1
|
Zheng T, Huang KY, Tang XD, Wang FY, Lv L. Endoplasmic reticulum stress in gut inflammation: Implications for ulcerative colitis and Crohn's disease. World J Gastroenterol 2025; 31:104671. [PMID: 40248056 PMCID: PMC12001174 DOI: 10.3748/wjg.v31.i13.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Eukaryotic cells contain the endoplasmic reticulum (ER), a prevalent and intricate membranous structural system. During the development of inflammatory bowel disease (IBD), the stress on the ER and the start of the unfolded protein response are very important. Some chemicals, including 4μ8C, small molecule agonists of X-box binding protein 1, and ISRIB, work on the inositol-requiring enzyme 1, turn on transcription factor 6, and activate protein kinase RNA-like ER kinase pathways. This may help ease the symptoms of IBD. Researchers investigating the gut microbiota have discovered a correlation between ER stress and it. This suggests that changing the gut microbiota could help make new medicines for IBD. This study looks at how ER stress works and how it contributes to the emergence of IBD. It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.
Collapse
Affiliation(s)
- Ting Zheng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Kai-Yue Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Wang LH, Sun YH, Liu H, Yang X, Wen Z, Tian XF. β-Sitosterol attenuates anlotinib resistance in non-small cell lung cancer cells by inhibiting miR-181a-3p/SHQ1 signaling. Chem Biol Drug Des 2024; 103:e14493. [PMID: 38439529 DOI: 10.1111/cbdd.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Anlotinib is used for the treatment of advanced non-small cell lung cancer; however, the emergence of drug resistance limits its clinical application. β-sitosterol may also be used to treat lung cancer, but there have been no studies evaluating β-sitosterol against anlotinib-resistant lung cancer. The purpose of this study was to determine the mechanism by which β-sitosterol enhances the sensitivity of lung cancer cells to anlotinib. A549 cells were treated with different concentrations of anlotinib to generate anlotinib-resistant cells (A549/anlotinib cells). miR-181a-3p mimics were transfected into A549/anlotinib cells. A549 and A549/anlotinib cells were treated with β-sitosterol at various concentrations. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. Apoptosis was assessed by flow cytometry. Real-time quantitative PCR was used to measure the expression of miR-181a-3p. The interaction of miR-181a-3p with the H/ACA ribonucleoprotein assembly factor (SHQ1) was predicted using the miRDB and TargetScan Human databases and verified with a luciferase reporter assay. The expression of SHQ1, activating transcription factor 6 (ATF6), and glucose-regulated protein 78 (GRP78) were measured by western blot analysis. β-Sitosterol effectively suppressed A549/anlotinib cell proliferation and promoted apoptosis. SHQ1 is a downstream target of miR-181a-3p. The expression of miR-181a-3p was inhibited; however, SHQ1 expression was increased by β-sitosterol treatment of A549/anlotinib cells. The inhibition of SHQ1, ATF6, and GRP78 protein expression by β-sitosterol in A549/anlotinib cells was rescued by increased miR-181a-3p. β-Sitosterol markedly promotes anlotinib-resistant A549 cell apoptosis and inhibits cell proliferation by activating SHQ1/UPR signaling through miR-181a-3p inhibition.
Collapse
Affiliation(s)
- Li-Huai Wang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Yin-Hui Sun
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Hua Liu
- Department of Oncology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Xiao Yang
- Department of Oncology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Zhi Wen
- Department of Oncology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Xue-Fei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
3
|
Joyce R, Pascual R, Heitink L, Capaldo BD, Vaillant F, Christie M, Tsai M, Surgenor E, Anttila CJA, Rajasekhar P, Jackling FC, Trussart M, Milevskiy MJG, Song X, Li M, Teh CE, Gray DHD, Smyth GK, Chen Y, Lindeman GJ, Visvader JE. Identification of aberrant luminal progenitors and mTORC1 as a potential breast cancer prevention target in BRCA2 mutation carriers. Nat Cell Biol 2024; 26:138-152. [PMID: 38216737 DOI: 10.1038/s41556-023-01315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Rachel Joyce
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Pascual
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Luuk Heitink
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Minhsuang Tsai
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elliot Surgenor
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Casey J A Anttila
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Pradeep Rajasekhar
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Marie Trussart
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mengbo Li
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Charis E Teh
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Daniel H D Gray
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
- Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Beumers L, Vlachavas EI, Borgoni S, Schwarzmüller L, Penso-Dolfin L, Michels BE, Sofyali E, Burmester S, Heiss D, Wilhelm H, Yarden Y, Helm D, Will R, Goncalves A, Wiemann S. Clonal heterogeneity in ER+ breast cancer reveals the proteasome and PKC as potential therapeutic targets. NPJ Breast Cancer 2023; 9:97. [PMID: 38042915 PMCID: PMC10693625 DOI: 10.1038/s41523-023-00604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Intratumoral heterogeneity impacts the success or failure of anti-cancer therapies. Here, we investigated the evolution and mechanistic heterogeneity in clonal populations of cell models for estrogen receptor positive breast cancer. To this end, we established barcoded models of luminal breast cancer and rendered them resistant to commonly applied first line endocrine therapies. By isolating single clones from the resistant cell pools and characterizing replicates of individual clones we observed inter- (between cell lines) and intra-tumor (between different clones from the same cell line) heterogeneity. Molecular characterization at RNA and phospho-proteomic levels revealed private clonal activation of the unfolded protein response and respective sensitivity to inhibition of the proteasome, and potentially shared sensitivities for repression of protein kinase C. Our in vitro findings are consistent with tumor-heterogeneity that is observed in breast cancer patients thus highlighting the need to uncover heterogeneity at an individual patient level and to adjust therapies accordingly.
Collapse
Affiliation(s)
- Lukas Beumers
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| | - Efstathios-Iason Vlachavas
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Luisa Schwarzmüller
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Luca Penso-Dolfin
- Division of Somatic Evolution and Early Detection, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Birgitta E Michels
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Emre Sofyali
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sara Burmester
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Daniela Heiss
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Heike Wilhelm
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Angela Goncalves
- Division of Somatic Evolution and Early Detection, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Zhang X, Chen X, Qian F, Zhu Y, He G, Yang J, Wu X, Zhang H, Yu X, Liu X. Deubiquitinase USP19 modulates apoptotic calcium release and endoplasmic reticulum stress by deubiquitinating BAG6 in triple negative breast cancer. Clin Transl Med 2023; 13:e1398. [PMID: 37700495 PMCID: PMC10497826 DOI: 10.1002/ctm2.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), a heterogeneous subtype of breast cancer (BC), had poor prognosis. Endoplasmic reticulum (ER) stress was responsible for cellular processes and played a crucial role in the cell function. ER stress is a complex and dynamic process that can induce abnormal apoptosis and death. However, the underlying mechanism of ER stress involved in TNBC is not well defined. METHODS We identified ubiquitin-specific protease 19 (USP19) as a TNBC negative regulator for further investigation. The effects of USP19 on BC proliferation were assessed in vitro using proliferation test and cell-cycle assays, while the effects in vivo were examined using a mouse tumorigenicity model. Through in vitro flow cytometric analyses and in vivo TUNEL assays, cell apoptosis was assessed. Proteomics was used to examine the proteins that interact with USP19. RESULTS Multiple in vitro and in vivo tests showed that USP19 decreases TNBC cell growth while increasing apoptosis. Then, we demonstrated that USP19 interacts with deubiquitinates and subsequently stabilises family molecular chaperone regulator 6 (BAG6). BAG6 can boost B-cell lymphoma 2 (BCL2) ubiquitination and degradation, thereby raising ER calcium (Ca2+ ) levels and causing ER stress. We also found that the N6 -methyladenosine (m6 A) "writer" methyltransferase-like 14 (METTL14) increased global m6 A modification. CONCLUSIONS Our study reveals that USP19 elevates the intracellular Ca2+ concentration to alter ER stress via regulation of BAG6 and BCL2 stability and may be a viable therapeutic target for TNBC therapy.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital)HangzhouChina
| | - Xuyu Chen
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Fangze Qian
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yanhui Zhu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Gao He
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Junzhe Yang
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xian Wu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Hongfei Zhang
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xiafei Yu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xiaoan Liu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Wu Q, Zhou D, Shen Z, Chen B, Wang G, Wu L, Zhang L, Li X, Yuan L, Wu Y, Qu N, Zhou W. VPS34-IN1 induces apoptosis of ER + breast cancer cells via activating PERK/ATF4/CHOP pathway. Biochem Pharmacol 2023:115634. [PMID: 37290596 DOI: 10.1016/j.bcp.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
VPS34-IN1 is a specific selective inhibitor of Class III Phosphatidylinositol 3-kinase (PI3K) and has been shown to exhibit a significant antitumor effect in leukemia and liver cancer. In current study, we focused on the anticancer effect and potential mechanism of VPS34-IN1 in estrogen receptor positive (ER + ) breast cancer. Our results revealed that VPS34-IN1 inhibited the viability of ER + breast cancer cells in vitro and in vivo. Flow cytometry and western blot analyses showed that VPS34-IN1 treatment induced breast cancer cell apopotosis. Interestingly, VPS34-IN1 treatment activated protein kinase R (PKR)-like ER kinase (PERK) branch of endoplasmic reticulum (ER) stress. Furthermore, knockdown of PERK by siRNA or inhibition of PERK activity by chemical inhibitor GSK2656157 could attenuate VPS34-IN1-mediated apoptosis in ER + breast cancer cells. Collectively, VPS34-IN1 has an antitumor effect in breast cancer, and it may result from activating PERK/ATF4/CHOP pathway of ER stress to induce cell apoptosis. These findings broaden our understanding of the anti-breast cancer effects and mechanisms of VPS34-IN1 and provide new ideas and reference directions for the treatment of ER + breast cancer.
Collapse
Affiliation(s)
- Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan District, Chongqing 402160, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
de la Calle CM, Shee K, Yang H, Lonergan PE, Nguyen HG. The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 2022; 19:708-726. [PMID: 36168057 DOI: 10.1038/s41585-022-00649-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
In order to proliferate in unfavourable conditions, cancer cells can take advantage of the naturally occurring endoplasmic reticulum-associated unfolded protein response (UPR) via three highly conserved signalling arms: IRE1α, PERK and ATF6. All three arms of the UPR have key roles in every step of tumour progression: from cancer initiation to tumour growth, invasion, metastasis and resistance to therapy. At present, no cure for metastatic prostate cancer exists, as targeting the androgen receptor eventually results in treatment resistance. New research has uncovered an important role for the UPR in prostate cancer tumorigenesis and crosstalk between the UPR and androgen receptor signalling pathways. With an improved understanding of the mechanisms by which cancer cells exploit the endoplasmic reticulum stress response, targetable points of vulnerability can be uncovered.
Collapse
Affiliation(s)
- Claire M de la Calle
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Shee
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heiko Yang
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter E Lonergan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, St. James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College, Dublin, Ireland
| | - Hao G Nguyen
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Epimedokoreanin B inhibits the growth of lung cancer cells through endoplasmic reticulum stress-mediated paraptosis accompanied by autophagosome accumulation. Chem Biol Interact 2022; 366:110125. [PMID: 36027945 DOI: 10.1016/j.cbi.2022.110125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Epimedokoreanin B (EKB) is a prenylated flavonoid isolated from Epimedium koreanum. In this article, we described the anti-cancerous effects of EKB and its underlying mechanism in human non-small cell lung cancer (NSCLC) A549 and NCI-H292 cells. EKB treatment inhibited cell proliferation and migration accompanied by cytoplasmic vacuolation in both cell lines. The cell death induced by EKB lacked the features of apoptosis like chromatin condensation, phosphatidyl serine exposure and caspase cleavage. The vacuoles stimulated by EKB predominantly derived from endoplasmic reticulum (ER) and mitochondria dilation, which are the characteristics of paraptosis. Down-regulation of Alix and up-regulation of ER stress-related proteins after EKB treatment further supported the occurrence of paraptosis. ER stress inhibitor 4-phenylbutyric acid (4-PBA) and protein synthesis inhibitor cycloheximide (CHX) treatment antagonized the vacuoles formation as well as cell death induced by EKB, indicating that ER stress was involved in EKB induced paraptosis. In addition, autophagosome accumulation accompanied with autophagy flux blocking was observed in EKB treated cells, this was consistent with the occurrence of ER stress. Collectively, EKB was demonstrated as a paraptosis-like cell death inducer in A549 and NCI-H292 cells. The inhibitory effect of EKB on lung cancer cell proliferation was further demonstrated in a zebrafish xenograft model. These findings raise the possibility that paraptosis inducers may be considered as alternative choices for lung cancer therapy.
Collapse
|
9
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
10
|
Boudreau MW, Hergenrother PJ. Evolution of 3-(4-hydroxyphenyl)indoline-2-one as a scaffold for potent and selective anticancer activity. RSC Med Chem 2022; 13:711-725. [PMID: 35814932 PMCID: PMC9215341 DOI: 10.1039/d2md00110a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Development of targeted anticancer modalities has prompted a new era in cancer treatment that is notably different from the age of radical surgery and highly toxic chemotherapy. Behind each effective compound is a rich and complex history from first identification of chemical matter, detailed optimization, and mechanistic investigations, ultimately leading to exciting molecules for drug development. Herein we review the history and on-going journey of one such anticancer scaffold, the 3-(4-hydroxyphenyl)indoline-2-ones. With humble beginnings in 19th century Bavaria, we review this scaffold's synthetic history and anticancer optimization, including its recent demonstration of tumor eradication of drug-resistant, estrogen receptor-positive breast cancer. Compounds containing the 3-(4-hydroxyphenyl)indoline-2-one pharmacophore are emerging as intriguing candidates for the treatment of cancer.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Dept. of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Paul J Hergenrother
- Dept. of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
11
|
Lohani N, Singh MB, Bhalla PL. Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers. FRONTIERS IN PLANT SCIENCE 2022; 13:905674. [PMID: 35755714 PMCID: PMC9218420 DOI: 10.3389/fpls.2022.905674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Climate change associated increases in the frequency and intensity of extreme temperature events negatively impact agricultural productivity and global food security. During the reproductive phase of a plant's life cycle, such high temperatures hinder pollen development, preventing fertilization, and seed formation. At the molecular level, heat stress-induced accumulation of misfolded proteins activates a signaling pathway called unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasm to enhance the protein folding capacity of the cell. Here, we report transcriptional responses of Brassica napus anthers exposed to high temperature for 5, 15, and 30 min to decipher the rapid transcriptional reprogramming associated with the unfolded protein response. Functional classification of the upregulated transcripts highlighted rapid activation of the ER-UPR signaling pathway mediated by ER membrane-anchored transcription factor within 5 min of heat stress exposure. KEGG pathway enrichment analysis also identified "Protein processing in ER" as the most significantly enriched pathway, indicating that the unfolded protein response (UPR) is an immediate heat stress-responsive pathway during B. napus anther development. Five minutes of heat stress also led to robust induction of the cytosolic HSF-HSP heat response network. Our results present a perspective of the rapid and massive transcriptional reprogramming during heat stress in pollen development and highlight the need for investigating the nature and function of very early stress-responsive networks in plant cells. Research focusing on very early molecular responses of plant cells to external stresses has the potential to reveal new stress-responsive gene networks that can be explored further for developing climate change resilient crops.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Chen J, Liu Y, Pan D, Xu T, Luo Y, Wu W, Wu P, Zhu H, Li D. Estrogen inhibits endoplasmic reticulum stress and ameliorates myocardial ischemia/reperfusion injury in rats by upregulating SERCA2a. Cell Commun Signal 2022; 20:38. [PMID: 35331264 PMCID: PMC8944077 DOI: 10.1186/s12964-022-00842-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of coronary heart disease (CHD) in premenopausal women is significantly lower than that of men of the same age, suggesting protective roles of estrogen for the cardiovascular system against CHD. This study aimed to confirm the protective effect of estrogen on myocardium during myocardial ischemia/reperfusion (MI/R) injury and explore the underlying mechanisms. Methods Neonatal rat cardiomyocytes and Sprague–Dawley rats were used in this study. Different groups were treated by bilateral ovariectomy, 17β-estradiol (E2), adenoviral infection, or siRNA transfection. The expression of sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2a) and endoplasmic reticulum (ER) stress-related proteins were measured in each group to examine the effect of different E2 levels and determine the relationship between SERCA2a and ER stress. The cell apoptosis, myocardial infarction size, levels of apoptosis and serum cardiac troponin I, ejection fraction, calcium transient, and morphology changes of the myocardium and ER were examined to verify the effects of E2 on the myocardium. Results Bilateral ovariectomy resulted in reduced SERCA2a levels and more severe MI/R injury. E2 treatment increased SERCA2a expression. Both E2 treatment and exogenous SERCA2a overexpression decreased levels of ER stress-related proteins and alleviated myocardial damage. In contrast, SERCA2a knockdown exacerbated ER stress and myocardial damage. Addition of E2 after SERCA2a knockdown did not effectively inhibit ER stress or reduce myocardial injury. Conclusions Our data demonstrate that estrogen inhibits ER stress and attenuates MI/R injury by upregulating SERCA2a. These results provide a new potential target for therapeutic intervention and drug discovery in CHD. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00842-2.
Collapse
Affiliation(s)
- Jingwen Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Tongda Xu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Wanling Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Pei Wu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Boudreau MW, Mulligan MP, Shapiro DJ, Fan TM, Hergenrother PJ. Activators of the Anticipatory Unfolded Protein Response with Enhanced Selectivity for Estrogen Receptor Positive Breast Cancer. J Med Chem 2022; 65:3894-3912. [PMID: 35080871 PMCID: PMC9067622 DOI: 10.1021/acs.jmedchem.1c01730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 75% of breast cancers are estrogen receptor alpha-positive (ERα+), and targeting ERα directly with ERα antagonists/degraders or indirectly with aromatase inhibitors is a successful therapeutic strategy. However, such treatments are rarely curative and development of resistance is universal. We recently reported ErSO, a compound that induces ERα-dependent cancer cell death through a mechanism distinct from clinically approved ERα drugs, via hyperactivation of the anticipatory unfolded protein response. ErSO has remarkable tumor-eradicative activity in multiple ERα+ tumor models. While ErSO has promise as a new drug, it has effects on ERα-negative (ERα-) cells in certain contexts. Herein, we construct modified versions of ErSO and identify variants with enhanced differential activity between ERα+ and ERα- cells. We report ErSO-DFP, a compound that maintains antitumor efficacy, has enhanced selectivity for ERα+ cancer cells, and is well tolerated in rodents. ErSO-DFP and related compounds represent an intriguing new class for the treatment of ERα+ cancers.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States,Carl R. Woese Institute for Genomic, Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael P. Mulligan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J. Shapiro
- Cancer Center at Illinois and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Cancer, Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl R. Woese Institute for Genomic Biology University of Illinois at, Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Chen H, Miao Y, Bian A, Ye J, Wang J, Cong X, Jian S, Yi Z, Liang L, Sun Z, Yang F, Ding T. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. Cancer Lett 2022; 532:215580. [PMID: 35121048 DOI: 10.1016/j.canlet.2022.215580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Androgen receptor-targeted therapy improves survival in castration-resistant prostate cancer (CRPC). However, almost all patients with CRPC eventually develop secondary resistance to these drugs. Therefore, alternative therapeutic approaches for incurable metastatic CRPC are urgently needed. Unfolded protein response (UPR) is regarded as a cytoprotective mechanism that removes misfolded proteins in rapidly proliferating tumor cells. However, acute activation of the UPR directly leads to tumor cell death. This study has shown that WJ-644A, a novel small molecule activator of UPR, potently inhibited the proliferation of prostate cancer cells and caused tumor regression with a good safety profile in multiple animal models. Mechanistically, we have identified that WJ-644A induced cell methuosis and autophagy upon UPR activation. Our study not only identifies the UPR as an actionable target for CRPC treatment, but also establishes WJ-644A as a novel UPR activator that has potential therapeutic value for CRPC.
Collapse
Affiliation(s)
- Huang Chen
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Ying Miao
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Aiwu Bian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jiangnan Ye
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jing Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China
| | - Xiaonan Cong
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuyi Jian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Zhengfang Yi
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Lin Liang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China.
| | - Tao Ding
- Department of Urology, Southern Medical University Affifiliated Fengxian Hospital, Shanghai, China, 201499.
| |
Collapse
|
15
|
Wang Y, Chen S. TXNIP Links Anticipatory Unfolded Protein Response to Estrogen Reprogramming Glucose Metabolism in Breast Cancer Cells. Endocrinology 2022; 163:6382455. [PMID: 34614512 PMCID: PMC8570585 DOI: 10.1210/endocr/bqab212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estrogen and estrogen receptor (ER) play a fundamental role in breast cancer. To support the rapid proliferation of ER+ breast cancer cells, estrogen increases glucose uptake and reprograms glucose metabolism. Meanwhile, estrogen/ER activates the anticipatory unfolded protein response (UPR) preparing cancer cells for the increased protein production required for subsequent cell proliferation. Here, we report that thioredoxin-interacting protein (TXNIP) is an important regulator of glucose metabolism in ER+ breast cancer cells, and estrogen/ER increases glucose uptake and reprograms glucose metabolism via activating anticipatory UPR and subsequently repressing TXNIP expression. In 2 widely used ER+ breast cancer cell lines, MCF7 and T47D, we showed that MCF7 cells express high TXNIP levels and exhibit mitochondrial oxidative phosphorylation (OXPHOS) phenotype, while T47D cells express low TXNIP levels and display aerobic glycolysis (Warburg effect) phenotype. Knockdown of TXNIP promoted glucose uptake and Warburg effect, while forced overexpression of TXNIP inhibited glucose uptake and Warburg effect. We further showed that estrogen represses TXNIP expression and activates UPR sensor inositol-requiring enzyme 1 (IRE1) via ER in the breast cancer cells, and IRE1 activity is required for estrogen suppression of TXNIP expression and estrogen-induced cell proliferation. Our study suggests that TXNIP is involved in estrogen-induced glucose uptake and metabolic reprogramming in ER+ breast cancer cells and links anticipatory UPR to estrogen reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: Shiuan Chen, PhD, Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Singh R, Kaur N, Dhingra N, Kaur T. Protein misfolding, ER Stress and Chaperones: An approach to develop chaperone-based therapeutics for Alzheimer's Disease. Int J Neurosci 2021:1-21. [PMID: 34402740 DOI: 10.1080/00207454.2021.1968859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder with complex etiology that eventually leads to dementia. The main culprit of AD is the extracellular deposition of β-amyloid (Aβ) and intracellular neurofibrillary tangles. The protein conformational change and protein misfolding are the key events of AD pathophysiology, therefore endoplasmic reticulum (ER) stress is an apparent consequence. ER, stress-induced unfolded protein response (UPR) mediators (viz. PERK, IRE1, and ATF6) have been reported widely in the AD brain. Considering these factors, preventing proteins misfolding or aggregation of tau or amyloidogenic proteins appears to be the best approach to halt its pathogenesis. Therefore, therapies through chemical and pharmacological chaperones came to light as an alternative for the treatment of AD. Diverse studies have demonstrated 4-phenylbutyric acid (4-PBA) as a potential therapeutic agent in AD. The current review outlined the mechanism of protein misfolding, different etiological features behind the progression of AD, the significance of ER stress in AD, and the potential therapeutic role of different chaperones to counter AD. The study also highlights the gaps in current knowledge of the chaperones-based therapeutic approach and the possibility of developing chaperones as a potential therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| |
Collapse
|
17
|
Boudreau MW, Duraki D, Wang L, Mao C, Kim JE, Henn MA, Tang B, Fanning SW, Kiefer J, Tarasow TM, Bruckheimer EM, Moreno R, Mousses S, Greene GL, Roy EJ, Park BH, Fan TM, Nelson ER, Hergenrother PJ, Shapiro DJ. A small-molecule activator of the unfolded protein response eradicates human breast tumors in mice. Sci Transl Med 2021; 13:13/603/eabf1383. [PMID: 34290053 DOI: 10.1126/scitranslmed.abf1383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Metastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darjan Duraki
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ji Eun Kim
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sean W Fanning
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | - Geoffrey L Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ben Ho Park
- Department of Medicine, Division of Heme/Onc, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Erik R Nelson
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Endoplasmic reticulum Metallo protease 1, a triggering factor for unfolded protein response and promising target in colorectal cancer. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
20
|
Taylor RC, Hetz C. Mastering organismal aging through the endoplasmic reticulum proteostasis network. Aging Cell 2020; 19:e13265. [PMID: 33128506 PMCID: PMC7681052 DOI: 10.1111/acel.13265] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022] Open
Abstract
The aging process is characterized by a progressive decline in the function of most tissues, representing the main risk factor in the development of a variety of human diseases. Studies in multiple animal models have demonstrated that interventions that improve the capacity to maintain endoplasmic reticulum (ER) proteostasis prolong life and healthspan. ER stress is monitored by the unfolded protein response (UPR), a signaling pathway that mediates adaptive processes to restore proteostasis or the elimination of damaged cells by apoptosis. Here, we discuss recent advances in understanding the significance of the UPR to aging and its implications for the maintenance of cell physiology of various cell types and organs. The possible benefits of targeting the UPR to extend healthspan and reduce the risk of developing age-related diseases are also discussed.
Collapse
Affiliation(s)
| | - Claudio Hetz
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile
- Buck Institute for Research on AgingNovatoCAUSA
| |
Collapse
|
21
|
Raiter A, Lipovetsky J, Hyman L, Mugami S, Ben-Zur T, Yerushalmi R. Chemotherapy Controls Metastasis Through Stimulatory Effects on GRP78 and Its Transcription Factor CREB3L1. Front Oncol 2020; 10:1500. [PMID: 33042795 PMCID: PMC7518037 DOI: 10.3389/fonc.2020.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
To achieve a cure for metastatic breast cancer, further understanding of molecular drivers of the metastatic cascade is essential. Currently, chemotherapy regimens include doxorubicin and paclitaxel which act in part by inducing the unfolded protein response (UPR). The master regulator of the UPR, glucose regulated protein 78 (GRP78), localizes on the surface of tumor cells and is associated with metastatic disease. Cyclic AMP responsive element binding protein 3-like 1 (CREB3L1), a member of the UPR, is a breast cancer metastasis suppressor that acts on cyclic AMP to promote the expression of target genes including GRP78. The aim of the present study was to evaluate the effects of chemotherapy on CREB3L1 and cell-surface GRP78 expression and its association with the development of breast cancer metastasis. For this purpose, we use breast cancer cells migration in vitro assays and an in vivo metastatic mouse model. The results showed that chemotherapy activated CREB3L1 and enhanced cell-surface GRP78 expression specifically in triple-negative breast cancer cells (TNBC), reducing their migration and metastatic potential. CREB3L1 knockout (KO) in the triple negative MDAMB231 cell line using CRISPR/Cas9 technology led to inhibition of GRP78 expression and abrogation of the CREB3L1 metastatic suppression function. Inoculation of CREB3L1-KO MDAMB231 cells into a mouse metastatic model induced a massive metastatic profile which chemotherapy failed to prevent. These findings elucidate a potential pathway to the development of a novel treatment strategy for metastatic TNBC based on modulating CREB3L1 and cell-surface GRP78 expression by chemotherapy and GRP78-targeted drugs.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Lucila Hyman
- Department of Pathology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Shany Mugami
- Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Tali Ben-Zur
- Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Rinat Yerushalmi
- Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
22
|
Barabutis N. Unfolded Protein Response in Lung Health and Disease. Front Med (Lausanne) 2020; 7:344. [PMID: 32850879 PMCID: PMC7406640 DOI: 10.3389/fmed.2020.00344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is a complex element, destined to protect the cells against a diverse variety of extracellular and intracellular challenges. UPR activation devises highly efficient responses to counteract cellular threats. If those activities fail, it will dictate cellular execution. The current work focuses on the role of UPR in pulmonary function, by immersing into the highly interrelated network that operates toward the endothelial barrier function. A highly sophisticated UPR manipulation shall reveal new therapeutic possibilities against inflammatory lung disease, such as acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
23
|
van Ziel AM, Scheper W. The UPR in Neurodegenerative Disease: Not Just an Inside Job. Biomolecules 2020; 10:biom10081090. [PMID: 32707908 PMCID: PMC7465596 DOI: 10.3390/biom10081090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are highly specialized cells that continuously and extensively communicate with other neurons, as well as glia cells. During their long lifetime, the post-mitotic neurons encounter many stressful situations that can disrupt protein homeostasis (proteostasis). The importance of tight protein quality control is illustrated by neurodegenerative disorders where disturbed neuronal proteostasis causes neuronal dysfunction and loss. For their unique function, neurons require regulated and long-distance transport of membrane-bound cargo and organelles. This highlights the importance of protein quality control in the neuronal endomembrane system, to which the unfolded protein response (UPR) is instrumental. The UPR is a highly conserved stress response that is present in all eukaryotes. However, recent studies demonstrate the existence of cell-type-specific aspects of the UPR, as well as cell non-autonomous UPR signaling. Here we discuss these novel insights in view of the complex cellular architecture of the brain and the implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Maria van Ziel
- Department of Clinical Genetics, Amsterdam University Medical Centers location VUmc, 1081 HV Amsterdam, The Netherlands;
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), 1081 HV Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Clinical Genetics, Amsterdam University Medical Centers location VUmc, 1081 HV Amsterdam, The Netherlands;
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-5982771
| |
Collapse
|
24
|
The ATF6-EGF Pathway Mediates the Awakening of Slow-Cycling Chemoresistant Cells and Tumor Recurrence by Stimulating Tumor Angiogenesis. Cancers (Basel) 2020; 12:cancers12071772. [PMID: 32630838 PMCID: PMC7407555 DOI: 10.3390/cancers12071772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023] Open
Abstract
Slow-cycling cancer cells (SCCs) with a quiescence-like phenotype are believed to perpetrate cancer relapse and progression. However, the mechanisms that mediate SCC-derived tumor recurrence are poorly understood. Here, we investigated the mechanisms underlying cancer recurrence after chemotherapy, focusing on the interplay between SCCs and the tumor microenvironment. We established a preclinical model of SCCs by exposing non-small-cell lung cancer (NSCLC) cells to either the proliferation-dependent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) or chemotherapeutic drugs. An RNA sequencing analysis revealed that the established SCCs exhibited the upregulation of a group of genes, especially epidermal growth factor (EGF). Increases in the number of vascular endothelial growth factor receptor (VEGFR)-positive vascular endothelial cells and epidermal growth factor receptor (EGFR) activation were found in NSCLC cell line- and patient-derived xenograft tumors that progressed upon chemotherapy. EGFR tyrosine kinase inhibitors effectively suppressed the migration and tube formation of vascular endothelial cells. Furthermore, activating transcription factor 6 (ATF6) induced the upregulation of EGF, and its antagonism effectively suppressed these SCC-mediated events and inhibited tumor recurrence after chemotherapy. These results suggest that the ATF6-EGF signaling axis in SCCs functions to trigger the angiogenesis switch in residual tumors after chemotherapy and is thus a driving force for the switch from SCCs to actively cycling cancer cells, leading to tumor recurrence.
Collapse
|
25
|
Yu L, Wang L, Kim JE, Mao C, Shapiro DJ. Src couples estrogen receptor to the anticipatory unfolded protein response and regulates cancer cell fate under stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118765. [PMID: 32502618 DOI: 10.1016/j.bbamcr.2020.118765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Accumulation of unfolded protein, or other stresses, activates the classical reactive unfolded protein response (UPR). In the recently characterized anticipatory UPR, receptor-bound estrogen, progesterone and other mitogenic hormones rapidly elicit phosphorylation of phospholipase C γ (PLCγ), activating the anticipatory UPR. How estrogen and progesterone activating their receptors couples to PLCγ phosphorylation and anticipatory UPR activation was unknown. We show that the oncogene c-Src is a rate-limiting regulator whose tyrosine kinase activity links estrogen and progesterone activating their receptors to anticipatory UPR activation. Supporting Src coupling estrogen and progesterone to anticipatory UPR activation, we identified extranuclear complexes of estrogen receptor α (ERα):Src:PLCγ and progesterone receptor:Src:PLCγ. Moreover, Src inhibition protected cancer cells against cell death. To probe Src's role, we used the preclinical ERα biomodulator, BHPI, which kills cancer cells by inducing lethal anticipatory UPR hyperactivation. Notably, Src inhibition blocked BHPI-mediated anticipatory UPR activation and the resulting rapid increase in intracellular calcium. After unbiased long-term selection for BHPI-resistant human breast cancer cells, 4/11 BHPI-resistant T47D clones, and nearly all MCF-7 clones, exhibited reduced levels of normally growth-stimulating Src. Notably, Src overexpression by virus transduction restored sensitivity to BHPI. Furthermore, in wild type cells, several-fold knockdown of Src, but not of ERα, strongly blocked BHPI-mediated UPR activation and subsequent HMGB1 release and necrotic cell death. Thus, Src plays a previously undescribed pivotal role in activation of the tumor-protective anticipatory UPR, thereby increasing the resilience of breast cancer cells. This is a new role for Src and the anticipatory UPR in breast cancer.
Collapse
Affiliation(s)
- Liqun Yu
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Ji Eun Kim
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
26
|
Palma S, Raffa CI, Garcia-Fabiani MB, Ferretti VA, Zwenger A, Perez Verdera PV, Llontop A, Rojas Bilbao E, Cuartero V, Abba MC, Lacunza E. RHBDD2 overexpression promotes a chemoresistant and invasive phenotype to rectal cancer tumors via modulating UPR and focal adhesion genes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165810. [PMID: 32339641 DOI: 10.1016/j.bbadis.2020.165810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
The current standard of care for locally advanced rectal cancer (RC) is neoadjuvant radio-chemotherapy (NRC) with 5-fluorouracil (5Fu) as the main drug, followed by surgery and adjuvant chemotherapy. While a group of patients will achieve a pathological complete response, a significant percentage will not respond to the treatment. The Unfolding Protein Response (UPR) pathway is generally activated in tumors and results in resistance to radio-chemotherapy. We previously showed that RHBDD2 gene is overexpressed in the advanced stages of colorectal cancer (CRC) and that it could modulate the UPR pathway. Moreover, RHBDD2 expression is induced by 5Fu. In this study, we demonstrate that the overexpression of RHBDD2 in CACO2 cell line confers resistance to 5Fu, favors cell migration, adhesion and proliferation and has a profound impact on the expression of both, the UPR genes BiP, PERK and CHOP, and on the cell adhesion genes FAK and PXN. We also determined that RHBDD2 binds to BiP protein, the master UPR regulator. Finally, we confirmed that a high expression of RHBDD2 in RC tumors after NRC treatment is associated with the development of local or distant metastases. The collected evidence positions RHBDD2 as a promising prognostic biomarker to predict the response to neoadjuvant therapy in patients with RC.
Collapse
Affiliation(s)
- S Palma
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C I Raffa
- Gastroenterology and Proctology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M B Garcia-Fabiani
- Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - V A Ferretti
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - A Zwenger
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - A Llontop
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - E Rojas Bilbao
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - V Cuartero
- Clinic Oncology Department, Functional Unit of Digestive Tumors, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - E Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Jin Y, Saatcioglu F. Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends Cancer 2020; 6:160-171. [PMID: 32061305 DOI: 10.1016/j.trecan.2019.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells exploit many of the cellular adaptive responses to support their survival needs. One of these is the unfolded protein response (UPR), a highly conserved signaling pathway that is mounted in response to endoplasmic reticulum (ER) stress. Recent work showed that steroid hormones, in particular estrogens and androgens, regulate the canonical UPR pathways in breast cancer (BCa) and prostate cancer (PCa). In addition, UPR has pleiotropic effects in advanced disease and development of therapy resistance. These findings implicate the UPR pathway as a novel target in hormonally regulated cancers in the clinic. Here, we review the potential therapeutic value of recently developed small molecule inhibitors of UPR in hormone regulated cancers.
Collapse
Affiliation(s)
- Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
28
|
Mishiba KI, Iwata Y, Mochizuki T, Matsumura A, Nishioka N, Hirata R, Koizumi N. Unfolded protein-independent IRE1 activation contributes to multifaceted developmental processes in Arabidopsis. Life Sci Alliance 2019; 2:2/5/e201900459. [PMID: 31601623 PMCID: PMC6788458 DOI: 10.26508/lsa.201900459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The Arabidopsis unfolded protein response transducer IRE1 contributes to male gametophyte development using an alternative activation mechanism bypassing the unfolded protein-sensing domain. In Arabidopsis, the IRE1A and IRE1B double mutant (ire1a/b) is unable to activate cytoplasmic splicing of bZIP60 mRNA and regulated IRE1-dependent decay under ER stress, whereas the mutant does not exhibit severe developmental defects under normal conditions. In this study, we focused on the Arabidopsis IRE1C gene, whose product lacks a sensor domain. We found that the ire1a/b/c triple mutant is lethal, and heterozygous IRE1C (ire1c/+) mutation in the ire1a/b mutants resulted in growth defects and reduction of the number of pollen grains. Genetic analysis revealed that IRE1C is required for male gametophyte development in the ire1a/b mutant background. Expression of a mutant form of IRE1B that lacks the luminal sensor domain (ΔLD) complemented a developmental defect in the male gametophyte in ire1a/b/c haplotype. In vivo, the ΔLD protein was activated by glycerol treatment that increases the composition of saturated lipid and was able to activate regulated IRE1-dependent decay but not bZIP60 splicing. These observations suggest that IRE1 contributes to plant development, especially male gametogenesis, using an alternative activation mechanism that bypasses the unfolded protein-sensing luminal domain.
Collapse
Affiliation(s)
- Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Matsumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nanami Nishioka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Rikako Hirata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
29
|
Min DJ, Zhao Y, Monks A, Palmisano A, Hose C, Teicher BA, Doroshow JH, Simon RM. Identification of pharmacodynamic biomarkers and common molecular mechanisms of response to genotoxic agents in cancer cell lines. Cancer Chemother Pharmacol 2019; 84:771-780. [PMID: 31367787 PMCID: PMC8127867 DOI: 10.1007/s00280-019-03898-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genotoxic agents (GAs) including cisplatin, doxorubicin, gemcitabine, and topotecan are often used in cancer treatment. However, the response to GAs is variable among patients and predictive biomarkers are inadequate to select patients for treatment. Accurate and rapid pharmacodynamics measures of response can, thus, be useful for monitoring therapy and improve clinical outcomes. METHODS This study focuses on integrating a database of genome-wide response to treatment (The NCI Transcriptional Pharmacodynamics Workbench) with a database of baseline gene expression (GSE32474) for the NCI-60 cell lines to identify mechanisms of response and pharmacodynamic (PD) biomarkers. RESULTS AND CONCLUSIONS Our analysis suggests that GA-induced endoplasmic reticulum (ER) stress may signal for GA-induced cell death. Reducing the uptake of GA, activating DNA repair, and blocking ER-stress induction cooperate to prevent GA-induced cell death in the GA-resistant cells. ATF3, DDIT3, CARS, and PPP1R15A appear as possible candidate PD biomarkers for monitoring the progress of GA treatment. Further validation studies on the proposed intrinsic drug-resistant mechanism and candidate genes are needed using in vivo data from either patient-derived xenograft models or clinical chemotherapy trials.
Collapse
Affiliation(s)
- Dong-Joon Min
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Anne Monks
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Curtis Hose
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Beverly A Teicher
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard M Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
30
|
Zheng Z, Shang Y, Tao J, Zhang J, Sha B. Endoplasmic Reticulum Stress Signaling Pathways: Activation and Diseases. Curr Protein Pept Sci 2019; 20:935-943. [PMID: 31223084 DOI: 10.2174/1389203720666190621103145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Secretory and membrane proteins are folded in the endoplasmic reticulum (ER) prior to their exit. When ER function is disturbed by exogenous and endogenous factors, such as heat shock, ultraviolet radiation, hypoxia, or hypoglycemia, the misfolded proteins may accumulate, promoting ER stress. To rescue this unfavorable situation, the unfolded protein response is activated to reduce misfolded proteins within the ER. Upon ER stress, the ER transmembrane sensor molecules inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase (PKR)-like ER kinase (PERK), and activating transcription factor 6, are activated. Here, we discuss the mechanisms of PERK and IRE1 activation and describe two working models for ER stress initiation: the BiP-dependent model and the ligand-driven model. ER stress activation has been linked to multiple diseases, including cancers, Alzheimer's disease, and diabetes. Thus, the regulation of ER stress may provide potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Yuxi Shang
- Department of Hematology, Fuxing Hospital, Eighth Clinical Medical College, Capital Medical University, Beijing 100038, China
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
31
|
Yoneten KK, Kasap M, Akpinar G, Gunes A, Gurel B, Utkan NZ. Comparative Proteome Analysis of Breast Cancer Tissues Highlights the Importance of Glycerol-3-phosphate Dehydrogenase 1 and Monoacylglycerol Lipase in Breast Cancer Metabolism. Cancer Genomics Proteomics 2019; 16:377-397. [PMID: 31467232 PMCID: PMC6727073 DOI: 10.21873/cgp.20143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Breast cancer (BC) incidence and mortality rates have been increasing due to the lack of appropriate diagnostic tools for early detection. Proteomics-based studies may provide novel targets for early diagnosis and efficient treatment. The aim of this study was to investigate the global changes occurring in protein profiles in breast cancer tissues to discover potential diagnostic or prognostic biomarkers. MATERIALS AND METHODS BC tissues and their corresponding healthy counterparts were collected, subtyped, and subjected to comparative proteomics analyses using two-dimensional gel electrophoresis (2-DE) and two-dimensional electrophoresis fluorescence difference gel (DIGE) coupled to matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/TOF) to explore BC metabolism at the proteome level. Western blot analysis was used to verify changes occurring at the protein levels. RESULTS Bioinformatics analyses performed with differentially regulated proteins highlighted the changes occurring in triacylglyceride (TAG) metabolism, and directed our attention to TAG metabolism-associated proteins, namely glycerol-3-phosphate dehydrogenase 1 (GPD1) and monoacylglycerol lipase (MAGL). These proteins were down-regulated in tumor groups in comparison to controls. CONCLUSION GPD1 and MAGL might be promising tissue-based protein biomarkers with a predictive potential for BC.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Abdullah Gunes
- Department of General Surgery, Derince Education and Application Hospital, Kocaeli, Turkey
| | - Bora Gurel
- Department of Pathology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Nihat Zafer Utkan
- Department of General Surgery, Kocaeli University Medical School, Kocaeli, Turkey
| |
Collapse
|
32
|
Hypoxia Induced ER Stress Response as an Adaptive Mechanism in Cancer. Int J Mol Sci 2019; 20:ijms20030749. [PMID: 30754624 PMCID: PMC6387291 DOI: 10.3390/ijms20030749] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
It is evident that regions within tumors are deprived of oxygen, which makes the microenvironment hypoxic. Cancer cells experiencing hypoxia undergo metabolic alterations and cytoprotective adaptive mechanisms to survive such stringent conditions. While such mechanisms provide potential therapeutic targets, the mechanisms by which hypoxia regulates adaptive responses-such as ER stress response, unfolded protein response (UPR), anti-oxidative responses, and autophagy-remain elusive. In this review, we summarize the complex interplay between hypoxia and the ER stress signaling pathways that are activated in the hypoxic microenvironment of the tumors.
Collapse
|
33
|
Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 2018; 173:489-497. [PMID: 30382472 PMCID: PMC6394602 DOI: 10.1007/s10549-018-5023-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Introduction The majority of breast cancers (BCs) are characterized by the expression of estrogen receptor alpha (ERα+). ERα acts as ligand-dependent transcription factor for genes associated with cell survival, proliferation, and tumor growth. Thus, blocking the estrogen agonist effect on ERα is the main strategy in the treatment of ERα+ BCs. However, despite the development of targeted anti-estrogen therapies for ER+ BC, around 30–50% of early breast cancer patients will relapse. Acquired resistance to endocrine therapy is a great challenge in ER+ BC patient treatment. Discussion Anti-estrogen resistance is a consequence of molecular changes, which allow for tumor growth irrespective of estrogen presence. Those changes may be associated with ERα modifications either at the genetic, regulatory or protein level. Additionally, the activation of alternate growth pathways and/or cell survival mechanisms can lead to estrogen-independence and endocrine resistance. Conclusion This comprehensive review summarizes molecular mechanisms associated with resistance to anti-estrogen therapy, focusing on genetic alterations, stress responses, cell survival mechanisms, and cell reprogramming.
Collapse
Affiliation(s)
- Małgorzata Szostakowska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Alicja Trębińska-Stryjewska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Ewa Anna Grzybowska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Anna Fabisiewicz
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland.
| |
Collapse
|
34
|
Imanikia S, Sheng M, Taylor RC. Cell Non-autonomous UPR ER Signaling. Curr Top Microbiol Immunol 2018; 414:27-43. [PMID: 28879522 DOI: 10.1007/82_2017_38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The UPRER is an important regulator of secretory pathway homeostasis, and plays roles in many physiological processes. Its broad range of targets and ability to modulate secretion and membrane trafficking make it perfectly positioned to influence intercellular communication, enabling the UPRER to coordinate physiological processes between cells and tissues. Recent evidence suggests that the activation of the UPRER can itself be communicated between cells. This cell non-autonomous route to UPRER activation occurs in multiple species, and enables organism-wide responses to stress that involve processes as diverse as immunity, metabolism, aging and reproduction. It may also play roles in disease progression, making the pathways that mediate cell non-autonomous UPRER signaling a potential source of novel future therapeutics.
Collapse
Affiliation(s)
| | - Ming Sheng
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
35
|
Vacca A, Itoh M, Kawaji H, Arner E, Lassmann T, Daub CO, Carninci P, Forrest ARR, Hayashizaki Y, Aitken S, Semple CA. Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli. Open Biol 2018; 8:180011. [PMID: 30089658 PMCID: PMC6119861 DOI: 10.1098/rsob.180011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/15/2023] Open
Abstract
The promoters of immediate early genes (IEGs) are rapidly activated in response to an external stimulus. These genes, also known as primary response genes, have been identified in a range of cell types, under diverse extracellular signals and using varying experimental protocols. Whereas genomic dissection on a case-by-case basis has not resulted in a comprehensive catalogue of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE (cap analysis of gene expression) time course datasets reveals successive waves of promoter activation in IEGs, recapitulating known relationships between cell types and stimuli: we obtain a set of 57 (42 protein-coding) candidate IEGs possessing promoters that consistently drive a rapid but transient increase in expression over time. These genes show significant enrichment for known IEGs reported previously, pathways associated with the immediate early response, and include a number of non-coding RNAs with roles in proliferation and differentiation. Surprisingly, we also find strong conservation of the ordering of activation for these genes, such that 77 pairwise promoter activation orderings are conserved. Using the leverage of comprehensive CAGE time series data across cell types, we also document the extensive alternative promoter usage by such genes, which is likely to have been a barrier to their discovery until now. The common activation ordering of the core set of early-responding genes we identify may indicate conserved underlying regulatory mechanisms. By contrast, the considerably larger number of transiently activated genes that are specific to each cell type and stimulus illustrates the breadth of the primary response.
Collapse
Affiliation(s)
- Annalaura Vacca
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2F Main Research Building, 2-1 Hirosawa, Wako, Japan
| | - Hideya Kawaji
- RIKEN Advanced Center for Computing and Communication, RIKEN Yokohama Campus, Yokohama 230-0045, Japan
| | - Erik Arner
- RIKEN Center for Life Sciences Technologies, RIKEN Yokohama Campus, Yokohama 230-0045, Japan
| | - Timo Lassmann
- Telethon Kids Institute, The University of Western Australia, Roberts Road, Subiaco, Western Australia, Australia
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Piero Carninci
- RIKEN Center for Life Sciences Technologies, RIKEN Yokohama Campus, Yokohama 230-0045, Japan
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, Western Australia 6009, Australia
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2F Main Research Building, 2-1 Hirosawa, Wako, Japan
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
36
|
The Interplay between Glucose-Regulated Protein 78 (GRP78) and Steroids in the Reproductive System. Int J Mol Sci 2018; 19:ijms19071842. [PMID: 29932125 PMCID: PMC6073258 DOI: 10.3390/ijms19071842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
The glucose-regulated protein 78 (GRP78) is a molecular chaperone that is responsible for protein folding, which belongs to the heat shock protein 70 kDa (HSPA/HSP70). Because of the conjunction of GRP78 transcription with endoplasmic reticulum stress, the chaperone plays an important role in the unfolded protein response (UPR), which is induced after the accumulation of misfolded proteins. In the last years, a significant body of research concentrated on interplay between GRP78 and sexual steroid hormones. Throughout this review, we describe the mechanisms by which GRP78 regulates steroidogenesis at multiple levels and how steroids modulate GRP78 expression in different mammalian reproductive organs. Finally, we discuss the cooperation between GRP78 and steroids for cell survival and proliferation in the context of reproduction and tumorigenesis. This new paradigm offers significant opportunities for future exploration.
Collapse
|
37
|
Strong and sustained activation of the anticipatory unfolded protein response induces necrotic cell death. Cell Death Differ 2018; 25:1796-1807. [PMID: 29899383 DOI: 10.1038/s41418-018-0143-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum stress sensor, the unfolded protein response (UPR), regulates intracellular protein homeostasis. While transient activation of the reactive UPR by unfolded protein is protective, prolonged and sustained activation of the reactive UPR triggers CHOP-mediated apoptosis. In the recently characterized, evolutionarily conserved anticipatory UPR, mitogenic hormones and other effectors pre-activate the UPR; how strong and sustained activation of the anticipatory UPR induces cell death was unknown. To characterize this cell death pathway, we used BHPI, a small molecule that activates the anticipatory UPR through estrogen receptor α (ERα) and induces death of ERα+ cancer cells. We show that sustained activation of the anticipatory UPR by BHPI kills cells by inducing depletion of intracellular ATP, resulting in classical necrosis phenotypes, including plasma membrane disruption and leakage of intracellular contents. Unlike reactive UPR activation, BHPI-induced hyperactivation of the anticipatory UPR does not induce apoptosis or sustained autophagy. BHPI does not induce CHOP protein or PARP cleavage, and two pan-caspase inhibitors, or Bcl2 overexpression, have no effect on BHPI-induced cell death. Moreover, BHPI does not increase expression of autophagy markers, or work through recently identified programmed-necrosis pathways, such as necroptosis. Opening of endoplasmic reticulum IP3R calcium channels stimulates cell swelling, cPLA2 activation, and arachidonic acid release. Notably, cPLA2 activation requires ATP depletion. Importantly, blocking rapid cell swelling or production of arachidonic acid does not prevent necrotic cell death. Rapid cell death is upstream of PERK activation and protein synthesis inhibition, and results from strong and sustained activation of early steps in the anticipatory UPR. Supporting a central role for ATP depletion, reversing ATP depletion blocks rapid cell death, and the onset of necrotic cell death is correlated with ATP depletion. Necrotic cell death initiated by strong and sustained activation of the anticipatory UPR is a newly discovered role of the UPR.
Collapse
|
38
|
Abstract
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.
Collapse
Affiliation(s)
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, 4249 Fifth Ave, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
39
|
Zhou B, Tan J, Zhang C, Wu Y. Neuroprotective effect of polysaccharides from Gastrodia elata blume against corticosterone‑induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress‑mediated pathway. Mol Med Rep 2017; 17:1182-1190. [PMID: 29115511 DOI: 10.3892/mmr.2017.7948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/18/2017] [Indexed: 11/05/2022] Open
Abstract
Depression is a common mental health disorder and is the leading cause of disability worldwide. Gastrodia elata (G. elata) was demonstrated to exhibit a neuroprotective effect in the authors' previous study. The present study investigated the effect of polysaccharides from G. elata (GEP) on PC12 cell apoptosis induced by corticosterone (CORT) and its possible underlying mechanisms. PC12 cells were treated with 200 µM CORT in the absence or presence of different concentrations of GEP for 48 h. Then, cell viability was measured by CCK‑8 assay. The lactate dehydrogenase (LDH) leakage was quantified using an LDH assay kit. The apoptosis degree of the PC12 cells and the morphology was measured by DAPI staining. Subsequently, intracellular ROS level was detected by using DCFH‑DA method, the morphology staining of the endoplasmic reticulum in PC12 cells was determined using the cationic probe, and levels of five proteins involved in apoptosis, i.e., glucose‑regulated protein, 78k Da (GRP78), X‑box binding protein 1 (XBP‑1), growth arrest‑ and DNA damage‑inducible gene 153 (GADD153), caspase 9 and caspase 12 were determined by western blotting. The results demonstrated that treatment with 1,000 µg/ml GEP prior to 200 µM CORT exposure significantly protected the PC12 cells from CORT‑induced cell apoptosis, and reduced levels of LDH leakage and intracellular reactive oxygen species. In addition, pretreatment with GEP inhibited the activation of GRP78, X‑BP‑1, GADD153, caspase 9 and caspase 12. These findings suggested that GEP exhibited a neuroprotective effect against CORT‑induced apoptosis in PC12 cells, and the underlying molecular mechanisms were dependent on inhibition of the endoplasmic reticulum stress‑mediated pathway. This provides novel insight into the effect of GEP when used for the treatment of diseases of the nervous system.
Collapse
Affiliation(s)
- Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun Tan
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chan Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
40
|
Badreddin A, Fady Y, Attia H, Hafez M, Khairallah A, Johar D, Bernstein L. What role does the stress response have in congestive heart failure? J Cell Physiol 2017; 233:2863-2870. [PMID: 28493471 DOI: 10.1002/jcp.26003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023]
Abstract
This review is concerned with cardiac malfunction as a result of an imbalance in protein proteostasis, the homeostatic balance between protein removal and regeneration in a long remodeling process involving the endoplasmic reticulum (ER) and the unfolded protein response (UPR). The importance of this is of special significance with regard to cardiac function as a high energy requiring muscular organ that has a high oxygen requirement and is highly dependent on mitochondria. The importance of mitochondria is not only concerned with high energy dependence on mitochondrial electron transport, but it also has a role in the signaling between the mitochondria and the ER under stress. Proteins made in the ER are folded as a result of sulfhydryl groups (-SH) and attractive and repulsive reactions in the tertiary structure. We discuss how this matters with respect to an imbalance between muscle breakdown and repair in a stressful environment, especially as a result of oxidative and nitrosative byproducts of mitochondrial activity. The normal repair is a remodeling, but under this circumstance, the cell undergoes or even lysosomal "self eating" autophagy, or even necrosis instead of apoptosis. We shall discuss the relationship of the UPR pathway to chronic congestive heart failure (CHF).
Collapse
Affiliation(s)
- Ahmed Badreddin
- Department of Cardiothoracic Surgery, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Youssef Fady
- Department of Cardiac Surgery, Cardiac Surgery Center Sultan Qaboos Hospital, Salalah, Dhofar, Sultanate of Oman, Salalah, Oman
| | - Hamdy Attia
- Kasr Al'Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hafez
- Kasr Al'Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Khairallah
- Medical Research Division, Department of Pharmacology, National Research Centre, Dokki, Cairo, Egypt
| | - Dina Johar
- Faculty of Women for Arts, Sciences, and Education, Department of Biochemistry and Nutrition, Ain Shams University, Heliopolis, Cairo, Egypt.,Max Rady Faculty of Health Sciences, Department of Physiology and Pathophysiology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
41
|
de las Heras J, Aldámiz-Echevarría L, Martínez-Chantar ML, Delgado TC. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease. Expert Opin Drug Metab Toxicol 2017; 13:439-448. [PMID: 27860485 PMCID: PMC5568887 DOI: 10.1080/17425255.2017.1262843] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ammonia-scavenging drugs, benzoate and phenylacetate (PA)/phenylbutyrate (PB), modulate hepatic nitrogen metabolism mainly by providing alternative pathways for nitrogen disposal. Areas covered: We review the major findings and potential novel applications of ammonia-scavenging drugs, focusing on urea cycle disorders and liver disease. Expert opinion: For over 40 years, ammonia-scavenging drugs have been used in the treatment of urea cycle disorders. Recently, the use of these compounds has been advocated in acute liver failure and cirrhosis for reducing hyperammonemic-induced hepatic encephalopathy. The efficacy and mechanisms underlying the antitumor effects of these ammonia-scavenging drugs in liver cancer are more controversial and are discussed in the review. Overall, as ammonia-scavenging drugs are usually safe and well tolerated among cancer patients, further studies should be instigated to explore the role of these drugs in liver cancer. Considering the relevance of glutamine metabolism to the progression and resolution of liver disease, we propose that ammonia-scavenging drugs might also be used to non-invasively probe liver glutamine metabolism in vivo. Finally, novel derivatives of classical ammonia-scavenging drugs with fewer and less severe adverse effects are currently being developed and used in clinical trials for the treatment of acute liver failure and cirrhosis.
Collapse
Affiliation(s)
- Javier de las Heras
- Division of Pediatric Metabolism, University Hospital of Cruces, Barakaldo, Bizkaia, Spain
- BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- University of the Basque Country, Leioa, Bizkaia, Spain
| | - Luis Aldámiz-Echevarría
- Division of Pediatric Metabolism, University Hospital of Cruces, Barakaldo, Bizkaia, Spain
- BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- University of the Basque Country, Leioa, Bizkaia, Spain
| | - María-Luz Martínez-Chantar
- University of the Basque Country, Leioa, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Teresa C. Delgado
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| |
Collapse
|
42
|
SGK3 sustains ERα signaling and drives acquired aromatase inhibitor resistance through maintaining endoplasmic reticulum homeostasis. Proc Natl Acad Sci U S A 2017; 114:E1500-E1508. [PMID: 28174265 DOI: 10.1073/pnas.1612991114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many estrogen receptor alpha (ERα)-positive breast cancers initially respond to aromatase inhibitors (AIs), but eventually acquire resistance. Here, we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a kinase transcriptionally regulated by ERα in breast cancer, sustains ERα signaling and drives acquired AI resistance. SGK3 is up-regulated and essential for endoplasmic reticulum (EnR) homeostasis through preserving sarcoplasmic/EnR calcium ATPase 2b (SERCA2b) function in AI-resistant cells. We have further found that EnR stress response down-regulates ERα expression through the protein kinase RNA-like EnR kinase (PERK) arm, and SGK3 retains ERα expression and signaling by preventing excessive EnR stress. Our study reveals regulation of ERα expression mediated by the EnR stress response and the feed-forward regulation between SGK3 and ERα in breast cancer. Given SGK3 inhibition reduces AI-resistant cell survival by eliciting excessive EnR stress and also depletes ERα expression/function, we propose SGK3 inhibition as a potential effective treatment of acquired AI-resistant breast cancer.
Collapse
|
43
|
Valdés A, García-Cañas V, Artemenko KA, Simó C, Bergquist J, Cifuentes A. Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells. Mol Cell Proteomics 2016; 16:8-22. [PMID: 27834734 DOI: 10.1074/mcp.m116.061481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (Rosmarinus officinalis). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.
Collapse
Affiliation(s)
- Alberto Valdés
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Virginia García-Cañas
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Konstantin A Artemenko
- §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Carolina Simó
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Jonas Bergquist
- §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
44
|
Mao C, Livezey M, Kim JE, Shapiro DJ. Antiestrogen Resistant Cell Lines Expressing Estrogen Receptor α Mutations Upregulate the Unfolded Protein Response and are Killed by BHPI. Sci Rep 2016; 6:34753. [PMID: 27713477 PMCID: PMC5054422 DOI: 10.1038/srep34753] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells.
Collapse
Affiliation(s)
- Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mara Livezey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ji Eun Kim
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Zheng X, Andruska N, Lambrecht MJ, He S, Parissenti A, Hergenrother PJ, Nelson ER, Shapiro DJ. Targeting multidrug-resistant ovarian cancer through estrogen receptor α dependent ATP depletion caused by hyperactivation of the unfolded protein response. Oncotarget 2016; 9:14741-14753. [PMID: 29599904 PMCID: PMC5871075 DOI: 10.18632/oncotarget.10819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancers often recur and tumors acquire resistance to chemotherapy due to overexpression of the ATP-dependent efflux pump, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1). Nontoxic small molecule inhibitors targeting MDR1 have remained largely elusive. Instead, in a novel application of our recently described estrogen receptor α (ERα) biomodulator, BHPI, we targeted MDR1’s substrate, ATP. BHPI depletes intracellular ATP and nearly blocks MDR1-mediated drug efflux in ovarian cancer cells by inducing toxic hyperactivation of the endoplasmic reticulum stress sensor, the unfolded protein response (UPR). BHPI increased sensitivity of MDR1 overexpressing multidrug resistant OVCAR-3 ovarian cancer cells to killing by paclitaxel by >1,000 fold. BHPI also restored doxorubicin sensitivity in OVCAR-3 cells and in MDR1 overexpressing breast cancer cells. In an orthotopic OVCAR-3 xenograft model, paclitaxel was ineffective and the paclitaxel-treated group was uniquely prone to form large secondary tumors in adjacent tissue. BHPI alone strongly reduced tumor growth. Notably, tumors were undetectable in mice treated with BHPI plus paclitaxel. Compared to control ovarian tumors, after the combination therapy, levels of the plasma ovarian cancer biomarker CA125 were at least several hundred folds lower; moreover, CA125 levels progressively declined to undetectable. Targeting MDR1 through UPR-dependent ATP depletion represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Biochemistry University of Illinois, Urbana, IL, USA
| | - Neal Andruska
- Department of Biochemistry University of Illinois, Urbana, IL, USA.,College of Medicine, University of Illinois, Urbana, IL, USA
| | | | - Sisi He
- Department of Molecular Integrative Physiology, University of Illinois, Urbana, IL, USA
| | - Amadeo Parissenti
- Cancer Research Program, Advanced Medical Research Institute of Canada, Sudbury, ON, Canada
| | | | - Erik R Nelson
- Department of Molecular Integrative Physiology, University of Illinois, Urbana, IL, USA.,University of Illinois Cancer Center, Urbana, IL, USA
| | - David J Shapiro
- Department of Biochemistry University of Illinois, Urbana, IL, USA.,University of Illinois Cancer Center, Urbana, IL, USA.,College of Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|