1
|
Wang H, Ling L, Song W, Gu J, Bing H, Sun J, Guo L, Luo Y, Qi H, Wang X, Wang JD, Zhao J, Xiang W. Discovery of (+)-Methyl Nonactate as a Potential Fungicide against Gummy Stem Blight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5248-5259. [PMID: 39992285 DOI: 10.1021/acs.jafc.4c09634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gummy stem blight (GSB), which is caused by Stagonosporopsis cucurbitacearum, threatens pumpkin yields and agriculture. Effective, safe antifungal agents are urgently needed. In this study, fermentation broth supernatant of Streptomyces sp. NEAU-T55 demonstrated considerable antifungal activity against S. cucurbitacearum. Activity-guided isolation identified 2 new and 14 known compounds, with (+)-methyl nonactate (10) determined as the main active ingredient. This compound exhibited strong antifungal activity (EC50 = 0.12 μg mL-1), outperforming difenoconazole (EC50 = 0.17 μg mL-1), and achieved 74.1% control efficacy in the pot experiments. Microscopy revealed that (+)-methyl nonactate impeded mycelial growth and induced morphological alterations. Transcriptomic analysis indicated that (+)-methyl nonactate may inhibit acetolactate synthase, thereby disrupting amino acid metabolism and diminishing precursor availability for the tricarboxylic acid cycle. This research represents the first application of (+)-methyl nonactate for GSB control and provides insights into its antifungal mechanisms, laying the groundwork for its potential development as a novel agricultural antibiotic.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ling Ling
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Gu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jingzheng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yanfang Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Huan Qi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji-Dong Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Ding W, Li Y, Li X, Yin J, Shi S, Tian X, Zhang S, Yin H. Discovery of a Novel Chromone Enantiomer and the Precursors of Nonactic Acid from the Coral-Reef-Derived Streptomyces sp. SCSIO 66814. Mar Drugs 2024; 22:181. [PMID: 38667798 PMCID: PMC11051294 DOI: 10.3390/md22040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Three pairs of enantiomers (1-3)-the new 12R-aloesol (1a) and two new fatty acids (2 and 3)-and one new natural product (4) together three known compounds (5-7) were isolated from a coral-reef-derived Streptomyces sp. SCSIO 66814. Their structures were determined through extensive spectroscopic analysis, chiral analysis, and single-crystal X-ray diffraction data. Compounds 2 and 3 were presumed to be intermediates for further generating homononactic acid (5) and nonactic acid, and the latter two molecules were able to act as precursors to form macrotetrolides with remarkable biological activity. The isolation of related precursors, compounds 2-5, provided more evidence to support the proposal of a plausible biosynthetic pathway for nonactic acid and its homologs. Additionally, (+)-1 exhibited a weak activity against DPPH radicals.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
| | - Xingyu Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
| | - Songbiao Shi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.L.); (J.Y.); (S.S.); (X.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
3
|
Abstract
Actinomycetes are natural architects of numerous secondary metabolites including antibiotics. With increased multidrug-resistant (MDR) pathogens, antibiotics that can combat such pathogens are urgently required to improve the health care system globally. The characterization of actinomycetes available in Nepal is still very much untouched which is the reason why this paper showcases the characterization of actinomycetes from Nepal based on their morphology, 16S rRNA gene sequencing, and metabolic profiling. Additionally, antimicrobial assays and liquid chromatography-high resolution mass spectrometry (LC-HRMS) of ethyl acetate extracts were performed. In this study, we employed a computational-based dereplication strategy for annotating molecules which is also time-efficient. Molecular annotation was performed through the GNPS server, the SIRIUS platform, and the available databases to predict the secondary metabolites. The sequencing of the 16S rRNA gene revealed that the isolates BN6 and BN14 are closely related to Streptomyces species. BN14 showed broad-spectrum antibacterial activity with the zone of inhibition up to 30 mm against Staphylococcus aureus (MIC: 0.3051 µg/mL and MBC: 9.7656 µg/mL) and Shigella sonnei (MIC: 0.3051 µg/mL and MBC: 4.882 µg/mL). Likewise, BN14 also displayed significant inhibition to Acinetobacter baumannii, Klebsiella pneumoniae, and Salmonella typhi. GNPS approach suggested that the extracts of BN6 and BN14 consisted of diketopiperazines ((cyclo(D-Trp-L-Pro), cyclo(L-Leu-L-4-hydroxy-Pro), cyclo(L-Phe-D-Pro), cyclo(L-Trp-L-Pro), cyclo(L-Val-L-Pro)), and polypeptide antibiotics (actinomycin D and X2). Additional chemical scaffolds such as bacterial alkaloids (bohemamine, venezueline B, and G), anthramycin-type antibiotics (abbeymycin), lipase inhibitor (ebelactone B), cytocidal (oxopropaline D), antifungal and antitumor antibiotics (reductiomycin, streptimidone, deoxynybomycin), alaremycin, fumaramidmycin, anisomycin, and others were also annotated, which were further confirmed by using the SIRIUS platform, and literature survey. Thus, the bioprospecting of natural products from Streptomyces species from Nepal could be a potential source for the discovery of clinically significant and new antimicrobial agents in the future.
Collapse
|
4
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
5
|
Liu T, Ren Z, Chunyu WX, Li GD, Chen X, Zhang ZTL, Sun HB, Wang M, Xie TP, Wang M, Chen JY, Zhou H, Ding ZT, Yin M. Exploration of Diverse Secondary Metabolites From Streptomyces sp. YINM00001, Using Genome Mining and One Strain Many Compounds Approach. Front Microbiol 2022; 13:831174. [PMID: 35222341 PMCID: PMC8866825 DOI: 10.3389/fmicb.2022.831174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
A talented endophytic bacteria strain YINM00001, which showed strong antimicrobial activity and multiple antibiotic resistances, was isolated from a Chinese medicinal herb Peperomia dindygulensis Miq. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain was closely related to Streptomyces anulatus NRRL B-2000T (99.93%). The complete genome of strain YINM00001 was sequenced. The RAxML phylogenomic tree also revealed that strain YINM00001 was steadily clustered on a branch with strain Streptomyces anulatus NRRL B-2000T under the 100 bootstrap values. The complete genome of strain YINM00001 consists of an 8,372,992 bp linear chromosome (71.72 mol% GC content) and a 317,781 bp circular plasmid (69.14 mol% GC content). Genome mining and OSMAC approach were carried out to investigate the biosynthetic potential of producing secondary metabolites. Fifty-two putative biosynthetic gene clusters of secondary metabolites were found, including the putative cycloheximide, dinactin, warkmycin, and anthracimycin biosynthetic gene clusters which consist with the strong antifungal and antibacterial activities exhibited by strain YINM00001. Two new compounds, peperodione (1) and peperophthalene (2), and 17 known compounds were isolated from different fermentation broth. Large amounts and high diversity of antimicrobial and/or anticancer compounds cycloheximide, dinactin, anthracimycin, and their analogs had been found as predicted before, which highlights strain YINM00001 as an ideal candidate for further biosynthetic studies and production improvement of these valuable compounds. Meanwhile, several gene clusters that were highly conserved in several sequenced actinomycetes but significantly different from known gene clusters might be silent under proceeding fermentation conditions. Further studies, such as heterologous expression and genetic modification, are needed to explore more novel compounds from this talented endophytic Streptomyces strain.
Collapse
Affiliation(s)
- Tao Liu
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zhen Ren
- School of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Wei-Xun Chunyu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Gui-Ding Li
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xiu Chen
- School of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Zhou-Tian-Le Zhang
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hui-Bing Sun
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Mei Wang
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Tian-Peng Xie
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Meng Wang
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Jing-Yuan Chen
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hao Zhou
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
- *Correspondence: Hao Zhou,
| | - Zhong-Tao Ding
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
- College of Pharmacy, Dali University, Dali, China
- Zhong-Tao Ding,
| | - Min Yin
- School of Medicine, School of Chemical Science and Technology, Yunnan University, Kunming, China
- Min Yin, ;
| |
Collapse
|
6
|
Matarrita-Carranza B, Murillo-Cruz C, Avendaño R, Ríos MI, Chavarría M, Gómez-Calvo ML, Tamayo-Castillo G, Araya JJ, Pinto-Tomás AA. Streptomyces sp. M54: an actinobacteria associated with a neotropical social wasp with high potential for antibiotic production. Antonie van Leeuwenhoek 2021; 114:379-398. [PMID: 33587228 DOI: 10.1007/s10482-021-01520-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
Streptomyces symbionts in insects have shown to be a valuable source of new antibiotics. Here, we report the genome sequence and the potential for antibiotic production of "Streptomyces sp. M54", an Actinobacteria associated with the eusocial wasp, Polybia plebeja. The Streptomyces sp. M54 genome is composed of a chromosome (7.96 Mb), and a plasmid (1.91 Kb) and harbors 30 biosynthetic gene clusters for secondary metabolites, of which only one third has been previously characterized. Growth inhibition bioassays show that this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans. Analyses through TLC-bioautography, LC-MS/MS and NMR allowed the identification of five macrocyclic ionophore antibiotics, with previously reported antibacterial, antitumor and antiviral properties. Phylogenetic analyses placed Streptomyces sp. M54 in a clade of other host-associated strains taxonomically related to Streptomyces griseus. Pangenomic and ANI analyses confirm the identity of one of its closest relatives as Streptomyces sp. LaPpAH-199, a strain isolated from an ant-plant symbiosis in Africa. In summary, our results suggest an insect-microbe association in distant geographic areas and showcase the potential of Streptomyces sp. M54 and related strains for the discovery of novel antibiotics.
Collapse
Affiliation(s)
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - María Isabel Ríos
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - María Luisa Gómez-Calvo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Giselle Tamayo-Castillo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Juan J Araya
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, 11501-2060, San José, Costa Rica. .,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, 11501-2060, San José, Costa Rica. .,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.
| |
Collapse
|
7
|
Tan P, Lau B, Krishnasamy G, Ng M, Husin L, Ruslan N, Song D, Velaithan V, Okuda K, Patel V. Zebrafish embryonic development-interfering macrolides from Streptomyces californicus impact growth and mitochondrial function in human colorectal cancer cells. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Ye F, Cai MH, Chen B, Xiao W, Li XW, Guo YW. Absolute Configuration of (2R,3R,6S,8R)-Methyl Homononactate, a Polyketide from Actinomycetes Streptomyces sp. R-527F of the Arctic Region. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Naveen, Babu SA. EDC/DMAP-mediated direct condensation of dicarboxylic acids and diols: A concise synthesis of extra large polyether macrocyclic lactones and their X-ray structures. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Han L, Huo P, Chen H, Li S, Jiang Y, Li L, Xu L, Jiang C, Huang X. New derivatives of nonactic and homononactic acids from Bacillus pumilus derived from Breynia fruticosa. Chem Biodivers 2015; 11:1088-98. [PMID: 25044594 DOI: 10.1002/cbdv.201300350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 11/11/2022]
Abstract
Six new nonactic and homononactic acid derivatives, ethyl homononactate (1), ethyl nonactate (2), homononactyl homononactate (6), ethyl homononactyl nonactate (7), ethyl homononactyl homononactate (8), and ethyl nonactyl nonactate (9), as well as four known compounds, homononactic acid (3), nonactic acid (4), homononactyl nonactate (5), and bishomononactic acid (10), were isolated from culture broth of Bacillus pumilus derived from Breynia fruticosa. The structures of new compounds were elucidated by spectroscopic analysis and chemical methods. The optical purities of 1-6 were determined by HPLC/MS after treatment with L-phenylalanine methyl ester. The dimeric compounds 5-9 showed weak cytotoxic activities against five human cancer cell lines (IC50 19-100 μg/ml).
Collapse
Affiliation(s)
- Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China (phone/fax: +86-24-24245710)
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Silva LJ, Crevelin EJ, Souza WR, Moraes LAB, Melo IS, Zucchi TD. Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea. PHYTOPATHOLOGY 2014; 104:1298-305. [PMID: 24983843 DOI: 10.1094/phyto-11-13-0327-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen.
Collapse
|
12
|
Crevelin EJ, Crotti AEM, Zucchi TD, Melo IS, Moraes LAB. Dereplication of Streptomyces sp. AMC 23 polyether ionophore antibiotics by accurate-mass electrospray tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1117-1126. [PMID: 25395127 DOI: 10.1002/jms.3432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 06/04/2023]
Abstract
Actinomycetes, especially those belonging to the genus Streptomyces, are economically important from a biotechnological standpoint: they produce antibiotics, anticancer compounds and a variety of bioactive substances that are potentially applicable in the agrochemical and pharmaceutical industries. This paper combined accurate-mass electrospray tandem mass spectrometry in the full scan and product ion scan modes with compounds library data to identify the major compounds in the crude extract produced by Streptomyces sp. AMC 23; it also investigated how sodiated nonactin ([M + Na](+)) fragmented. Most product ions resulted from elimination of 184 mass units due to consecutive McLafferty-type rearrangements. The data allowed identification of four macrotetrolides homologous to nonactin (monactin, isodinactin, isotrinactin/trinactin and tetranactin) as well as three related linear dimer compounds (nonactyl nonactoate, nonactyl homononactoate and homononactyl homononactoate). The major product ions of the sodiated molecules of these compounds also originated from elimination of 184 and 198 mass units. UPLC-MS/MS in the neutral loss scan mode helped to identify these compounds on the basis of the elimination of 184 and 198 mass units. This method aided monitoring of the relative production of these compounds for 32 days and revealed that the biosynthetic process began with increased production of linear dimers as compared with macrotetrolides. These data could facilitate dereplication and identification of these compounds in other microbial crude extracts.
Collapse
Affiliation(s)
- Eduardo J Crevelin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
13
|
Wang J, Tan H, Lu Y, Cao L. Determination of ionophore antibiotics nactins produced by fecal Streptomyces from sheep. Biometals 2014; 27:403-7. [DOI: 10.1007/s10534-014-9709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022]
|
14
|
Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF. Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 2010; 76:3702-14. [PMID: 20382810 PMCID: PMC2876447 DOI: 10.1128/aem.00780-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 11/20/2022] Open
Abstract
Representatives of Actinobacteria were isolated from the marine sponge Halichondria panicea collected from the Baltic Sea (Germany). For the first time, a comprehensive investigation was performed with regard to phylogenetic strain identification, secondary metabolite profiling, bioactivity determination, and genetic exploration of biosynthetic genes, especially concerning the relationships of the abundance of biosynthesis gene fragments to the number and diversity of produced secondary metabolites. All strains were phylogenetically identified by 16S rRNA gene sequence analyses and were found to belong to the genera Actinoalloteichus, Micrococcus, Micromonospora, Nocardiopsis, and Streptomyces. Secondary metabolite profiles of 46 actinobacterial strains were evaluated, 122 different substances were identified, and 88 so far unidentified compounds were detected. The extracts from most of the cultures showed biological activities. In addition, the presence of biosynthesis genes encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in 30 strains was established. It was shown that strains in which either PKS or NRPS genes were identified produced a significantly higher number of metabolites and exhibited a larger number of unidentified, possibly new metabolites than other strains. Therefore, the presence of PKS and NRPS genes is a good indicator for the selection of strains to isolate new natural products.
Collapse
Affiliation(s)
- Imke Schneemann
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Kerstin Nagel
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Inga Kajahn
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Antje Labes
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Jutta Wiese
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Johannes F. Imhoff
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany
| |
Collapse
|
15
|
Xie CY, Zhu H, Lin LP, Miao ZH, Geng MY, Cai YJ, Chen Y, Zhao HJ, Luo HB, Zhang XW, Fan LM, Shen YM, Ding J. MFTZ-1, an actinomycetes subspecies–derived antitumor macrolide, functions as a novel topoisomerase II poison. Mol Cancer Ther 2007; 6:3059-70. [PMID: 18025289 DOI: 10.1158/1535-7163.mct-07-0014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cheng-Ying Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM. Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot (Tokyo) 2006; 59:234-40. [PMID: 16830891 DOI: 10.1038/ja.2006.33] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new cytotoxic compound, streptokordin, and four known compounds, nonactic acid, dilactone, trilactone, and nonactin, were isolated from the fermentation broth of a marine actinomycete strain collected in deep-sea sediments. Biochemical tests and 16S rDNA analysis indicated that the strain belongs to the genus Streptomyces. This actinomycete produces various bioactive secondary metabolites. Fractionations by solvent partitioning, silica vacuum flash chromatography, and reversed-phase HPLC gave a pure cytotoxic compound, designated streptokordin. Its structure was elucidated by FAB-MS, 1H, 13C, and 2D NMR spectroscopy. Streptokordin exhibited significant cytotoxicity against seven human cancer cell lines but showed no growth inhibition against various microorganisms including bacteria and fungi.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/biosynthesis
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/isolation & purification
- Antibiotics, Antineoplastic/pharmacology
- Bacteria/drug effects
- Cell Line, Tumor
- Chromatography
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Drug Screening Assays, Antitumor
- Fungi/drug effects
- Geologic Sediments/microbiology
- Humans
- Magnetic Resonance Spectroscopy
- Mass Spectrometry
- Molecular Structure
- Phylogeny
- Pyridones/blood
- Pyridones/isolation & purification
- Pyridones/pharmacology
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Streptomyces/classification
- Streptomyces/isolation & purification
- Streptomyces/metabolism
- Water Microbiology
Collapse
Affiliation(s)
- Seong-Yun Jeong
- Marine Natural Products Laboratory, Korea Ocean Research & Development Institute, Ansan P.O. Box 29, Seoul 425-600, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Zhao PJ, Fan LM, Li GH, Zhu N, Shen YM. Antibacterial and antitumor macrolides fromstreptomyces sp. Is9131. Arch Pharm Res 2005; 28:1228-32. [PMID: 16350846 DOI: 10.1007/bf02978203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Four compounds, including two novel macrolides, were isolated from an endophyte Streptomyces sp. Is9131 of Maytenus hookeri. Spectral data indicated that these compounds were dimeric dinactin (1), dimeric nonactin (2), cyclo-homononactic acid (3), and cyclo-nonactic acid (4). Bioassay results showed that dimeric dinactin had strong antineoplastic activity and antibacterial activity.
Collapse
Affiliation(s)
- Pei-Ji Zhao
- The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
| | | | | | | | | |
Collapse
|
18
|
Five-membered ring systems: furans and benzofurans. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0959-6380(05)80329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|