1
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2025; 21:180-195. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
2
|
Halmos G, Szabo Z, Dobos N, Juhasz E, Schally AV. Growth hormone-releasing hormone receptor (GHRH-R) and its signaling. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09952-x. [PMID: 39934495 DOI: 10.1007/s11154-025-09952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
The hypothalamic polypeptide growth hormone-releasing hormone (GHRH) stimulates the secretion of growth hormone (GH) from the pituitary through binding and activation of the pituitary type of GHRH receptor (GHRH-R), which belongs to the family of G protein-coupled receptors with seven potential membrane-spanning domains. Various splice variants of GHRH-R (SV) in human neoplasms and other extrapituitary tissues were demonstrated and their cDNA was sequenced. Among the SVs, splice variant 1 (SV1) possesses the greatest similarity to the full-length GHRH-R and remains functional by eliciting cAMP signaling and mitogenic activity upon stimulation by GHRH. In this review, we briefly discuss the activation, regulation, molecular mechanisms and signaling pathways of GHRH-Rs and their SVs in various tissues and also summarize the expression, biological activities and potential function of GHRH, its analogs and their receptors. A large body of work have extensively studied and evaluated potential clinical applications of agonists and antagonists of GHRH in diverse fields, including oncology, endocrinology, obesity, diabetes, other metabolic dysfunctions, cardiology, immune functions, mood disorders, Alzheimer's and lung disease, ophthalmology, inflammation, wound healing and other applications. These results strongly support the potential therapeutic use of GHRH analogs in human medicine in the near future.
Collapse
Affiliation(s)
- Gabor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Rex u. 10, Debrecen, 4032, Hungary.
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, 33125, USA.
| | - Zsuzsanna Szabo
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Rex u. 10, Debrecen, 4032, Hungary
| | - Nikoletta Dobos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Rex u. 10, Debrecen, 4032, Hungary
| | - Eva Juhasz
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, 33125, USA
- Department of Pathology, Department of Medicine, Divisions of Hematology-Oncology and Endocrinology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
3
|
Montero-Hidalgo AJ, Del Rio-Moreno M, Pérez-Gómez JM, Luque RM, Kineman RD. Update on regulation of GHRH and its actions on GH secretion in health and disease. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09943-y. [PMID: 39838154 DOI: 10.1007/s11154-025-09943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
This review focuses on our current understanding of how growth hormone releasing hormone (GHRH): 1) stimulates GH release and synthesis from pituitary growth hormone (GH)-producing cells (somatotropes), 2) drives somatotrope proliferation, 3) is negatively regulated by somatostatin (SST), GH and IGF1, 4) is altered throughout lifespan and in response to metabolic challenges, and 5) analogues can be used clinically to treat conditions of GH excess or deficiency. Although a large body of early work provides an underpinning for our current understanding of GHRH, this review specifically highlights more recent work that was made possible by state-of-the-art analytical tools, receptor-specific agonists and antagonists, high-resolution in vivo and ex vivo imaging and the development of tissue (cell) -specific ablation mouse models, to paint a more detailed picture of the regulation and actions of GHRH.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Research and Development Division Chicago, 820 S. Damen Ave., MP151, Rm 6215, Chicago, IL, USA
| | - Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición, Cordoba, CIBERobn, Spain
| | - Rhonda D Kineman
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown Veterans Affairs Medical Center, Research and Development Division Chicago, 820 S. Damen Ave., MP151, Rm 6215, Chicago, IL, USA.
| |
Collapse
|
4
|
Recinella L, Libero ML, Brunetti L, Acquaviva A, Chiavaroli A, Orlando G, Granata R, Salvatori R, Leone S. Effects of growth hormone-releasing hormone deficiency in mice beyond growth. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09936-3. [PMID: 39695049 DOI: 10.1007/s11154-024-09936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
This paper provides a critical overview on GHRH and its deficiency, discussing its multiple roles in both central and peripheral tissues. Genetically engineered mice have been instrumental in elucidating the multifaceted roles of GHRH and GH, each offering unique insights into the physiological and pathological roles of these hormones, although in many of these models dissecting the direct effect of GHRH from the effect of GH is not possible. Key findings highlight the effects of GHRH deficiency on emotional behavior, including anxiety and depression, its impact on memory and learning capabilities, as well as on adipose tissue, immune system, inflammation and pain.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Schally AV, Cai R, Zhang X, Sha W, Wangpaichitr M. The development of growth hormone-releasing hormone analogs: Therapeutic advances in cancer, regenerative medicine, and metabolic disorders. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09929-2. [PMID: 39592529 DOI: 10.1007/s11154-024-09929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Growth Hormone-Releasing Hormone (GHRH) and its analogs have gained significant attention for their therapeutic potential across various domains, including oncology, regenerative medicine, and metabolic disorders. Originally recognized for its role in regulating growth hormone (GH) secretion, GHRH has since been discovered to exert broader physiological effects beyond the pituitary gland, with GHRH receptors identified in multiple extrahypothalamic tissues, including tumor cells. This review explores the development of both GHRH agonists and antagonists, focusing on their mechanisms of action, therapeutic applications, and future potential. GHRH agonists have shown promise in promoting tissue regeneration, improving cardiac function, and enhancing islet survival in diabetes. Meanwhile, GHRH antagonists, particularly those in the MIA and AVR series, demonstrate potent antitumor activity by inhibiting cancer cell proliferation and downregulating growth factor pathways, while also exhibiting anti-inflammatory properties. Preclinical studies in models of lung, prostate, breast, and gastrointestinal cancers indicate that GHRH analogs could offer a novel therapeutic approach with minimal toxicity. Additionally, GHRH antagonists are being investigated for their potential in treating neurodegenerative diseases and inflammatory conditions. This review highlights the versatility of GHRH analogs as a promising class of therapeutic agents, poised to impact multiple fields of medicine.
Collapse
Affiliation(s)
- Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- South FL VA Foundation for Research and Education, Miami, FL, USA
| | - Renzhi Cai
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Medhi Wangpaichitr
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
- Department of Surgery, Division of Thoracic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- South FL VA Foundation for Research and Education, Miami, FL, USA.
| |
Collapse
|
6
|
Steenblock C, Bornstein SR. GHRH in diabetes and metabolism. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09930-9. [PMID: 39560873 DOI: 10.1007/s11154-024-09930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Despite over a century of insulin therapy and recent advances in glucose monitoring, diabetes and its complications remain a significant burden. Current medications are not durable, with symptoms often returning after treatment ends, and responses vary between patients. Additionally, the effectiveness of many medications diminishes over time, highlighting the need for alternative approaches. Maintaining β-cell mass and promoting β-cell regeneration offer more curable treatments, while cell replacement therapies could be an option if regeneration is not feasible. For both strategies, enhancing β-cell survival is crucial. Growth hormone-releasing hormone (GHRH) was originally discovered for its ability to stimulate the production and release of growth hormone (GH) from the pituitary. Beyond the hypothalamus, GHRH is produced in peripheral tissues, with its receptor, GHRHR, expressed in tissues such as the pituitary, pancreas, adipose tissue, intestine, and liver. Several studies have shown that GHRH and its analogs enhance the survival of insulin-producing pancreatic β-cells both in vitro and in animal models. These beneficial effects strongly support the potential of GHRH agonists and antagonists for the clinical treatment of human metabolic diseases or for enhancing β-cell survival in cells used for transplantation. In the current review, we will discuss the roles of hypothalamic and extrahypothalamic GHRH in metabolism in physiological and pathological contexts, along with the underlying mechanisms. Furthermore, we will discuss the potential beneficial effects of GHRH analogs for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
7
|
Muñoz-Moreno L, Román ID, Bajo AM. GHRH and the prostate. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09922-9. [PMID: 39505776 DOI: 10.1007/s11154-024-09922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
In the late 1960s and early 1970s, hypothalamic regulatory hormones were isolated, characterized and sequenced. Later, it was demonstrated hypothalamic and ectopic production of growth hormone-releasing hormone (GHRH) in normal and tumor tissues, of both humans and animals. Pituitary-type GHRH receptors (pGHRH-R) had been demonstrated to be expressed predominantly in the anterior pituitary gland but also found in other somatic cells, and significantly present in various human cancers; in addition, the expression of splice variants (SVs) of GHRH receptor (GHRH-R) has been found not only in the pituitary but in extrapituitary tissues, including human neoplasms. In relation to the prostate, besides the pGHRH-R, it has been detected the presence of truncated splice variants of GHRH-R (SV1-SV4) in normal human prostate and human prostate cancer (PCa) specimens; lastly, a novel SV of GHRH-R has been detected in human PCa. Signaling pathways activated by GHRH include AC/cAMP/PKA, Ras/Raf/ERK, PI3K/Akt/mTOR and JAK2/STAT3, which are involved in processes such as cell survival, proliferation and cytokine secretion. The neuropeptide GHRH can also transactivate the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER)-2. Thus, GHRH-Rs have become drug targets for several types of clinical conditions, including prostate-related conditions such as prostatitis, benign hyperplasia and cancer. Over the last fifty years, the development of GHRH-R receptor antagonists has been unstoppable, improving their potency, stability and affinity for the receptor. The last series of GHRH-R antagonists, AVR, exhibits superior anticancer and anti-inflammatory activities in both in vivo and in vitro assays.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Irene D Román
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Liu Y, Fu R, Jia H, Yang K, Ren F, Zhou MS. GHRH and its analogues in central nervous system diseases. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09920-x. [PMID: 39470866 DOI: 10.1007/s11154-024-09920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is primarily produced by the hypothalamus and stimulates the release of growth hormone (GH) in the anterior pituitary gland, which subsequently regulates the production of hepatic insulin-like growth factor-1 (IGF-1). GH and IGF-1 have potent effects on promoting cell proliferation, inhibiting cell apoptosis, as well as regulating cell metabolism. In central nerve system (CNS), GHRH/GH/IGF-1 promote brain development and growth, stimulate neuronal proliferation, and regulate neurotransmitter release, thereby participating in the regulation of various CNS physiological activities. In addition to hypothalamus-pituitary gland, GHRH and GHRH receptor (GHRH-R) are also expressed in other brain cells or tissues, such as endogenous neural stem cells (NSCs) and tumor cells. Alternations in GHRH/GH/IGF-1 axis are associated with various CNS diseases, for example, Alzheimer's disease, amyotrophic lateral sclerosis and emotional disorders manifest GHRH, GH or IGF-1 deficiency, and GH or IGF-1 supplementation exerts beneficial therapeutic effects on these diseases. CNS tumors, such as glioma, can express GHRH and GHRH-R, and activating this signaling pathway promotes tumor cell growth. The synthesized GHRH antagonists have shown to inhibit glioma cell growth and may hold promising as an adjuvant therapy for treating glioma. In addition, we have shown that GHRH agonist MR-409 can improve neurological sequelae after ischemic stroke by activating extrapituitary GHRH-R signaling and promoting endogenous NSCs-derived neuronal regeneration. This article reviews the involvement of GHRH/GH/IGF-1 in CNS diseases, and potential roles of GHRH agonists and antagonists in treating CNS diseases.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Rong Fu
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Kefan Yang
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China.
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
9
|
Gesmundo I, Pedrolli F, Cai R, Sha W, Schally AV, Granata R. Growth hormone-releasing hormone and cancer. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09919-4. [PMID: 39422787 DOI: 10.1007/s11154-024-09919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting the synthesis and release of growth hormone (GH), stimulates the proliferation of human normal and malignant cells by binding to GHRH-receptor (GHRH-R) and its main splice variant, SV1. Both GHRH and GHRH-Rs are expressed in various cancers, forming a stimulatory pathway for cancer cell growth; additionally, SV1 possesses ligand independent proliferative effects. Therefore, targeting GHRH-Rs pharmacologically has been proposed for the treatment of cancer. Various classes of synthetic GHRH antagonists have been developed, endowed with strong anticancer activity in vitro and in vivo, in addition to displaying anti-inflammatory, antioxidant and immune-modulatory functions. GHRH antagonists exert indirect effects by blocking the pituitary GH/hepatic insulin-like growth factor I (IGF-I) axis, or directly inhibiting the binding of GHRH on tumor GHRH-Rs. Additionally, GHRH antagonists block the mitogenic functions of SV1 in tumor cells. This review illustrates the main findings on the antitumor effects of GHRH antagonists in experimental human cancers, along with their underlying mechanisms. The development of GHRH antagonists, with reduced toxicity and high stability, could lead to novel therapeutic agents for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
10
|
Costoya J, Gaumond SI, Chale RS, Schally AV, Jimenez JJ. A novel approach for the treatment of AML, through GHRH antagonism: MIA-602. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09917-6. [PMID: 39417961 DOI: 10.1007/s11154-024-09917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Acute myeloid leukemia (AML) is the most aggressive and prevalent form of leukemia in adults. The gold-standard intervention revolves around the use of chemotherapy, and in some cases hematopoietic stem cell transplantation. Drug resistance is a frequent complication resulting from treatment, as it stands there are limited clinical measures available for refractory AML besides palliative care. The goal of this review is to renew interest in a novel targeted hormone therapy in the treatment of AML utilizing growth hormone-releasing hormone (GHRH) antagonism, given it may provide a potential solution for current barriers to achieving complete remission post-therapy. Recapitulating pre-clinical evidence, GHRH antagonists (GHRH-Ant) have significant anti-cancer activity across experimental human AML cell lines in vitro and in vivo and demonstrate significant inhibition of cancer in drug resistant analogs of leukemic cell lines as well. GHRH-Ant act in manners that are orthogonal to anthracyclines and when administered in combination synergize to produce a more potent anti-neoplastic effect. Considering the adversities associated with standard AML therapies and the developing issue of drug resistance, MIA-602 represents a novel approach worth further investigation.
Collapse
Affiliation(s)
- Joel Costoya
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Simonetta I Gaumond
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Andrew V Schally
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Division of Hematology & Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
11
|
Fakir S, Kubra KT, Akhter MS, Uddin MA, Barabutis N. Alleviation of LPS-induced Endothelial Injury due to GHRH Antagonist Treatment. Int J Pept Res Ther 2024; 30:67. [PMID: 39465062 PMCID: PMC11500629 DOI: 10.1007/s10989-024-10653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Background GHRH is produced in the hypothalamus and affects various tissues beyond the pituitary, including the lungs. GHRH antagonists exert anti-inflammatory properties in several experimental models of disease, but their role inprotecting the endothelial barrier during inflammation is less understood. This study investigates the effects ofGHRHAnt on LPS-induced endothelial dysfunction. Methods BPAEC and HMVEC-L cells were exposed to LPS to induce endothelial injury. GHRHAnt was administered eitherpre- or post-LPS treatment. Western blot analysis was used to evaluate protein expression levels. Paracellularpermeability was assessed utilizing FITC-dextran assay to evaluate endothelial barrier function. Results GHRHAnt post-treatment significantly reduced LPS-induced MLC2 phosphorylation and cofilin activation inBPAECs. Furthermore, pretreatment with GHRHAnt enhanced barrier function and ameliorated LPS-inducedhyperpermeability in both human and bovine endothelial cells. Conclusions GHRHAnt treatment mitigates LPS-induced endothelial barrier dysfunction. These findings suggest that GHRHAntcould serve as potential therapeutic agents towards endothelial dysfunction-related illness (e.g. sepsis).
Collapse
Affiliation(s)
- Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad Shohel Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad Afaz Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
12
|
Condor Capcha JM, Kamiar A, Robleto E, Saad AG, Cui T, Wong A, Villano J, Zhong W, Pekosz A, Medina E, Cai R, Sha W, Ranek MJ, Webster KA, Schally AV, Jackson RM, Shehadeh LA. Growth hormone-releasing hormone receptor antagonist MIA-602 attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2 in hACE2 mice. Proc Natl Acad Sci U S A 2023; 120:e2308342120. [PMID: 37983492 PMCID: PMC10691341 DOI: 10.1073/pnas.2308342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/22/2023] Open
Abstract
COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Jose M. Condor Capcha
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Ali Kamiar
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Emely Robleto
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Ali G. Saad
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Tengjiao Cui
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Amanda Wong
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD21205
| | - William Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Edgar Medina
- Qualityminds Gesellschaft mit beschränkter Haftung (GmbH), Munchen, Munich81549, Germany
| | - Renzhi Cai
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Wei Sha
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD21205
| | - Keith A. Webster
- Integene International Holdings, Miami, FL33179
- Baylor College of Medicine, Houston, TX77030
| | - Andrew V. Schally
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Robert M. Jackson
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| |
Collapse
|
13
|
Recinella L, Libero ML, Veschi S, Piro A, Marconi GD, Diomede F, Chiavaroli A, Orlando G, Ferrante C, Florio R, Lamolinara A, Cai R, Sha W, Schally AV, Salvatori R, Brunetti L, Leone S. Effects of GHRH Deficiency and GHRH Antagonism on Emotional Disorders in Mice. Cells 2023; 12:2615. [PMID: 37998350 PMCID: PMC10670114 DOI: 10.3390/cells12222615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Anna Piro
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Rosalba Florio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Alessia Lamolinara
- Department of Neuroscience Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| |
Collapse
|
14
|
Redkiewicz P, Dyniewicz J, Witkowska E, Misicka A, Lipiński PFJ. The influence of a synthetic growth hormone-releasing hormone analogue G11 and opioid peptide biphalin on selected fibroblasts parameters relevant to wound healing. J Pept Sci 2023; 29:e3487. [PMID: 36898693 DOI: 10.1002/psc.3487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
The treatment of hard-to-heal chronic wounds is still a major medical problem and an economic and social burden. In this work, we examine the proregenerative potential of two peptides, G11 (a trypsin-resistant analogue of growth hormone-releasing hormone [GHRH]) and biphalin (opioid peptide), and their combination in vitro on human fibroblasts (BJ). G11, biphalin and their combination exhibited no toxicity against BJ cells. On the contrary, these treatments significantly stimulated proliferation and migration of fibroblasts. Under inflammatory conditions (LPS-induced BJ cells), we noticed that the tested peptides decreased the levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and interleukin 1β (IL-1β). This was correlated with diminished phosphorylation levels of p38 kinase, but not those of ERK1/2. We found also that G11, biphalin and their combination activated the ERK1/2 signalling pathway, which has been previously implicated in promigratory activity of some regeneration enhancers, including opioids or GHRH analogues. Potential application of their combination requires further work, in particular in vivo experiments, in which the organism-level relevance of the discussed cell-level effects would be proven and, additionally, analgesic action of the opioid ingredient could be quantified.
Collapse
Affiliation(s)
- Patrycja Redkiewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| | - Ewa Witkowska
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| |
Collapse
|
15
|
Halmos G, Szabo Z, Juhasz E, Schally AV. Signaling mechanism of growth hormone-releasing hormone receptor. VITAMINS AND HORMONES 2023; 123:1-26. [PMID: 37717982 DOI: 10.1016/bs.vh.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The hypothalamic peptide growth hormone-releasing hormone (GHRH) stimulates the secretion of growth hormone (GH) from the pituitary through binding and activation of the pituitary type of GHRH receptor (GHRH-R), which belongs to the family of G protein-coupled receptors with seven potential membrane-spanning domains. Splice variants of GHRH-Rs (SV) in human tumors and other extra pituitary tissues were identified and their cDNA was sequenced. Among the SVs, splice variant 1 (SV1) possesses the greatest similarity to the full-length GHRH-R and remains functional by eliciting cAMP signaling and mitogenic activity upon GHRH stimulation. A large body of work have evaluated potential clinical applications of agonists and antagonists of GHRH in diverse fields, including endocrinology, oncology, cardiology, diabetes, obesity, metabolic dysfunctions, Alzheimer's disease, ophthalmology, wound healing and other applications. In this chapter, we briefly review the expression and potential function of GHRH-Rs and their SVs in various tissues and also elucidate and summarize the activation, molecular mechanism and signalization pathways of these receptors. Therapeutic applications of GHRH analogs are also discussed.
Collapse
Affiliation(s)
- Gabor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States.
| | - Zsuzsanna Szabo
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Eva Juhasz
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States; Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Medicine, Divisions of Hematology-Oncology and Endocrinology, Miller School of Medicine, University of Miami, Miami, FL, United States; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| |
Collapse
|
16
|
Barabutis N, Kubra KT, Akhter MS. Growth hormone-releasing hormone antagonists protect against hydrochloric acid-induced endothelial injury in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104113. [PMID: 36940786 PMCID: PMC10111240 DOI: 10.1016/j.etap.2023.104113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Growth hormone-releasing hormone (GHRH) regulates the synthesis of growth hormone from the anterior pituitary gland, and it is involved in inflammatory responses. On the other hand, GHRH antagonists (GHRHAnt) exhibit the opposite effects, resulting in endothelial barrier enhancement. Exposure to hydrochloric acid (HCL) is associated with acute and chronic lung injury. In this study, we investigate the effects of GHRHAnt in HCL-induced endothelial barrier dysfunction, utilizing commercially available bovine pulmonary artery endothelial cells (BPAEC). Cell viability was measured by utilizing 3-(4,5-dimethylthiazol2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, fluorescein isothiocyanate (FITC)-dextran was used to assess barrier function. Our observations suggest that GHRHAnt exert protective effects against HCL-induced endothelial breakdown, since those peptides counteract HCL-triggered paracellular hyperpermeability. Based on those findings, we propose that GHRHAnt represent a new therapeutic approach towards HCL-induced endothelial injury.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
17
|
Antagonist of Growth Hormone-Releasing Hormone Potentiates the Antitumor Effect of Pemetrexed and Cisplatin in Pleural Mesothelioma. Int J Mol Sci 2022; 23:ijms231911248. [PMID: 36232554 PMCID: PMC9569772 DOI: 10.3390/ijms231911248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Pleural mesothelioma (PM) is an aggressive cancer with poor prognosis and no effective therapies, mainly caused by exposure to asbestos. Antagonists of growth hormone-releasing hormone (GHRH) display strong antitumor effects in many experimental cancers, including lung cancer and mesothelioma. Here, we aimed to determine whether GHRH antagonist MIA-690 potentiates the antitumor effect of cisplatin and pemetrexed in PM. In vitro, MIA-690, in combination with cisplatin and pemetrexed, synergistically reduced cell viability, restrained cell proliferation and enhanced apoptosis, compared with drugs alone. In vivo, the same combination resulted in a strong growth inhibition of MSTO-211H xenografts, decreased tumor cell proliferation and increased apoptosis. Mechanistically, MIA-690, particularly with chemotherapeutic drugs, inhibited proliferative and oncogenic pathways, such as MAPK ERK1/2 and cMyc, and downregulated cyclin D1 and B1 mRNAs. Inflammatory pathways such as NF-kB and STAT3 were also reduced, as well as oxidative, angiogenic and tumorigenic markers (iNOS, COX-2, MMP2, MMP9 and HMGB1) and growth factors (VEGF and IGF-1). Overall, these findings strongly suggest that GHRH antagonists of MIA class, such as MIA-690, could increase the efficacy of standard therapy in PM.
Collapse
|
18
|
Xiong X, Zhou M, Zhu X, Tan Y, Wang Z, Gong J, Xu J, Wen Y, Liu J, Tu X, Rao Y. RNA Sequencing of the Pituitary Gland and Association Analyses Reveal PRKG2 as a Candidate Gene for Growth and Carcass Traits in Chinese Ningdu Yellow Chickens. Front Vet Sci 2022; 9:892024. [PMID: 35782572 PMCID: PMC9244401 DOI: 10.3389/fvets.2022.892024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Growth and carcass traits are of great economic importance to the chicken industry. The candidate genes and mutations associated with growth and carcass traits can be utilized to improve chicken growth. Therefore, the identification of these genes and mutations is greatly importance. In this study, a total of 17 traits related to growth and carcass were measured in 399 Chinese Ningdu yellow chickens. RNA sequencing (RNA-seq) was performed to detect candidate genes using 12 pituitary gland samples (six per group), which exhibited extreme growth and carcass phenotypes: either a high live weight and carcass weight (H group) or a low live weight and carcass weight (L group). A differential expression analysis, utilizing RNA-seq, between the H and L groups identified 428 differentially expressed genes (DEGs), including 110 up-regulated genes and 318 down-regulated genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the identified genes showed a significant enrichment of 158 GO terms and two KEGG pathways, including response to stimulus and neuroactive ligand-receptor interaction, respectively. Furthermore, RNA-seq data, qRT–PCR, and quantitative trait transcript (QTT) analysis results suggest that the PRKG2 gene is an important candidate gene for growth and carcass traits of Chinese Ningdu yellow chickens. More specifically, association analyses of a single nucleotide polymorphism (SNP) in PRKG2 and growth and carcass traits showed that the SNP rs16400745 was significantly associated with 12 growth and carcass traits (P < 0.05), such as carcass weight (P = 9.68E-06), eviscerated weight (P = 3.04E-05), and semi-eviscerated weight (P = 2.14E-04). Collectively, these results provide novel insights into the genetic basis of growth in Chinese Ningdu yellow chickens and the SNP rs16400745 reported here could be incorporated into the selection programs involving this breed.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
- *Correspondence: Xinwei Xiong
| | - Min Zhou
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yafang Wen
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jianxiang Liu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Xutang Tu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
- Yousheng Rao
| |
Collapse
|
19
|
Gamma-glutamyltransferase of Helicobacter pylori alters the proliferation, migration, and pluripotency of mesenchymal stem cells by affecting metabolism and methylation status. J Microbiol 2022; 60:627-639. [DOI: 10.1007/s12275-022-1575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
|
20
|
Muñoz‐Moreno L, Carmena MJ, Prieto JC, Schally AV, Bajo AM. Tumorigenic transformation of human prostatic epithelial cell line RWPE-1 by growth hormone-releasing hormone (GHRH). Prostate 2022; 82:933-941. [PMID: 35322894 PMCID: PMC9310601 DOI: 10.1002/pros.24339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in the progression of various tumors. In this study, we analyzed the carcinogenetic potential of exposure to GHRH of a nontumor human prostate epithelial cell line (RWPE-1) as well as its transforming effect in a xenograft model. METHODS We performed cell viability, cell proliferation, adhesion and migration assays. In addition, metalloprotease (MMP)-2 activity by means gelatin zymography, GHRH-R subcellular location using confocal immunofluorescence microscopy and vascular endothelial growth factor (VEGF) levels by enzyme-linked immunoassay were assessed. Besides, we developed an in vivo model in order vivo model to determine the role of GHRH on tumorigenic transformation of RWPE-1 cells. RESULTS In cell cultures, we observed development of a migratory phenotype consistent with the gelatinolytic activity of MMP-2, expression of VEGF, as well as E-cadherin-mediated cell-cell adhesion and increased cell motility. Treatment with 0.1 µM GHRH for 24 h significantly increased cell viability and cell proliferation. Similar effects of GHRH were seen in RWPE-1 tumors developed by subcutaneous injection of GHRH-treated cells in athymic nude mice, 49 days after inoculation. CONCLUSIONS Thus, GHRH appears to act as a cytokine in the transformation of RWPE-1 cells by mechanisms that likely involve epithelial-mesenchymal transition, thus reinforcing the role of GHRH in tumorigenesis of prostate.
Collapse
Affiliation(s)
- Laura Muñoz‐Moreno
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - M. José Carmena
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Juan C. Prieto
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer InstituteVeterans Affairs Medical CenterMiamiFloridaUSA
- Division of Hematology/Oncology, Departments of Pathology and Medicine, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Ana M. Bajo
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| |
Collapse
|
21
|
Yu DC, Chen XY, Zhou HY, Yu DQ, Yu XL, Hu YC, Zhang RH, Zhang XB, Zhang K, Lin MQ, Gao XD, Guo TW. TRIP13 knockdown inhibits the proliferation, migration, invasion, and promotes apoptosis by suppressing PI3K/AKT signaling pathway in U2OS cells. Mol Biol Rep 2022; 49:3055-3064. [PMID: 35032258 DOI: 10.1007/s11033-022-07133-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although osteosarcoma (OS) is the most common malignant bone tumor, the biological mechanism underlying its incidence and improvement remains unclear. This study investigated early diagnosis and treatment objectives using bioinformatics strategies and performed experimental verification. METHODS AND RESULTS The top 10 OS hub genes-CCNA2, CCNB1, AURKA, TRIP13, RFC4, DLGAP5, NDC80, CDC20, CDK1, and KIF20A-were screened using bioinformatics methods. TRIP13 was chosen for validation after reviewing literature. TRIP13 was shown to be substantially expressed in OS tissues and cells, according to Western blotting (WB) and quantitative real-time polymerase chain reaction data. Subsequently, TRIP13 knockdown enhanced apoptosis and decreased proliferation, migration, and invasion in U2OS cells, as validated by the cell counting kit-8 test, Hoechst 33,258 staining, wound healing assay, and WB. In addition, the levels of p-PI3K/PI3K and p-AKT/AKT in U2OS cells markedly decreased after TRIP13 knockdown. Culturing U2OS cells, in which TRIP13 expression was downregulated, in a medium supplemented with a PI3K/AKT inhibitor further reduced their proliferation, migration, and invasion and increased their apoptosis. CONCLUSIONS TRIP13 knockdown reduced U2OS cell proliferation, migration, and invasion via a possible mechanism involving the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China.,Department of Orthopedics, Xigu Branch of the Second Hospital of Lanzhou University, 730000, Lanzhou, China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China. .,Department of Orthopedics, Xigu Branch of the Second Hospital of Lanzhou University, 730000, Lanzhou, China.
| | - De-Quan Yu
- Department of Radiotherapy, Air Force Medical University Tangdu Hospital, 710000, Xi'an, China
| | - Xiao-Lei Yu
- Department of cardiology, Air Force Medical University Tangdu Hospital, 710000, Xi'an, China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Kun Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Mao-Qiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Tao-Wen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| |
Collapse
|
22
|
Growth Hormone and the Human Hair Follicle. Int J Mol Sci 2021; 22:ijms222413205. [PMID: 34948002 PMCID: PMC8706217 DOI: 10.3390/ijms222413205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Ever since the discoveries that human hair follicles (HFs) display the functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis, exhibit elements of the hypothalamic-pituitary-thyroid axis, and even generate melatonin and prolactin, human hair research has proven to be a treasure chest for the exploration of neurohormone functions. However, growth hormone (GH), one of the dominant neurohormones of human neuroendocrine physiology, remains to be fully explored in this context. This is interesting since it has long been appreciated clinically that excessive GH serum levels induce distinct human skin pathology. Acromegaly, or GH excess, is associated with hypertrichosis, excessive androgen-independent growth of body hair, and hirsutism in females, while dysfunctional GH receptor-mediated signaling (Laron syndrome) is associated with alopecia and prominent HF defects. The outer root sheath keratinocytes have recently been shown to express functional GH receptors. Furthermore, and contrary to its name, recombinant human GH is known to inhibit female human scalp HFs’ growth ex vivo, likely via stimulating the expression of the catagen-inducing growth factor, TGF-β2. These limited available data encourage one to systematically explore the largely uncharted role of GH in human HF biology to uncover nonclassical functions of this core neurohormone in human skin physiology.
Collapse
|
23
|
Wang XW, Guo QQ, Yu Y, Zhou TT, Zhang SY, Wang Z, Liu JW, Tang J, Jiang XY, Wang SS, Guo WD, Xu HD, Sun HY, Li ZW, Song XY, Zhao JG, Cao L. The deacetylation of Foxk2 by Sirt1 reduces chemosensitivity to cisplatin. J Cell Mol Med 2021; 26:491-506. [PMID: 34866322 PMCID: PMC8743664 DOI: 10.1111/jcmm.17107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/16/2023] Open
Abstract
In multiple types of cancer, decreased tumour cell apoptosis during chemotherapy is indicative of decreased chemosensitivity. Forkhead box K2 (FOXK2), which is essential for cell fate, regulates cancer cell apoptosis through several post‐translational modifications. However, FOXK2 acetylation has not been extensively studied. Here, we evaluated the effects of sirtiun 1 (SIRT1) on FOXK2 deacetylation. Our findings demonstrated that SIRT1 inhibition increased FOXK2‐induced chemosensitivity to cisplatin and that K223 in FOXK2 was acetylated. Furthermore, FOXK2 K223 deacetylation reduced chemosensitivity to cisplatin in vitro and in vivo. Mechanistically, FOXK2 was acetylated by the acetyltransferase cAMP response element binding protein and deacetylated by SIRT1. Furthermore, cisplatin attenuated the interaction between FOXK2 and SIRT1. Cisplatin or SIRT1 inhibition enhanced FOXK2 acetylation, thereby reducing the nuclear distribution of FOXK2. Additionally, FOXK2 K223 acetylation significantly affected the expression of cell cycle–related and apoptosis‐related genes in cisplatin‐stimulated cancer cells, and FOXK2 K223 hyperacetylation promoted mitotic catastrophe, which enhanced chemosensitivity to cisplatin. Overall, our results provided insights into the mechanisms of SIRT1‐mediated FOXK2 deacetylation, which was involved in chemosensitivity to cisplatin.
Collapse
Affiliation(s)
- Xi-Wen Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China.,Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi-Qiang Guo
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Yang Yu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Ting-Ting Zhou
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Si-Yi Zhang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Zhuo Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Jing-Wei Liu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao-You Jiang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Shan-Shan Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Wen-Dong Guo
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Hong-de Xu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Hua-Yi Sun
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Zi-Wei Li
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Xiao-Yu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Jun-Gang Zhao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Papavassiliou KA, Papavassiliou AG. The Bumpy Road towards mTOR Inhibition in Glioblastoma: Quo Vadis? Biomedicines 2021; 9:1809. [PMID: 34944625 PMCID: PMC8698473 DOI: 10.3390/biomedicines9121809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is a lethal brain tumor with a poor prognosis. Despite recent advances in the molecular biology of GBM, neuro-oncologists have very limited treatment options available to improve the survival of GBM patients. A prominent signaling pathway implicated in GBM pathogenesis is that of the mechanistic target of rapamycin (mTOR). Attempts to target the mTOR pathway with first-generation mTOR inhibitors appeared promising in the preclinical stage; however, results have been disappointing in clinical trials, owing to the heterogeneous nature of GBM, escape mechanisms against treatment, the blood-brain barrier, drug-related toxicities, and the imperfect design of clinical trials, among others. The development of next-generation mTOR inhibitors and their current evaluation in clinical trials have sparked new hope to realize the clinical potential of mTOR inhibitors in GBM. Meanwhile, studies are continuously furthering our understanding of mTOR signaling dysregulation, its downstream effects, and interplay with other signaling pathways in GBM tumors. Therefore, it remains to be seen whether targeting mTOR in GBM will eventually prove to be fruitful or futile.
Collapse
Affiliation(s)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
25
|
Akhter MS, Barabutis N. Suppression of reactive oxygen species in endothelial cells by an antagonist of growth hormone-releasing hormone. J Biochem Mol Toxicol 2021; 35:e22879. [PMID: 34369038 DOI: 10.1002/jbt.22879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Growth hormone-releasing hormone (GHRH) is a hypothalamic hormone, which regulates the secretion of growth hormone (GH) from the anterior pituitary gland. The effects of GHRH extend beyond the GH-insulin-like growth factor I axis, and that neuropeptide has been involved in the potentiation of several malignancies and other inflammatory disorders. The development of GHRH antagonists (GHRHAnt) delivers an exciting possibility to counteract the pathogenesis of the GHRH-related effects in human pathophysiology, especially when considered that GHRHAnt support endothelial barrier integrity. Those GHRHAnt-mediated effects are exerted at least in part due to the suppression of major inflammatory pathways, and the modulation of major cytoskeletal components. In the present study, we measured the production of reactive oxygen species (ROS) in bovine pulmonary artery endothelial cells, human cerebral microvascular endothelial cells, and human lung microvascular endothelial cells exposed to GHRH or a commercially available GHRHAnt. Our findings reveal the antioxidative effects of GHRHAnt in all three cell lines, which express GHRH receptors. The redox status of NIH/3T3 cells, which do not produce GHRH receptors, was not significantly affected by GHRH or GHRHAnt. Hence, the application of GHRHAnt in pathologies related to increased ROS production should be further investigated.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
26
|
Gesmundo I, Granato G, Fuentes-Fayos AC, Alvarez CV, Dieguez C, Zatelli MC, Congiusta N, Banfi D, Prencipe N, Leone S, Brunetti L, Castaño JP, Luque RM, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Antagonists of Growth Hormone-Releasing Hormone Inhibit the Growth of Pituitary Adenoma Cells by Hampering Oncogenic Pathways and Promoting Apoptotic Signaling. Cancers (Basel) 2021; 13:cancers13163950. [PMID: 34439107 PMCID: PMC8393969 DOI: 10.3390/cancers13163950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Many studies have demonstrated that the antagonists of growth hormone-releasing hormone (GHRH) exert inhibitory activities in a variety of experimental cancers; however, their potential antitumor role in pituitary adenomas (PAs) remains largely unknown. Here, we show that GHRH antagonists of Miami (MIA) class, MIA-602 and MIA-690, are able to reduce the growth and promote cell death in hormone-secreting PA cell lines, through the inhibition of mechanisms implicated in tumorigenesis and cancer progression. MIA-602 and MIA-690 also decreased the viability of tumor cells derived from human pituitary tumors. Overall, these findings suggest that GHRH antagonists may represent new therapeutic tools for the treatment of PAs, both alone or in combination with standard pharmacological treatments. Abstract Pituitary adenomas (PAs) are intracranial tumors, often associated with excessive hormonal secretion and severe comorbidities. Some patients are resistant to medical therapies; therefore, novel treatment options are needed. Antagonists of growth hormone-releasing hormone (GHRH) exert potent anticancer effects, and early GHRH antagonists were found to inhibit GHRH-induced secretion of pituitary GH in vitro and in vivo. However, the antitumor role of GHRH antagonists in PAs is largely unknown. Here, we show that the GHRH antagonists of MIAMI class, MIA-602 and MIA-690, inhibited cell viability and growth and promoted apoptosis in GH/prolactin-secreting GH3 PA cells transfected with human GHRH receptor (GH3-GHRHR), and in adrenocorticotropic hormone ACTH-secreting AtT20 PA cells. GHRH antagonists also reduced the expression of proteins involved in tumorigenesis and cancer progression, upregulated proapoptotic molecules, and lowered GHRH receptor levels. The combination of MIA-690 with temozolomide synergistically blunted the viability of GH3-GHRHR and AtT20 cells. Moreover, MIA-690 reduced both basal and GHRH-induced secretion of GH and intracellular cAMP levels. Finally, GHRH antagonists inhibited cell viability in human primary GH- and ACTH-PA cell cultures. Overall, our results suggest that GHRH antagonists, either alone or in combination with pharmacological treatments, may be considered for further development as therapy for PAs.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Giuseppina Granato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Clara V. Alvarez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Carlos Dieguez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 15706 Ferrara, Italy;
| | - Noemi Congiusta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Nunzia Prencipe
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Renzhi Cai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Wei Sha
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Andrew V. Schally
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
- Correspondence:
| |
Collapse
|
27
|
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Growth hormone-releasing hormone antagonistic analog MIA-690 stimulates food intake in mice. Peptides 2021; 142:170582. [PMID: 34051291 DOI: 10.1016/j.peptides.2021.170582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/26/2022]
Abstract
In addition to its metabolic and endocrine effects, growth hormone-releasing hormone (GHRH) was found to modulate feeding behavior in mammals. However, the role of recently synthetized GHRH antagonist MIA-690 and MR-409, a GHRH agonist, on feeding regulation remains to be evaluated. We investigated the effects of chronic subcutaneous administration of MIA-690 and MR-409 on feeding behavior and energy metabolism, in mice. Compared to vehicle, MIA-690 increased food intake and body weight, while MR-409 had no effect. Both analogs did not modify locomotor activity, as well as subcutaneous, visceral and brown adipose tissue (BAT) mass. A significant increase of hypothalamic agouti-related peptide (AgRP) gene expression and norepinephrine (NE) levels, along with a reduction of serotonin (5-HT) levels were found after MIA-690 treatment. MIA-690 was also found able to decrease gene expression of leptin in visceral adipose tissue. By contrast, MR-409 had no effect on the investigated markers. Concluding, chronic peripheral administration of MIA-690 could play an orexigenic role, paralleled by an increase in body weight. The stimulation of feeding could be mediated, albeit partially, by elevation of AgRP gene expression and NE levels and decreased 5-HT levels in the hypothalamus, along with reduced leptin gene expression, in the visceral adipose tissue.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | | | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, 10126, Italy.
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, 10126, Italy.
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL, 33125, United States; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33136 and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL, 33125, United States; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33136 and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL, 33125, United States; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33136 and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
28
|
Protective effects of growth hormone-releasing hormone analogs in DSS-induced colitis in mice. Sci Rep 2021; 11:2530. [PMID: 33510215 PMCID: PMC7844299 DOI: 10.1038/s41598-021-81778-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Besides its metabolic and endocrine effects, growth hormone (GH)-releasing hormone (GHRH) is involved in the modulation of inflammation. Recently synthetized GHRH antagonist MIA-690 and MR-409, GHRH agonist, developed by us have shown potent pharmacological effects in various experimental paradigms. However, whether their administration modify resistance to chronic inflammatory stimuli in colon is still unknown. Ex vivo results demonstrated that MIA-690 and MR-409 inhibited production of pro-inflammatory and oxidative markers induced by lipopolysaccharide on isolated mouse colon specimens. In vivo, both MIA-690 and MR-409 have also been able to decrease the responsiveness to nociceptive stimulus, in hot plate test. Additionally, both peptides also induced a decreased sensitivity to acute and persistent inflammatory stimuli in male mice, in formalin test and dextran sodium sulfate (DSS)-induced colitis model, respectively. MIA-690 and MR-409 attenuate DSS-induced colitis with particular regard to clinical manifestations, histopathological damage and release of pro-inflammatory and oxidative markers in colon specimens. Respect to MR-409, MIA-690 showed higher efficacy in inhibiting prostaglandin (PG)E2, 8-iso-PGF2α and serotonin (5-HT) levels, as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide synthase gene expression in colon specimens of DSS-induced colitis. Furthermore, MIA-690 decreased serum insulin-like growth factor (IGF)-1 levels in mice DSS-treated, respect to MR-409. Thus, our findings highlight the protective effects of MIA-690 and MR-409 on inflammation stimuli. The higher antinflammatory and antioxidant activities observed with MIA-690 could be related to decreased serum IGF-1 levels.
Collapse
|
29
|
Zhang C, Cui T, Cai R, Wangpaichitr M, Mirsaeidi M, Schally AV, Jackson RM. Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease. Cells 2020; 9:E2331. [PMID: 33096674 PMCID: PMC7589146 DOI: 10.3390/cells9102331] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 01/11/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury. GHRH and its peptide agonists regulate the proliferation of fibroblasts through the modulation of extracellular signal-regulated kinase (ERK) and Akt pathways. In addition to downregulating GH and IGF-1, GHRH-R antagonist MIA-602 inhibits signaling pathways relevant to inflammation, including p21-activated kinase 1-signal transducer and activator of transcription 3/nuclear factor-kappa B (PAK1-STAT3/NF-κB and ERK). MIA-602 induces fibroblast apoptosis in a dose-dependent manner, which is an effect that is likely important in antifibrotic actions. Taken together, the novel data reviewed here show that GHRH is an important peptide that participates in lung homeostasis, inflammation, wound healing, and cancer; and GHRH-R antagonists may have therapeutic potential in lung diseases.
Collapse
Affiliation(s)
- Chongxu Zhang
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Tengjiao Cui
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Renzhi Cai
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Medhi Wangpaichitr
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Mehdi Mirsaeidi
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Andrew V. Schally
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Robert M. Jackson
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
30
|
Barabutis N. A glimpse at growth hormone-releasing hormone cosmos. Clin Exp Pharmacol Physiol 2020; 47:1632-1634. [PMID: 32289177 PMCID: PMC7426234 DOI: 10.1111/1440-1681.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Growth hormone-releasing hormone is a hypothalamic neuropeptide, which regulates the secretion of growth hormone by the anterior pituitary gland. Recent evidence suggest that it exerts growth factor activities in a diverse variety of in vivo and in vitro experimental malignancies, which are counteracted by growth hormone-releasing hormone antagonists. Those peptides support lung endothelial barrier integrity by suppressing major inflammatory pathways and by inducing the endothelial defender P53. The present effort provides information regarding the effects of growth hormone-releasing hormone in the regulation of P53 and the unfolded protein response. Furthermore, it suggests the possible application of growth hormone-releasing hormone antagonists towards the management of acute lung injury, including the lethal acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
31
|
Qin YJ, Chan SO, Lin HL, Zhang YQ, He BT, Zhang L, Yu HH, Chu WK, Pang CP, Zhang HY. Increased Expression of Growth Hormone-Releasing Hormone in Fibrinous Inflammation of Proliferative Diabetic Retinopathy. Am J Ophthalmol 2020; 215:81-90. [PMID: 32061756 DOI: 10.1016/j.ajo.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the involvement of growth hormone-releasing hormone (GHRH) - growth hormone (GH) signaling in pathogenesis of proliferative diabetic retinopathy (PDR). DESIGN Experimental laboratory study. METHODS Vitreous humor, aqueous humor, and serum were obtained from 36 eyes of 36 patients with or without type 2 diabetes from 2017 to 2019. For histologic examination, 6 fibrovascular membranes were excised from eyes with active PDR. Three fibrovascular membranes were excised from nondiabetic patients with proliferative vitreoretinopathy (PVR) as controls. RESULTS In PDR, the fibrovascular tissues consisted of a mature region containing fibrocytes, and an immature region populated by abundant polymorphonuclear leukocytes in a fibrinogen meshwork. Clusters of leukocytes were found adhering to the vascular walls. In PVR, no fibrinogen and polymorphonuclear leukocyte was observed in the fibrovascular membranes. The levels of GHRH and GH in PDR were significantly increased (P < .001), with 1.8-fold and 72.8-fold in vitreous humor, and 2-fold and 4.9-fold in aqueous humor, respectively, when compared with corresponding levels in controls. No significant difference was detected for insulin-like growth factor-1. Immunohistochemistry showed intense expression of GHRH and its receptor GHRH-R in polymorphonuclear leukocytes, vascular endothelial cells, and fibrocytes in fibrovascular membranes of PDR. GHRH staining was not detectable in infiltrating cells within the fibrovascular membrane of PVR. CONCLUSIONS These findings reveal a possible involvement of GHRH/GHRH-R in fibrinous inflammation that might contribute to the formation of fibrovascular membrane in PDR through mediating activities of leukocytes, vascular endothelial cells, and fibrocytes. Targeting GHRH/GHRH-R may be considered as a potential therapeutic approach for the treatment of PDR.
Collapse
Affiliation(s)
- Yong Jie Qin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hong Liang Lin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Yu Qiao Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Bei Ting He
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hong Hua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hong Yang Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
32
|
Cheng Y, Chen T, Song J, Teng Z, Wang C, Wang S, Lu G, Feng T, Qi Q, Xi Q, Liu S, Hao L, Zhang Y. Pituitary miRNAs target GHRHR splice variants to regulate GH synthesis by mediating different intracellular signalling pathways. RNA Biol 2020; 17:1754-1766. [PMID: 32508238 DOI: 10.1080/15476286.2020.1778295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Growth hormone (GH), whose synthesis and release are mainly regulated by intracellular signals mediated by growth hormone-releasing hormone receptor (GHRHR), is one of the major pituitary hormones and critical regulators of organism growth, metabolism, and immunoregulation. Pig GHRHR splice variants (SVs) may activate different signalling pathways via the variable C-terminal by alternative splicing, and SVs have the potential to change microRNA (miRNA) binding sites. In this study, we first confirmed the existence of pig GHRHR SVs (i.e., GHRHR, GHRHR SV1 and SV2) and demonstrated the inhibitory effects of critical pituitary miRNAs (i.e., let-7e and miR-328-5p) on GH synthesis and cell proliferation of primary pituitary cells. The SVs of GHRHR targeted by let-7e and miR-328-5p were predicted via bioinformatics analysis and verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. The differential responses of let-7e, and miR-328-5p to GH-releasing hormone and the changes in signalling pathways mediated by GHRHR suggested that let-7e and miR-328-5p were involved in GH synthesis mediated by GHRHR SVs, indicating that the two miRNAs played different roles by different ways. Finally, results showed that the protein coded by the GHRHR transcript regulated GH through the NO/NOS signalling pathway, whereas that coded by SV1 and SV2 regulated GH through the PKA/CREB signalling pathway, which was confirmed by the changes in signalling pathways after transfecting the expression vectors of GHRHR SVs to GH3 cells. To the best of our knowledge, this paper is the first to report pituitary miRNAs regulate GH synthesis by targeting the different SVs of GHRHR.
Collapse
Affiliation(s)
- Yunyun Cheng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Jie Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Zhaohui Teng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China.,Research and Development Centre, Dalian Mogue Biotech Co., Ltd , Dalian, China
| | - Chunli Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Siyao Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Guanhong Lu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Tianqi Feng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University , Foshan China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Songcai Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Linlin Hao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| |
Collapse
|
33
|
Barabutis N, Siejka A. The highly interrelated GHRH, p53, and Hsp90 universe. Cell Biol Int 2020; 44:1558-1563. [PMID: 32281696 DOI: 10.1002/cbin.11356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
p53 universe is composed of a complex regulatory network, destined to counteract multifarious challenges threatening cell survival. Imbalance in those responses may result in human disease associated with inevitable consequences. The present work delivers our view of the corresponding phenomena, by involving the endothelium defender in meticulously orchestrated events against inflammatory stimuli. Immersing into the great depths of p53 cosmos may lead to promising therapies against devastating disorders, including acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, Louisiana
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Barabutis N. Growth hormone releasing hormone in the unfolded protein response context. Endocrine 2020; 67:291-293. [PMID: 31960289 DOI: 10.1007/s12020-020-02205-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
The effects of Growth Hormone Releasing Hormone in human pathophysiology are not limited to those mediated by the Growth Hormone Releasing Hormone-Growth Hormone-Insulin-like Growth Factor-I axis. Receptors specific for this neuropeptide are expressed in a diverse variety of human tissues, to initiate multifarious signaling cascades, regulators of cellular homeostasis and survival. The Unfolded Protein Response is in charge of adaptive responses towards a plethora of challenges, able to trigger cellular repair or death. The possible involvement of Growth Hormone Releasing Hormone and its agonistic and antagonistic analogs in those events, may deliver exciting possibilities in the treatment of human disease, including the Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
35
|
Zhang C, Cai R, Lazerson A, Delcroix G, Wangpaichitr M, Mirsaeidi M, Griswold AJ, Schally AV, Jackson RM. Growth Hormone-Releasing Hormone Receptor Antagonist Modulates Lung Inflammation and Fibrosis due to Bleomycin. Lung 2019; 197:541-549. [PMID: 31392398 PMCID: PMC6778540 DOI: 10.1007/s00408-019-00257-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that a GHRH receptor (GHRH-R) antagonist, MIA-602, would inhibit bleomycin-induced lung inflammation and/or fibrosis in C57Bl/6J mice. METHODS We tested whether MIA-602 (5 μg or vehicle given subcutaneously [SC] on days 1-21) would decrease lung inflammation (at day 14) and/or fibrosis (at day 28) in mice treated with intraperitoneal (IP) bleomycin (0.8 units on days 1, 3, 7, 10, 14, and 21). Bleomycin resulted in inflammation and fibrosis around airways and vessels evident histologically at days 14 and 28. RESULTS Inflammation (histopathologic scores assessed blindly) was visibly less evident in mice treated with MIA-602 for 14 days. After 28 days, lung hydroxyproline (HP) content increased significantly in mice treated with vehicle; in contrast, lung HP did not increase significantly compared to naïve controls in mice treated with GHRH-R antagonist. GHRH-R antagonist increased basal and maximal oxygen consumption of cultured lung fibroblasts. Multiple genes related to chemotaxis, IL-1, chemokines, regulation of inflammation, and extracellular signal-regulated kinases (ERK) were upregulated in lungs of mice treated with bleomycin and MIA-602. MIA-602 also prominently suppressed multiple genes related to the cellular immune response including those for T-cell differentiation, receptor signaling, activation, and cytokine production. CONCLUSIONS MIA-602 reduced lung inflammation and fibrosis due to bleomycin. Multiple genes related to immune response and T-cell functions were downregulated, supporting the view that MIA-602 can modulate the cellular immune response to bleomycin lung injury.
Collapse
Affiliation(s)
| | - Renzhi Cai
- Research Service, Miami VAHS, Miami, FL, 33125, USA
| | - Aaron Lazerson
- Department of Comparative Pathology, University of Miami, Miami, FL, 33101, USA
| | | | | | - Mehdi Mirsaeidi
- Research Service, Miami VAHS, Miami, FL, 33125, USA
- Department of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Anthony J Griswold
- Dr. John T. MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, 33101, USA
| | - Andrew V Schally
- Research Service, Miami VAHS, Miami, FL, 33125, USA
- Department of Medicine, University of Miami, Miami, FL, 33101, USA
- Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Robert M Jackson
- Research Service, Miami VAHS, Miami, FL, 33125, USA.
- Department of Medicine, University of Miami, Miami, FL, 33101, USA.
- Research Service, Miami VAHS, 1201 NW 16th Street, Miami, FL, 33125, USA.
| |
Collapse
|
36
|
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma. Proc Natl Acad Sci U S A 2019; 116:2226-2231. [PMID: 30659154 PMCID: PMC6369772 DOI: 10.1073/pnas.1818865116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with poor prognosis and limited treatment options. MPM remains a serious public health problem, and novel therapeutic strategies are urgently needed. The antitumor properties of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different cancers; however, their influence in MPM remains unexplored. Our work shows that GHRH antagonists MIA-602 and MIA-690 reduce survival, proliferation, and migration of human MPM cell lines and primary MPM cells in vitro by modulating apoptotic and oncogenic pathways. In vivo, GHRH antagonists inhibited the growth of MPM xenografts and blunted the production of growth factors in tumors. Overall, the inhibitory activities described in this study suggest that GHRH antagonists may be considered for development of therapies for MPM. Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 μg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.
Collapse
|
37
|
Kharat A, Chandravanshi B, Gadre S, Patil V, Bhonde R, Dubhashi A. IGF-1 and somatocrinin trigger islet differentiation in human amniotic membrane derived mesenchymal stem cells. Life Sci 2018; 216:287-294. [PMID: 30444986 DOI: 10.1016/j.lfs.2018.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
AIM To induce differentiation of human amniotic membrane derived mesenchymal stem cells (hAMMSCs) into insulin producing cells (IPCs) by treating with somatocrinin or growth hormone releasing hormone (GHRH) and Insulin-like growth factor-1 (IGF-1). MAIN METHOD In this investigation, we cultivated and characterized hAMMSCs and then treated with IGF-1 and somatocrinin to find out whether this combination gives better yield of insulin producing cells. We showed that hAMMSCs can give rise to IPCs on exposure to serum-free defined media containing specific growth factors and differentiating agents in presence of IGF-1 and somatocrinin. KEY FINDING A combination of IGF-1 and somatocrinin lead to differentiation of large number of IPCs from hAMMSCs. These IPCs were found to be positive for dithizone indicating their insulin secretory mechanism. Moreover these cells were also found to be positive for C-peptide. IPCs released insulin in response to glucose challenge. Gene expression analysis exhibited significant up-regulation of pancreatic transcription factor GLUT2 and Insulin. SIGNIFICANCE Our data thus demonstrates for the first time that somatocrinin and IGF-1 synergistically enhance the differentiation of hAMMSCs into IPCs.
Collapse
Affiliation(s)
- Avinash Kharat
- Department of Bio-anylatical Sciences, Guru Nanak Khalsa College of Arts, Science & Commerce, Nathalal Parekh Marg, Matunga East, Mumbai 400019, Maharashtra, India; Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra 411018, India
| | - Bhawna Chandravanshi
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road Allalasandra, Near Royal Orchid Yelahanka, Bangalore 560065, India
| | - Shashikant Gadre
- Department of Bio-anylatical Sciences, Guru Nanak Khalsa College of Arts, Science & Commerce, Nathalal Parekh Marg, Matunga East, Mumbai 400019, Maharashtra, India
| | - Vikrant Patil
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra 411018, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra 411018, India.
| | - Aparna Dubhashi
- Department of Bio-anylatical Sciences, Guru Nanak Khalsa College of Arts, Science & Commerce, Nathalal Parekh Marg, Matunga East, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
38
|
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMedicine 2018; 37:557-562. [PMID: 30344124 PMCID: PMC6284454 DOI: 10.1016/j.ebiom.2018.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
P53 is a transcription factor very often mutated in malignancies. It functions towards the regulation of important cellular activities, such as cell cycle, senescence and apoptosis. Since inflammation and cancer are strongly associated through common pathways, P53 can suppress inflammation in a plethora of human tissues. Growth Hormone - Releasing Hormone is a hypothalamic peptide with a great capacity to affect the complex networks of cellular regulation via GHRH - specific receptors. GHRH antagonistic and agonistic analogs have been developed for clinical applications, including treatment of benign prostatic hyperplasia, breast, prostate and lung cancers, diabetes and neurodegenerative diseases. The epicenter of the current manuscript is the protective role of P53 against inflammation and cancer and emphasizes the p53 – mediated beneficial effects of GHRH antagonists in various human diseases. Inflammation is tightly associated with cancer. GHRH antagonists induce P53 expression. P53 exerts a protective effect against cancer and inflammation.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Andrew V Schally
- Department of Pathology and Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33156, USA; Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33156, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Poland
| |
Collapse
|
39
|
Popovics P, Cai R, Sha W, Rick FG, Schally AV. Growth hormone-releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis. Prostate 2018; 78:970-980. [PMID: 29786867 DOI: 10.1002/pros.23655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/07/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inflammation plays a key role in the etiology of benign prostatic hyperplasia (BPH) through multiple pathways involving the stimulation of proliferation by cytokines and growth factors as well as the induction of the focal occurrence of epithelial-to-mesenchymal transition (EMT). We have previously reported that GHRH acts as a prostatic growth factor in experimental BPH and in autoimmune prostatitis models and its blockade with GHRH antagonists offer therapeutic approaches for these conditions. Our current study was aimed at the investigation of the beneficial effects of GHRH antagonists in λ-carrageenan-induced chronic prostatitis and at probing the downstream molecular pathways that are implicated in GHRH signaling. METHODS To demonstrate the complications triggered by recurrent/chronic prostatic inflammation in Sprague-Dawley rats, 50 μL 3% carrageenan was injected into both ventral prostate lobes two times, 3 weeks apart. GHRH antagonist, MIA-690, was administered 5 days after the second intraprostatic injection at 20 μg daily dose for 4 weeks. GHRH-induced signaling events were identified in BPH-1 and in primary prostate epithelial (PrEp) cells at 5, 15, 30, and 60 min with Western blot. RESULTS Inflammation induced prostatic enlargement and increased the area of the stromal compartment whereas treatment with the GHRH antagonist significantly reduced these effects. This beneficial activity was consistent with a decrease in prostatic GHRH, inflammatory marker COX-2, growth factor IGF-1 and inflammatory and EMT marker TGF-β1 protein levels and the expression of multiple genes related to EMT. In vitro, GHRH stimulated multiple pathways involved in inflammation and growth in both BPH-1 and PrEp cells including NFκB p65, AKT, ERK1/2, EGFR, STAT3 and increased the levels of TGF-β1 and Snail/Slug. Most interestingly, GHRH also stimulated the transactivation of the IGF receptor. CONCLUSIONS The study demonstrates that GHRH antagonists could be beneficial for the treatment of prostatic inflammation and BPH in part by inhibiting the growth-promoting and inflammatory effects of locally produced GHRH.
Collapse
Affiliation(s)
- Petra Popovics
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
| | - Renzhi Cai
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
| | - Wei Sha
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
| | - Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
- Department of Urology, Herbert Wertheim College of Medicine, Florida International, University, Miami, Florida
| | - Andrew V Schally
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
- Sylvester Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
40
|
Lecomte MJ, Bertolus C, Ramanantsoa N, Saurini F, Callebert J, Sénamaud-Beaufort C, Ringot M, Bourgeois T, Matrot B, Collet C, Nardelli J, Mallet J, Vodjdani G, Gallego J, Launay JM, Berrard S. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice. Endocrinology 2018; 159:1844-1859. [PMID: 29509880 DOI: 10.1210/en.2017-03175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/23/2018] [Indexed: 12/28/2022]
Abstract
Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.
Collapse
Affiliation(s)
- Marie-José Lecomte
- Univercell-Biosolutions, Centre de Recherche des Cordeliers, Paris, France
| | - Chloé Bertolus
- Département de Chirurgie Maxillo-Faciale, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Nélina Ramanantsoa
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Françoise Saurini
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jacques Callebert
- U942-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Maud Ringot
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Thomas Bourgeois
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Boris Matrot
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Corinne Collet
- U1132-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jeannette Nardelli
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jacques Mallet
- UMRS1127-CNRS, Inserm, Université Pierre et Marie Curie, Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Guilan Vodjdani
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- CNRS, Paris, France
| | - Jorge Gallego
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jean-Marie Launay
- U942-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvie Berrard
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- CNRS, Paris, France
| |
Collapse
|
41
|
Anti-proliferative and pro-apoptotic effects of GHRH antagonists in prostate cancer. Oncotarget 2018; 7:52195-52206. [PMID: 27448980 PMCID: PMC5239544 DOI: 10.18632/oncotarget.10710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in the progression of various tumors. In vitro and in vivo studies have demonstrated that GHRH antagonists inhibit the growth of several cancers. GHRH antagonists, JMR-132 and JV-1-38 inhibit the growth of androgen-independent prostate tumors. Here we investigated the involvement of GHRH antagonists in proliferative and apoptotic processes. We used non-tumoral RWPE-1 and tumoral LNCaP and PC3 human prostatic epithelial cells, as well as an experimental model of human tumor PC3 cells. We evaluated the effects of JMR-132 and JV-1-38 antagonists on cell viability and proliferation in the three cell lines by means of MTT and BrdU assays, respectively, as well as on cell cycle and apoptotic process in PC3 cells. The expression levels of PCNA, p53, p21, CD44, Cyclin D1, c-myc, Bax and Bcl2 were determined in both in vivo and in vitro models by means of Western-blot and RT-PCR. GHRH antagonists suppressed cell proliferation and decreased the levels of the proliferation marker, PCNA, in the three cell lines and in PC3 tumor. GHRH antagonists led to an increase of cells in S-phase and a decrease in G1 and G2/M phases, and induced S-phase arrest and increase of apoptotic cells. The effects of GHRH-antagonists on cell cycle could be due to the changes observed in the expression of p21, p53, Bax, Bcl2, CD44, Cyclin D1, c-myc and caspase 3. Present results confirm and extend the role of GHRH antagonists as anti-proliferative and pro-apoptotic molecules in prostate cancer.
Collapse
|
42
|
Protective effects of agonists of growth hormone-releasing hormone (GHRH) in early experimental diabetic retinopathy. Proc Natl Acad Sci U S A 2017; 114:13248-13253. [PMID: 29180438 PMCID: PMC5740669 DOI: 10.1073/pnas.1718592114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The studies described here are relevant to the cure of diabetic retinopathy, a leading cause of blindness with currently limited therapeutic options. Here we provided evidence showing that agonists of growth hormone-releasing hormone (GHRH) can significantly diminish retinal neurovascular injury characterizing the early stages of diabetic retinopathy through antioxidant and anti-inflammatory effects. The results of the presented studies provide information on the potential therapeutic effects of GHRH agonists and shed light on the role of hypothalamic hormones in retinal physiology and their effect on visual disorders. In addition, our findings suggest protective effects of GHRH analogs in other disease conditions affecting retinal neuronal cells and, possibly, other nonretinal neurons. The potential therapeutic effects of agonistic analogs of growth hormone-releasing hormone (GHRH) and their mechanism of action were investigated in diabetic retinopathy (DR). Streptozotocin-induced diabetic rats (STZ-rats) were treated with 15 μg/kg GHRH agonist, MR-409, or GHRH antagonist, MIA-602. At the end of treatment, morphological and biochemical analyses assessed the effects of these compounds on retinal neurovascular injury induced by hyperglycemia. The expression levels of GHRH and its receptor (GHRH-R) measured by qPCR and Western blotting were significantly down-regulated in retinas of STZ-rats and in human diabetic retinas (postmortem) compared with their respective controls. Treatment of STZ-rats with the GHRH agonist, MR-409, prevented retinal morphological alteration induced by hyperglycemia, particularly preserving survival of retinal ganglion cells. The reverse, using the GHRH antagonist, MIA-602, resulted in worsening of retinal morphology and a significant alteration of the outer retinal layer. Explaining these results, we have found that MR-409 exerted antioxidant and anti-inflammatory effects in retinas of the treated rats, as shown by up-regulation of NRF-2-dependent gene expression and down-regulation of proinflammatory cytokines and adhesion molecules. MR-409 also significantly down-regulated the expression of vascular endothelial growth factor while increasing that of pigment epithelium-derived factor in diabetic retinas. These effects correlated with decreased vascular permeability. In summary, our findings suggest a neurovascular protective effect of GHRH analogs during the early stage of diabetic retinopathy through their antioxidant and anti-inflammatory properties.
Collapse
|
43
|
Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure. Proc Natl Acad Sci U S A 2017; 114:12033-12038. [PMID: 29078377 PMCID: PMC5692579 DOI: 10.1073/pnas.1712612114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological cardiac hypertrophy, characterized by heart growth in response to pressure or volume overload, such as in the setting of hypertension, is the main risk factor for heart failure (HF). The identification of therapeutic strategies to prevent or reverse cardiac hypertrophy is therefore a priority for curing HF. It is known that growth hormone-releasing hormone (GHRH) displays cardioprotective functions; however, its therapeutic potential in hypertrophy and HF is unknown. Here we show that GHRH reduces cardiomyocyte hypertrophy in vitro through inhibition of hypertrophic pathways. In vivo, the GHRH analog MR-409 attenuates cardiac hypertrophy in mice subjected to transverse aortic constriction and improves cardiac function. These findings suggest therapeutic use of GHRH analogs for treatment of pathological cardiac hypertrophy and HF. It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409. We show that in vitro, GHRH(1-44)NH2 attenuates phenylephrine-induced hypertrophy in H9c2 cardiac cells, adult rat ventricular myocytes, and human induced pluripotent stem cell-derived CMs, decreasing expression of hypertrophic genes and regulating hypertrophic pathways. Underlying mechanisms included blockade of Gq signaling and its downstream components phospholipase Cβ, protein kinase Cε, calcineurin, and phospholamban. The receptor-dependent effects of GHRH also involved activation of Gαs and cAMP/PKA, and inhibition of increase in exchange protein directly activated by cAMP1 (Epac1). In vivo, MR-409 mitigated cardiac hypertrophy in mice subjected to transverse aortic constriction and improved cardiac function. Moreover, CMs isolated from transverse aortic constriction mice treated with MR-409 showed improved contractility and reversal of sarcolemmal structure. Overall, these results identify GHRH as an antihypertrophic regulator, underlying its therapeutic potential for HF, and suggest possible beneficial use of its analogs for treatment of pathological cardiac hypertrophy.
Collapse
|
44
|
Muñoz-Moreno L, Bajo AM, Prieto JC, Carmena MJ. Growth hormone-releasing hormone (GHRH) promotes metastatic phenotypes through EGFR/HER2 transactivation in prostate cancer cells. Mol Cell Endocrinol 2017; 446:59-69. [PMID: 28193499 DOI: 10.1016/j.mce.2017.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Abstract
The involvement of growth hormone-releasing hormone (GHRH) in several relevant processes that contribute to prostate cancer progression was analyzed. Firstly, we evaluated GHRH effects on cell proliferation and adhesion in human cancer prostate cell lines, LNCaP and PC3, by using specific assays (BrdU incorporation and collagen adhesion). The expression levels of the main marker molecules of these processes were measured by RT-PCR, Western blotting and zymography assays. GHRH increased both cell proliferation and proliferating cell nuclear antigen (PCNA) levels in LNCaP cells and in PC3 cells; however, such a rise was faster in the PC3 cells that represent the most aggressive stage of prostate cancer. Furthermore, GHRH significantly reduced cell adhesion and E-cadherin levels in LNCaP and PC3 cells and up-regulated the total and nuclear expression of β-catenin in PC3 cells. In addition, we assessed cell cycle, cell migration and VEGF secretion in PC3 cells. GHRH augmented the number of cells in G2/M-phase but diminished that corresponding to G1-phase. Cell-cycle specific markers were evaluated since GHRH effects may be related to their differential expression; we observed a decrease of p53, p21, and Bax/Bcl2 ratio. Furthermore, GHRH increased the expression of CD44, c-myc and cyclin D1, MMP-2 and MMP-9 activity, and VEGF secretion. We also observed that EGFR and/or HER2 transactivation is involved in cell adhesion, cell migration and VEGF secretion produced by GHRH. Consequently, present results define GHRH as a proliferative, anti-apoptotic and migratory agent in prostate cancer.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| | - Ana M Bajo
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| | - Juan C Prieto
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain.
| | - María J Carmena
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| |
Collapse
|
45
|
Antagonists of growth hormone-releasing hormone inhibit proliferation induced by inflammation in prostatic epithelial cells. Proc Natl Acad Sci U S A 2017; 114:1359-1364. [PMID: 28123062 DOI: 10.1073/pnas.1620884114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The etiology of benign prostatic hyperplasia (BPH) is multifactorial, and chronic inflammation plays a pivotal role in its pathogenesis. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide that has been shown to act as paracrine/autocrine factor in various malignancies including prostate cancer. GHRH and its receptors are expressed in experimental models of BPH, in which antagonists of GHRH suppressed the levels of proinflammatory cytokines and altered the expression of genes related to epithelial-to-mesenchymal transition (EMT). We investigated the effects of GHRH antagonist on prostatic enlargement induced by inflammation. Autoimmune prostatitis in Balb/C mice was induced by a homogenate of reproductive tissues of male rats. During the 8-wk induction of chronic prostatitis, we detected a progressive increase in prostatic volume reaching 92% at week 8 compared with control (P < 0.001). Daily treatment for 1 mo with GHRH antagonist MIA-690 caused a 30% reduction in prostate volume (P < 0.05). Conditioned medium derived from macrophages increased the average volume of spheres by 82.7% (P < 0.001) and elevated the expression of mRNA for N-cadherin, Snail, and GHRH GHRH antagonist reduced the average volume of spheres stimulated by inflammation by 75.5% (P < 0.05), and TGF-β2 by 91.8% (P < 0.01). The proliferation of primary epithelial cells stimulated by IL-17A or TGF-β2 was also inhibited by 124.1% and 69.9%, respectively. GHRH stimulated the growth of BPH-1 and primary prostate spheres. This study provides evidence that GHRH plays important roles in prostatic inflammation and EMT and suggests the merit of further investigation to elucidate the effects of GHRH antagonists in prostatitis and BPH.
Collapse
|
46
|
van der Spoel E, Jansen SW, Akintola AA, Ballieux BE, Cobbaert CM, Slagboom PE, Blauw GJ, Westendorp RGJ, Pijl H, Roelfsema F, van Heemst D. Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity. Aging Cell 2016; 15:1126-1131. [PMID: 27605408 PMCID: PMC6398524 DOI: 10.1111/acel.12519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2016] [Indexed: 01/16/2023] Open
Abstract
Reduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle‐aged offspring of long‐living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24‐h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128–216) mU L−1] compared with controls [238 (193–284) mU L−1]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39–0.53)] compared with controls [0.66 (0.56–0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF‐1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Steffy W. Jansen
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Abimbola A. Akintola
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Bart E. Ballieux
- Department of Clinical Chemistry and Laboratory Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - P. Eline Slagboom
- Section Molecular Epidemiology; Department of Medical Statistics; Leiden University Medical Center; Leiden The Netherlands
| | - Gerard Jan Blauw
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Rudi G. J. Westendorp
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
- Department of Public Health and Center of Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Hanno Pijl
- Section Endocrinology; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Ferdinand Roelfsema
- Section Endocrinology; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
47
|
Kiscsatári L, Varga Z, Schally AV, Gáspár R, Nagy CT, Giricz Z, Ferdinandy P, Fábián G, Kahán Z, Görbe A. Protection of neonatal rat cardiac myocytes against radiation-induced damage with agonists of growth hormone-releasing hormone. Pharmacol Res 2016; 111:859-866. [PMID: 27480202 DOI: 10.1016/j.phrs.2016.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Despite the great clinical significance of radiation-induced cardiac damage, experimental investigation of its mechanisms is an unmet need in medicine. Beneficial effects of growth hormone-releasing hormone (GHRH) agonists in regeneration of the heart have been demonstrated. The aim of this study was the evaluation of the potential of modern GHRH agonistic analogs in prevention of radiation damage in an in vitro cardiac myocyte-based model. Cultures of cardiac myocytes isolated from newborn rats (NRVM) were exposed to a radiation dose of 10Gy. The effects of the agonistic analogs, JI-34 and MR-356, of human GHRH on cell viability, proliferation, their mechanism of action and the protein expression of the GHRH/SV1 receptors were studied. JI-34 and MR-356, had no effect on cell viability or proliferation in unirradiated cultures. However, in irradiated cells JI-34 showed protective effects on cell viability at concentrations of 10 and 100nM, and MR-356 at 500nM; but no such protective effect was detected on cell proliferation. Both agonistic analogs decreased radiation-induced ROS level and JI-34 interfered with the activation of SAFE/RISK pathways. Using Western blot analysis, a 52kDa protein isoform of GHRHR was detected in the samples in both irradiated and unirradiated cells. Since GHRH agonistic analogs, JI-34 and MR-356 alleviated radiation-induced damage of cardiac myocytes, they should be tested in vivo as potential protective agents against radiogenic heart damage.
Collapse
Affiliation(s)
- Laura Kiscsatári
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami FL, USA and Departments of Pathology and Medicine, Divisions of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renáta Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Csilla Terézia Nagy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gabriella Fábián
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
48
|
Kanashiro-Takeuchi RM, Szalontay L, Schally AV, Takeuchi LM, Popovics P, Jaszberenyi M, Vidaurre I, Zarandi M, Cai RZ, Block NL, Hare JM, Rick FG. New therapeutic approach to heart failure due to myocardial infarction based on targeting growth hormone-releasing hormone receptor. Oncotarget 2016; 6:9728-39. [PMID: 25797248 PMCID: PMC4496393 DOI: 10.18632/oncotarget.3303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 12/21/2022] Open
Abstract
Background We previously showed that growth hormone-releasing hormone (GHRH) agonists are cardioprotective following myocardial infarction (MI). Here, our aim was to evaluate the in vitro and in vivo activities of highly potent new GHRH agonists, and elucidate their mechanisms of action in promoting cardiac repair. Methods and Results H9c2 cells were cultured in serum-free medium, mimicking nutritional deprivation. GHRH agonists decreased calcium influx and significantly improved cell survival. Rats with cardiac infarction were treated with GHRH agonists or placebo for four weeks. MI size was reduced by selected GHRH agonists (JI-38, MR-356, MR-409); this accompanied an increased number of cardiac c-kit+ cells, cellular mitotic divisions, and vascular density. One week post-MI, MR-409 significantly reduced plasma levels of IL-2, IL-6, IL-10 and TNF-α compared to placebo. Gene expression studies revealed favorable outcomes of MR-409 treatment partially result from inhibitory activity on pro-apoptotic molecules and pro-fibrotic systems, and by elevation of bone morphogenetic proteins. Conclusions Treatment with GHRH agonists appears to reduce the inflammatory responses post-MI and may consequently improve mechanisms of healing and cardiac remod eling by regulating pathways involved in fibrosis, apoptosis and cardiac repair. Patients with cardiac dysfunction could benefit from treatment with novel GHRH agonists.
Collapse
Affiliation(s)
- Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Florida, United States of America
| | - Luca Szalontay
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America.,Department of Pathology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Department of Medicine, Divisions of Hematology/Oncology and Endocrinology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America.,Department of Medicine III, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Department of Medicine, Division of Cardiology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Miklos Jaszberenyi
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America.,Department of Pathology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Irving Vidaurre
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America
| | - Marta Zarandi
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America
| | - Ren-Zhi Cai
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America.,Department of Pathology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Norman L Block
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America.,Department of Pathology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Department of Medicine, Divisions of Hematology/Oncology and Endocrinology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America.,Department of Medicine, Division of Cardiology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, United States of America.,Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
49
|
Zhang L, Cao J, Wang Z, Dong Y, Chen Y. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks. Acta Histochem 2016; 118:286-92. [PMID: 26948666 DOI: 10.1016/j.acthis.2016.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
To study the mechanism by which monochromatic lights affect the growth of broilers, a total of 192 newly hatched broilers, including the intact, sham-operated and pinealectomy groups, were exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) using a light-emitting diode (LED) system for 2 weeks. The results showed that the GHRH-ir neurons were distributed in the infundibular nucleus (IN) of the chick hypothalamus. The mRNA and protein levels of GHRH in the hypothalamus and the plasma GH concentrations in the chicks exposed to GL were increased by 6.83-31.36%, 8.71-34.52% and 6.76-9.19% compared to those in the chicks exposed to WL (P=0.022-0.001), RL (P=0.002-0.000) and BL (P=0.290-0.017) in the intact group, respectively. The plasma melatonin concentrations showed a positive correlation with the expression of GHRH (r=0.960) and the plasma GH concentrations (r=0.993) after the various monochromatic light treatments. After pinealectomy, however, these parameters decreased and there were no significant differences between GL and the other monochromatic light treatments. These findings suggest that melatonin plays a critical role in GL illumination-enhanced GHRH expression in the hypothalamus and plasma GH concentrations in young broilers.
Collapse
|
50
|
Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int 2016; 2016:5728438. [PMID: 26977157 PMCID: PMC4764748 DOI: 10.1155/2016/5728438] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, possibly because of highly tumorigenic subpopulations of glioma stem cells. These cells require specific microenvironments to maintain their “stemness,” described as perivascular and hypoxic niches. Each of those niches induces particular signatures in glioma stem cells (e.g., activation of Notch signaling, secretion of VEGF, bFGF, SDF1 for the vascular niche, activation of HIF2α, and metabolic reprogramming for hypoxic niche). Recently, accumulated knowledge on tumor-associated macrophages, possibly delineating a third niche, has underlined the role of immune cells in glioma progression, via specific chemoattractant factors and cytokines, such as macrophage-colony stimulation factor (M-CSF). The local or myeloid origin of this new component of glioma stem cells niche is yet to be determined. Such niches are being increasingly recognized as key regulators involved in multiple stages of disease progression, therapy resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. This review focuses on the microenvironment impact on the glioma stem cell biology, emphasizing GSCs cross talk with hypoxic, perivascular, and immune niches and their potential use as targeted therapy.
Collapse
|