1
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|
2
|
|
3
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
4
|
Tiwari M, Oasa S, Yamamoto J, Mikuni S, Kinjo M. A Quantitative Study of Internal and External Interactions of Homodimeric Glucocorticoid Receptor Using Fluorescence Cross-Correlation Spectroscopy in a Live Cell. Sci Rep 2017; 7:4336. [PMID: 28659593 PMCID: PMC5489515 DOI: 10.1038/s41598-017-04499-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/18/2017] [Indexed: 01/16/2023] Open
Abstract
Glucocorticoid receptor (GRα) is a well-known ligand-dependent transcription-regulatory protein. The classic view is that unliganded GRα resides in the cytoplasm, relocates to the nucleus after ligand binding, and then associates with a specific DNA sequence, namely a glucocorticoid response element (GRE), to activate a specific gene as a homodimer. It is still a puzzle, however, whether GRα forms the homodimer in the cytoplasm or in the nucleus before DNA binding or after that. To quantify the homodimerization of GRα, we constructed the spectrally different fluorescent protein tagged hGRα and applied fluorescence cross-correlation spectroscopy. First, the dissociation constant (Kd) of mCherry2-fused hGRα or EGFP-fused hGRα was determined in vitro. Then, Kd of wild-type hGRα was found to be 3.00 μM in the nucleus, which was higher than that in vitro. Kd of a DNA-binding-deficient mutant was 3.51 μM in the nucleus. This similarity indicated that GRα homodimerization was not necessary for DNA binding but could take place on GRE by means of GRE as a scaffold. Moreover, cytoplasmic homodimerization was also observed using GRα mutated in the nuclear localization signal. These findings support the existence of a dynamic monomer pathway and regulation of GRα function both in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Manisha Tiwari
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Sho Oasa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Shintaro Mikuni
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
5
|
Staaf E, Bagawath-Singh S, Johansson S. Molecular Diffusion in Plasma Membranes of Primary Lymphocytes Measured by Fluorescence Correlation Spectroscopy. J Vis Exp 2017. [PMID: 28190071 DOI: 10.3791/54756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful technique for studying the diffusion of molecules within biological membranes with high spatial and temporal resolution. FCS can quantify the molecular concentration and diffusion coefficient of fluorescently labeled molecules in the cell membrane. This technique has the ability to explore the molecular diffusion characteristics of molecules in the plasma membrane of immune cells in steady state (i.e., without processes affecting the result during the actual measurement time). FCS is suitable for studying the diffusion of proteins that are expressed at levels typical for most endogenous proteins. Here, a straightforward and robust method to determine the diffusion rate of cell membrane proteins on primary lymphocytes is demonstrated. An effective way to perform measurements on antibody-stained live cells and commonly occurring observations after acquisition are described. The recent advancements in the development of photo-stable fluorescent dyes can be utilized by conjugating the antibodies of interest to appropriate dyes that do not bleach extensively during the measurements. Additionally, this allows for the detection of slowly diffusing entities, which is a common feature of proteins expressed in cell membranes. The analysis procedure to extract molecular concentration and diffusion parameters from the generated autocorrelation curves is highlighted. In summary, a basic protocol for FCS measurements is provided; it can be followed by immunologists with an understanding of confocal microscopy but with no other previous experience of techniques for measuring dynamic parameters, such as molecular diffusion rates.
Collapse
Affiliation(s)
- Elina Staaf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
| | | | - Sofia Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet;
| |
Collapse
|
6
|
Determination of the Dissociation Constant of the NFκB p50/p65 Heterodimer in Living Cells Using Fluorescence Cross-Correlation Spectroscopy. Methods Mol Biol 2015; 1228:173-86. [DOI: 10.1007/978-1-4939-1680-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Kathawala MH, Khoo SPK, Sudhaharan T, Zhao X, Say Chye Loo J, Ahmed S, Woei Ng K. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors. Biotechnol J 2014; 10:171-9. [DOI: 10.1002/biot.201400404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 10/31/2014] [Indexed: 11/06/2022]
|
8
|
A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun 2014; 5:3227. [DOI: 10.1038/ncomms4227] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/09/2014] [Indexed: 01/22/2023] Open
|
9
|
Müller P, Schwille P, Weidemann T. Scanning fluorescence correlation spectroscopy (SFCS) with a scan path perpendicular to the membrane plane. Methods Mol Biol 2014; 1076:635-651. [PMID: 24108648 DOI: 10.1007/978-1-62703-649-8_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Scanning fluorescence correlation spectroscopy (SFCS) with a scan path perpendicular to the membrane plane was introduced to measure diffusion and interactions of fluorescent components in free-standing biomembranes. Using a confocal laser scanning microscope (CLSM), the open detection volume is repeatedly scanned through the membrane at a kHz frequency. The fluorescence photons emitted from the detection volume are continuously recorded and stored in a file. While the accessory hardware requirements for a conventional CLSM are minimal, data evaluation can pose a bottleneck. The photon events must be assigned to each scan, in which the maximum signal intensities have to be detected, binned, and aligned between the scans, in order to derive the membrane-related intensity fluctuations of one spot. Finally, this time-dependent signal must be correlated and evaluated by well-known FCS model functions. Here we provide two platform-independent, open source software tools (PyScanFCS and PyCorrFit) that allow to perform all of these steps and to establish perpendicular SFCS in its one- or two-focus as well as its single- or dual-color modality.
Collapse
Affiliation(s)
- Paul Müller
- BIOTEC, Biophysics, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
10
|
Talati R, Vanderpoel A, Eladdadi A, Anderson K, Abe K, Barroso M. Automated selection of regions of interest for intensity-based FRET analysis of transferrin endocytic trafficking in normal vs. cancer cells. Methods 2013; 66:139-52. [PMID: 23994873 DOI: 10.1016/j.ymeth.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022] Open
Abstract
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells.
Collapse
Affiliation(s)
- Ronak Talati
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Andrew Vanderpoel
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Kate Anderson
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
11
|
DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. Biochem J 2013; 448:21-33. [PMID: 22909387 DOI: 10.1042/bj20120725] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oct4 and Sox2 are two essential transcription factors that co-regulate target genes for the maintenance of pluripotency. However, it is unclear whether they interact prior to DNA binding or how the target sites are accessed in the nucleus. By generating fluorescent protein fusions of Oct4 and Sox2 that are functionally capable of producing iPSCs (induced pluripotent stem cells), we show that their interaction is dependent on the presence of cognate DNA-binding elements, based on diffusion time, complex formation and lifetime measurements. Through fluorescence correlation spectroscopy, the levels of Oct4 and Sox2 in the iPSCs were quantified in live cells and two diffusion coefficients, corresponding to free and loosely bound forms of the protein, were distinguished. Notably, the fraction of slow-diffusing molecules in the iPSCs was found to be elevated, similar to the profile in embryonic stem cells, probably due to a change in the nuclear milieu during reprogramming. Taken together, these findings have defined quantitatively the amount of proteins pertinent to the pluripotent state and revealed increased accessibility to the underlying DNA as a mechanism for Oct4 and Sox2 to find their target binding sites and interact, without prior formation of heterodimer complexes.
Collapse
|
12
|
Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesić M, Zhou Y, Tiesler FKE, Schleifenbaum F, Harter K. Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. PLANT METHODS 2012; 8:25. [PMID: 22789293 PMCID: PMC3458939 DOI: 10.1186/1746-4811-8-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/26/2012] [Indexed: 05/20/2023]
Abstract
Understanding protein and gene function requires identifying interaction partners using biochemical, molecular or genetic tools. In plants, searching for novel protein-protein interactions is limited to protein purification assays, heterologous in vivo systems such as the yeast-two-hybrid or mutant screens. Ideally one would be able to search for novel protein partners in living plant cells. We demonstrate that it is possible to screen for novel protein-protein interactions from a random library in protoplasted Arabidopsis plant cells and recover some of the interacting partners. Our screen is based on capturing the bi-molecular complementation of mYFP between an YN-bait fusion partner and a completely random prey YC-cDNA library with FACS. The candidate interactions were confirmed using in planta BiFC assays and in planta FRET-FLIM assays. From this work, we show that the well characterized protein Calcium Dependent Protein Kinase 3 (CPK3) interacts with APX3, HMGB5, ORP2A and a ricin B-related lectin domain containing protein At2g39050. This is one of the first randomin planta screens to be successfully employed.
Collapse
Affiliation(s)
- Kenneth Wayne Berendzen
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Maik Böhmer
- University of California, San Diego, Division of Biological Sciences, Cell and Developmental Biology Section & Ctr for Mol. Genetics 0116, 9500 Gilman Drive #0116, La Jolla, CA, 92093-0116, USA
| | - Niklas Wallmeroth
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Sébastien Peter
- Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
| | - Marko Vesić
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Ying Zhou
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | | | - Frank Schleifenbaum
- Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
| | - Klaus Harter
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| |
Collapse
|
13
|
Weidemann T, Worch R, Kurgonaite K, Hintersteiner M, Bökel C, Schwille P. Single cell analysis of ligand binding and complex formation of interleukin-4 receptor subunits. Biophys J 2011; 101:2360-9. [PMID: 22098734 DOI: 10.1016/j.bpj.2011.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022] Open
Abstract
Interleukin-4 (IL-4) is an important class I cytokine involved in adaptive immunity. IL-4 binds with high affinity to the single-pass transmembrane receptor IL-4Rα. Subsequently, IL-4Rα/IL-4 is believed to engage a second receptor chain, either IL-2Rγ or IL-13Rα1, to form type I or II receptor complexes, respectively. This ternary complex formation then triggers downstream signaling via intracellular Janus kinases bound to the cytoplasmic receptor tails. Here, we study the successive steps of complex formation at the single cell level with confocal fluorescence imaging and correlation spectroscopy. We characterize binding and signaling of fluorescently labeled IL-4 by flow cytometry of IL-4-dependent BaF3 cells. The affinity to ectopically expressed IL-4Rα was then measured by single-color fluorescence correlation spectroscopy in adherent HEK293T cells that express the components of the type II IL-4R but not type I. Finally, IL-4-induced complex formation was tested by dual-color fluorescence cross-correlation spectroscopy. The data provide evidence for codiffusion of IL-4-A647 bound IL-4Rα and the type II subunit IL-13Rα1 fused to enhanced green fluorescent protein, whereas type I complexes containing IL-2Rγ and JAK3 were not detected at the cell surface. This behavior may reflect hitherto undefined differences in the mode of receptor activation between type I (lymphoid) and type II (epithelial) receptor expressing cells.
Collapse
Affiliation(s)
- Thomas Weidemann
- Biophysics Research Group, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Ahmed S. Nanoscopy of cell architecture: The actin-membrane interface. BIOARCHITECTURE 2011; 1:32-38. [PMID: 21866260 PMCID: PMC3158633 DOI: 10.4161/bioa.1.1.14799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/05/2011] [Accepted: 01/09/2011] [Indexed: 01/23/2023]
Abstract
It was light microscopy that first revealed the hidden world of bacteria and the unit of life the "cell." From these first observations, made in the late 1600s, it has been clear that seeing is an important tool in biology. The merging of the fields of fluorescence and microscopy created the possibility to see subcellular structures and proteins. In the 1990s the use of the confocal microscopes, where cells/tissue could be optically sectioned, further improved the resolution of object visualization. From this microworld view we now move forward to the exciting prospects of the nanoworld view of biology. In this review I propose a nanoimaging approach, nanoscopy, which could be used to reveal cell architecture at the level of proteins and protein complexes. Nanoscopy includes, the F-techniques, superresolution microscopy, correlative light and electron microscopy and atomic force microscopy. To illustrate the biology that could be investigated by nanoscopy we focus on structures formed at the actin-membrane interface. In particular, focal adhesions and stress fibres have been analyzed using nanoscopy. Many of the proteins present in focal adhesions and stress fibres are shared with structures such as filopodia, lamellipodia, endocytic vesicles, actin pedestals and invadopodia. It is likely that nanoscopy of cells will reveal mechanistic details of biology at the level of individual proteins and protein complexes and importantly in a physiological context.
Collapse
Affiliation(s)
- Sohail Ahmed
- Neural Stem Cell Laboratory; Institute of Medical Biology; Singapore
| |
Collapse
|
15
|
Wang X, Wohland T, Korzh V. Developing in vivo biophysics by fishing for single molecules. Dev Biol 2010; 347:1-8. [DOI: 10.1016/j.ydbio.2010.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 01/20/2023]
|
16
|
Bobard A, Mellouk N, Enninga J. Spotting the right location- imaging approaches to resolve the intracellular localization of invasive pathogens. Biochim Biophys Acta Gen Subj 2010; 1810:297-307. [PMID: 21029766 DOI: 10.1016/j.bbagen.2010.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/16/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A common strategy of microbial pathogens is to invade host cells during infection. The invading microbes explore different intracellular compartments to find their preferred niche. SCOPE OF REVIEW Imaging has been instrumental to unravel paradigms of pathogen entry, to identify their exact intracellular location, and to understand the underlying mechanisms for the formation of pathogen-containing niches. Here, we provide an overview of imaging techniques that have been applied to monitor the intracellular lifestyle of pathogens, focusing mainly on bacteria that either remain in vacuolar-bound compartments or rupture the endocytic vacuole to escape into the host's cellular cytoplasm. MAJOR CONCLUSIONS We will depict common molecular and cellular paradigms that are preferentially exploited by pathogens. A combination of electron microscopy, fluorescence microscopy, and time-lapse microscopy has been the driving force to reveal underlying cell biological processes. Furthermore, the development of highly sensitive and specific fluorescent sensor molecules has allowed for the identification of functional aspects of niche formation by intracellular pathogens. GENERAL SIGNIFICANCE Currently, we are beginning to understand the sophistication of the invasion strategies used by bacterial pathogens during the infection process- innovative imaging has been a key ingredient for this. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Alexandre Bobard
- Institut Pasteur, Groupe "Dynamique des Interactions Hôte-Pathogène, Paris, France
| | | | | |
Collapse
|
17
|
Dumbrepatil AB, Lee SG, Chung SJ, Lee MG, Park BC, Kim TJ, Woo EJ. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst 2010; 135:2879-86. [PMID: 20877819 DOI: 10.1039/c0an00385a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phytoestrogens are plant compounds that mimic the actions of endogenous estrogens. The abundance of these chemicals in nature and their potential effects on health require the development of a convenient method to detect phytoestrogens. We have developed a nanoparticle (NP)-conjugated FRET probe based on the human estrogen receptor α (ER) ligand-binding domain (LBD) to detect phytoestrogens. The NP-conjugated FRET probe showed fluorescence signals for genistein, resveratrol and daidzein compounds with Δ ratios of 1.65, 2.60 and 1.37 respectively, which are approximately six times greater compared to individual FRET probes. A significantly higher signal for resveratrol versus genistein and daidzein indicates that the probe can differentiate between antagonistic phytoalexin substances and agonistic isoflavone compounds. NP-conjugated probes demonstrated a wide dynamic range, ranging from 10(-18) to 10(-1) M with EC(50) values of 9.6 × 10(-10), 9.0 × 10(-10) and 9.2 × 10(-10) M for genistein, daidzein and resveratrol respectively, whereas individual probes detected concentrations of 10(-13) to 10(-4) M for phytoestrogens compounds. The time profile revealed that the NP-conjugated probe is stable over 30 h and there is not a significant deviation in the FRET signal at room temperature. These data demonstrate that conjugation of a FRET probe to nanoparticles is able to serve as an effective FRET sensor for monitoring bioactive compounds with significantly increased sensitivity, dynamic range and stability.
Collapse
Affiliation(s)
- Arti B Dumbrepatil
- Korea Research Institute of Biosciences and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Wohland T, Shi X, Sankaran J, Stelzer EHK. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. OPTICS EXPRESS 2010; 18:10627-41. [PMID: 20588915 DOI: 10.1364/oe.18.010627] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The life sciences require new highly sensitive imaging tools, which allow the quantitative measurement of molecular parameters within a physiological three-dimensional (3D) environment. Therefore, we combined single plane illumination microscopy (SPIM) with camera based fluorescence correlation spectroscopy (FCS). SPIM-FCS provides contiguous particle number and diffusion coefficient images with a high spatial resolution in homo- and heterogeneous 3D specimens and live zebrafish embryos. Our SPIM-FCS recorded up to 4096 spectra within 56 seconds at a laser power of 60 microW without damaging the embryo. This new FCS modality provides more measurements per time and more, less photo-toxic measurements per sample than confocal based methods. In essence, SPIM-FCS offers new opportunities to observe biomolecular interactions quantitatively and functions in a highly multiplexed manner within a physiologically relevant 3D environment.
Collapse
Affiliation(s)
- Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
19
|
Oreopoulos J, Yip CM. Combinatorial microscopy for the study of protein–membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. J Struct Biol 2009; 168:21-36. [DOI: 10.1016/j.jsb.2009.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
|
20
|
Shi X, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S, Wohland T. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 2009; 97:678-86. [PMID: 19619483 DOI: 10.1016/j.bpj.2009.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/27/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022] Open
Abstract
The quantification of biological interactions is very important in life sciences. Here we report for the first time, to our knowledge, the determination of a biomolecular dissociation constant (K(D)) in living zebrafish embryos at physiological protein expression levels. For that purpose, we extend the application of single wavelength fluorescence cross-correlation spectroscopy into small organisms and measure the interaction of Cdc42, a small Rho-GTPase, and IQGAP1, an actin-binding scaffolding protein. Cdc42 and IQGAP1 were labeled with monomeric red fluorescent protein and enhanced green fluorescent protein, respectively. Both fluorophores were excited at a single wavelength of 514 nm, simplifying the fluorescence spectroscopy measurements and allowing quantification. For the determination of the interaction, we used two Cdc42 mutants, the constitutively active Cdc42(G12V) which is in a predominantly GTP-bound form and the dominant-negative GDP-bound Cdc42(T17N). While Cdc42(G12V) binds to IQGAP1 with an apparent K(D) of approximately 100 nM, Cdc42(T17N) has at least a one-order-of-magnitude lower affinity for the same protein. As a comparison, we measure the same protein-protein interactions in Chinese hamster ovary cell cultures but observe significant differences in protein mobility and K(D) from the zebrafish measurements, supporting the notion that bimolecular interactions depend on the biological system under investigation and are best performed under physiologically relevant conditions.
Collapse
Affiliation(s)
- Xianke Shi
- Department of Chemistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
Ilien B, Glasser N, Clamme JP, Didier P, Piemont E, Chinnappan R, Daval SB, Galzi JL, Mely Y. Pirenzepine promotes the dimerization of muscarinic M1 receptors through a three-step binding process. J Biol Chem 2009; 284:19533-43. [PMID: 19451648 DOI: 10.1074/jbc.m109.017145] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand binding to G protein-coupled receptors is a complex process that involves sequential receptor conformational changes, ligand translocation, and possibly ligand-induced receptor oligomerization. Binding events at muscarinic acetylcholine receptors are usually interpreted from radioligand binding studies in terms of two-step ligand-induced receptor isomerization. We report here, using a combination of fluorescence approaches, on the molecular mechanisms for Bodipy-pirenzepine binding to enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors in living cells. Real time monitoring, under steady-state conditions, of the strong fluorescence energy transfer signal elicited by this interaction permitted a fine kinetic description of the binding process. Time-resolved fluorescence measurements allowed us to identify discrete EGFP lifetime species and to follow their redistribution upon ligand binding. Fluorescence correlation spectroscopy, with EGFP brightness analysis, showed that EGFP-fused muscarinic M1 receptors predominate as monomers in the absence of ligand and dimerize upon pirenzepine binding. Finally, all these experimental data could be quantitatively reconciled into a three-step mechanism, with four identified receptor conformational states. Fast ligand binding to a peripheral receptor site initiates a sequence of conformational changes that allows the ligand to access to inner regions of the protein and drives ligand-receptor complexes toward a high affinity dimeric state.
Collapse
Affiliation(s)
- Brigitte Ilien
- Département Biotechnologies des Interactions Moléculaires, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, FRE 3211, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sudhaharan T, Liu P, Foo YH, Bu W, Lim KB, Wohland T, Ahmed S. Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J Biol Chem 2009; 284:13602-13609. [PMID: 19293156 DOI: 10.1074/jbc.m900894200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RhoGTPase Cdc42 coordinates cell morphogenesis, cell cycle, and cell polarity decisions downstream of membrane-bound receptors through distinct effector pathways. Cdc42-effector protein interactions represent important elements of cell signaling pathways that regulate cell biology in systems as diverse as yeast and humans. To derive mechanistic insights into cell signaling pathways, it is vital that we generate quantitative data from in vivo systems. We need to be able to measure parameters such as protein concentrations, rates of diffusion, and dissociation constants (K(D)) of protein-protein interactions in vivo. Here we show how single wavelength fluorescence cross-correlation spectroscopy in combination with Förster resonance energy transfer analysis can be used to determine K(D) of Cdc42-effector interactions in live mammalian cells. Constructs encoding green fluorescent protein or monomeric red fluorescent protein fusion proteins of Cdc42, an effector domain (CRIB), and two effectors, neural Wiskott-Aldrich syndrome protein (N-WASP) and insulin receptor substrate protein (IRSp53), were expressed as pairs in Chinese hamster ovary cells, and concentrations of free protein as well as complexed protein were determined. The measured K(D) for Cdc42V12-N-WASP, Cdc42V12-CRIB, and Cdc42V12-IRSp53 was 27, 250, and 391 nm, respectively. The determination of K(D) for Cdc42-effector interactions opens the way to describe cell signaling pathways quantitatively in vivo in mammalian cells.
Collapse
Affiliation(s)
- Thankiah Sudhaharan
- Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138665
| | - Ping Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yong Hwee Foo
- Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138665; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wenyu Bu
- Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138665
| | - Kim Buay Lim
- Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138665
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sohail Ahmed
- Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138665.
| |
Collapse
|
23
|
Barber P, Ameer-Beg S, Gilbey J, Carlin L, Keppler M, Ng T, Vojnovic B. Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis. J R Soc Interface 2008. [DOI: 10.1098/rsif.2008.0451.focus] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Förster resonance energy transfer (FRET) detected via fluorescence lifetime imaging microscopy (FLIM) and global analysis provide a way in which protein–protein interactions may be spatially localized and quantified within biological cells. The FRET efficiency and proportion of interacting molecules have been determined using bi-exponential fitting to time-domain FLIM data from a multiphoton time-correlated single-photon counting microscope system. The analysis has been made more robust to noise and significantly faster using global fitting, allowing higher spatial resolutions and/or lower acquisition times. Data have been simulated, as well as acquired from cell experiments, and the accuracy of a modified Levenberg–Marquardt fitting technique has been explored. Multi-image global analysis has been used to follow the epidermal growth factor-induced activation of Cdc42 in a short-image-interval time-lapse FLIM/FRET experiment. Our implementation offers practical analysis and time-resolved-image manipulation, which have been targeted towards providing fast execution, robustness to low photon counts, quantitative results and amenability to automation and batch processing.
Collapse
Affiliation(s)
- P.R Barber
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
| | - S.M Ameer-Beg
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - J Gilbey
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
| | - L.M Carlin
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - M Keppler
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - T.C Ng
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - B Vojnovic
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
| |
Collapse
|