the antidiabetic PPARgamma agonist TZD rosiglitazone specifically affects the expression of "stemness" genes, including ABCG2, Egfr, and CD44. Our data indicate that aging and anti-diabetic TZD therapy may affect mesenchymal stem cell phenotype through modulation of PPARgamma2 activity. These observations may have important therapeutic consequences and indicate a need for more detailed studies of PPARgamma2 role in stem cell biology.
Collapse
|
30
|
|
31
|
Tamura M, Sato MM, Nashimoto M. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells. Int J Biochem Cell Biol 2011; 43:760-7. [PMID: 21296678 DOI: 10.1016/j.biocel.2011.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/20/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
CXCL12 (stromal cell-derived factor-1, SDF-1), produced by stromal and endothelial cells including cells of the bone marrow, binds to its receptor CXCR4 and this axis regulates hematopoietic cell trafficking. Recently, osteoclast precursor cells were found to express CXCR4 and a potential role for the CXCL12-CXCR4 axis during osteoclast precursor cell recruitment/retention and development was proposed as a regulator of bone resorption. We examined the role of canonical Wnt signaling in regulating the expression of CXCL12 in bone marrow stromal cells. In mouse stromal ST2 cells, CXCL12 mRNA was expressed, while its expression was reduced in Wnt3a over-expressing ST2 (Wnt3a-ST2) cells or by treatment with lithium chloride (LiCl). Wnt3a decreased CXCL12 levels in culture supernatants from mouse bone marrow stromal cells. The culture supernatant from Wnt3a-ST2 cells also reduced migratory activity of bone marrow-derived cells in a Transwell migration assay. Silencing of glycogen synthase kinase-3β decreased CXCL12 expression, suggesting that the canonical Wnt signaling pathway regulates CXCL12 expression. In a transfection assay, LiCl down-regulated the activity of a reporter gene, a 1.8kb fragment of the 5'-flanking region of the CXCL12 gene. These results show that canonical Wnt signaling regulates CXCL12 gene expression at the transcriptional level, and this is the first study linking chemokine expression to canonical Wnt signaling.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, North 13, West 7, Sapporo 060-8586, Japan.
| | | | | |
Collapse
|
32
|
Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. ACTA ACUST UNITED AC 2010; 207:2793-8. [PMID: 21135136 PMCID: PMC3005230 DOI: 10.1084/jem.20101474] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sphingosine-1-phosphate (S1P), a lipid mediator enriched in blood, controls the dynamic migration of osteoclast (OC) precursors (OPs) between the blood and bone, in part via the S1P receptor 1 (S1PR1) which directs positive chemotaxis toward S1P. We show that OPs also express S1PR2, an S1P receptor which mediates negative chemotaxis (or chemorepulsion). OP-positive chemotaxis is prominent in gradients with low maximal concentrations of S1P, whereas such behavior is minimal in fields with high maximal S1P concentrations. This reverse-directional behavior is caused by S1PR2-mediated chemorepulsion acting to override S1PR1 upgradient motion. S1PR2-deficient mice exhibit moderate osteopetrosis as a result of a decrease in osteoclastic bone resorption, suggesting that S1PR2 contributes to OP localization on the bones mediated by chemorepulsion away from the blood where S1P levels are high. Inhibition of S1PR2 function by the antagonist JTE013 changed the migratory behavior of monocytoid cells, including OPs, and relieved osteoporosis in a mouse model by limiting OP localization and reducing the number of mature OCs attached to the bone surface. Thus, reciprocal regulation of S1P-dependent chemotaxis controls bone remodeling by finely regulating OP localization. This regulatory axis may be promising as a therapeutic target in diseases affecting OC-dependent bone remodeling.
Collapse
Affiliation(s)
- Masaru Ishii
- Laboratory of Biological Imaging, WPI-Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
33
|
Antonsson B, De Lys P, Dechavanne V, Chevalet L, Boschert U. In vivo processing of CXCL12α/SDF-1α after intravenous and subcutaneous administration to mice. Proteomics 2010; 10:4342-51. [DOI: 10.1002/pmic.201000331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Kidd LJ, Stephens AS, Kuliwaba JS, Fazzalari NL, Wu ACK, Forwood MR. Temporal pattern of gene expression and histology of stress fracture healing. Bone 2010; 46:369-78. [PMID: 19836476 DOI: 10.1016/j.bone.2009.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/25/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Loading of the rat ulna is an ideal model to examine stress fracture healing. The aim of this study was to undertake a detailed examination of the histology, histomorphometry and gene expression of the healing and remodelling process initiated by fatigue loading of the rat ulna. Ulnae were harvested 1, 2, 4, 6, 8, and 10 weeks following creation of a stress fracture. Stress fracture healing involved direct remodelling that progressed along the fracture line as well as woven bone proliferation at the site of the fracture. Histomorphometry demonstrated rapid progression of basic multicellular units from 1 to 4 weeks with significant slowing down of healing by 10 weeks after loading. Quantitative PCR was performed at 4 hours, 24 hours, 4 days, 7 days, and 14 days after loading. Gene expression was compared to an unloaded control group. At 4 hours after fracture, there was a marked 220-fold increase (P<0.0001) in expression of IL-6. There were also prominent peak increases in mRNA expression for OPG, COX-2, and VEGF (all P<0.0001). At 24 hours, there was a peak increase in mRNA expression for IL-11 (73-fold increase, P<0.0001). At 4 days, there was a significant increase in mRNA expression for Bcl-2, COX-1, IGF-1, OPN, and SDF-1. At 7 days, there was significantly increased mRNA expression of RANKL and OPN. Prominent, upregulation of COX-2, VEGF, OPG, SDF-1, BMP-2, and SOST prior to peak expression of RANKL indicates the importance of these factors in mediating directed remodelling of the fracture line. Dramatic, early upregulation of IL-6 and IL-11 demonstrate their central role in initiating signalling events for remodelling and stress fracture healing.
Collapse
Affiliation(s)
- L J Kidd
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Kanayama M, Kurotaki D, Morimoto J, Asano T, Matsui Y, Nakayama Y, Saito Y, Ito K, Kimura C, Iwasaki N, Suzuki K, Harada T, Li HM, Uehara J, Miyazaki T, Minami A, Kon S, Uede T. Alpha9 integrin and its ligands constitute critical joint microenvironments for development of autoimmune arthritis. THE JOURNAL OF IMMUNOLOGY 2009; 182:8015-25. [PMID: 19494327 DOI: 10.4049/jimmunol.0900725] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteopontin is critically involved in rheumatoid arthritis; however, the molecular cross-talk between osteopontin and joint cell components that leads to the inflammatory joint destruction is largely unknown. We found that not only osteopontin but also tenascin-C and their common receptor, alpha(9) integrin, are expressed at arthritic joints. The local production of osteopontin and tenascin-C is mainly due to synovial fibroblasts and, to a lesser extent, synovial macrophages. Synovial fibroblasts and macrophages express alpha(9) integrin, and autocrine and paracrine interactions of alpha(9) integrin on synovial fibroblasts and macrophages and its ligands contribute differently to the production of proinflammatory cytokines and chemokines. alpha(9) integrin is also involved in the recruitment and accumulation of inflammatory cells. Inhibition of alpha(9) integrin function with an anti-alpha(9) integrin Ab significantly reduces the production of arthrogenic cytokines and chemokines and ameliorates ongoing arthritis. Thus, we identified alpha(9) integrin as a critical intrinsic regulator that controls the development of autoimmune arthritis.
Collapse
Affiliation(s)
- Masashi Kanayama
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Bone remodeling is characterized by spatial and temporal coupling of bone resorption and formation and is necessary for skeletal growth and normal bone structure maintenance. Imbalance of this process is related to metabolic bone disorders such as osteoporosis or rheumatoid arthritis. For this reason, bone remodeling is under the control of several local and systemic factors, including molecules of the immune system. The importance of the interplay of both the skeletal and immune systems is reflected by the emerging interdisciplinary research field, called osteoimmunology, focused on common aspects of osteology and immunology. This review focuses on the role of inflammatory mediators, such as cytokines in bone remodeling and, in particular, a subfamily of chemotactic cytokines or chemokines which are involved not only in several aspects of physiological bone remodeling but also in pathological bone disorders, such as rheumatoid arthritis or osteoporosis. Understanding the role of inflammation and chemokines will provide new insights for the treatment of diseases affecting both skeletal and immune systems, by the development of new therapeutic strategies targeting common inflammatory mediators.
Collapse
|
37
|
Coleman RE, Guise TA, Lipton A, Roodman GD, Berenson JR, Body JJ, Boyce BF, Calvi LM, Hadji P, McCloskey EV, Saad F, Smith MR, Suva LJ, Taichman RS, Vessella RL, Weilbaecher KN. Advancing treatment for metastatic bone cancer: consensus recommendations from the Second Cambridge Conference. Clin Cancer Res 2008; 14:6387-95. [PMID: 18927277 PMCID: PMC2763638 DOI: 10.1158/1078-0432.ccr-08-1572] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Summarize current knowledge, critical gaps in knowledge, and recommendations to advance the field of metastatic bone cancer. EXPERIMENTAL DESIGN A multidisciplinary consensus conference was convened to review recent progress in basic and clinical research, assess critical gaps in current knowledge, and prioritize recommendations to advance research in the next 5 years. The program addressed three principal topics: biology of metastasis, preserving normal bone health, and optimizing bone-targeted therapies. RESULTS A variety of specific recommendations were identified as important to advance research and clinical care over the next 5 years. CONCLUSIONS Priorities for research in bone biology include characterizing components of the stem cell niche in bone, developing oncogenic immunocompetent animal models of bone metastasis, and investigating the unique contribution of the bone microenvironment to tumor growth and dormancy. Priorities for research in preserving normal bone health include developing methods to measure and characterize disseminating tumor cells, assessing outcomes from the major prevention trials currently in progress, and improving methodologies to assess risks and benefits of treatment. Priorities for optimizing bone-targeted therapies include advancing studies of serum proteomics and genomics to reliably identify patients who will develop bone metastases, enhancing imaging for early detection of bone metastases and early response evaluation, and developing new tests to evaluate response to bone-directed treatments.
Collapse
Affiliation(s)
- Robert E Coleman
- The University of Sheffield Cancer Research Centre, Sheffield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu HY, Wen GB, Han J, Hong T, Zhuo D, Liu Z, Cao W. Inhibition of gluconeogenesis in primary hepatocytes by stromal cell-derived factor-1 (SDF-1) through a c-Src/Akt-dependent signaling pathway. J Biol Chem 2008; 283:30642-9. [PMID: 18786922 DOI: 10.1074/jbc.m803698200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatic gluconeogenesis is elevated in diabetes and a major contributor to hyperglycemia. Stromal cell-derived factor-1 (SDF-1) is a chemokine and an activator of Akt. In this study, we tested the hypothesis that SDF-1 suppresses hepatic gluconeogenesis through Akt. Our results from isolated primary hepatocytes show that SDF-1alpha and SDF-1beta inhibited glucose production via gluconeogenesis and reduced transcript levels of key gluconeogenic genes glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Additionally, SDF-1alpha and SDF-1beta both inhibited activation of the PEPCK promoter. In examining the mechanism by which SDF-1 inhibits gluconeogenesis, we found that SDF-1 promoted phosphorylation of Akt, FoxO1, and c-Src, but did not activate insulin receptor substrate-1-like insulin. Blockade of Akt activation by LY294002, FoxO1 translocation by constitutively nuclear FoxO1 mutant, or c-Src activation by the chemical inhibitor PP2, respectively, blunted SDF-1 suppression of gluconeogenesis. Finally, our results show that knocking down the level of SDF-1 receptor CXCR4 mRNA blocked SDF-1 suppression of gluconeogenesis. Together, our results demonstrate that SDF-1 is capable of inhibiting gluconeogenesis in primary hepatocytes through a signaling pathway distinct from the insulin signaling.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29:403-40. [PMID: 18451259 PMCID: PMC2528852 DOI: 10.1210/er.2007-0038] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/01/2008] [Indexed: 12/20/2022]
Abstract
Bone and the immune system are both complex tissues that respectively regulate the skeleton and the body's response to invading pathogens. It has now become clear that these organ systems often interact in their function. This is particularly true for the development of immune cells in the bone marrow and for the function of bone cells in health and disease. Because these two disciplines developed independently, investigators in each don't always fully appreciate the significance that the other system has on the function of the tissue they are studying. This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop. It is hoped that an appreciation of the interactions of these two organ systems will lead to better therapeutics for diseases that affect either or both.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Department of Medicine, The University of Connecticut Health Center, N4054, MC5456, 263 Farmington Avenue, Farmington, Connecticut 06030-5456, USA.
| | | | | |
Collapse
|
40
|
Del Fattore A, Teti A, Rucci N. Osteoclast receptors and signaling. Arch Biochem Biophys 2008; 473:147-60. [PMID: 18237538 DOI: 10.1016/j.abb.2008.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 02/03/2023]
Abstract
Osteoclasts are bone-resorbing cells derived from hematopoietic precursors of the monocyte-macrophage lineage. Besides the well known Receptor Activator of Nuclear factor-kappaB (RANK), RANK ligand and osteoprotegerin axis, a variety of factors tightly regulate osteoclast formation, adhesion, polarization, motility, resorbing activity and life span, maintaining bone resorption within physiological ranges. Receptor-mediated osteoclast regulation is rather complex. Nuclear receptors, cell surface receptors, integrin receptors and cell death receptors work together to control osteoclast activity and prevent both reduced or increased bone resorption. Here we will discuss the signal transduction pathways activated by the main osteoclast receptors, integrating their function and mechanisms of action.
Collapse
Affiliation(s)
- Andrea Del Fattore
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | | | | |
Collapse
|