1
|
Raviranga NGH, Ayinla M, Perera HA, Qi Y, Yan M, Ramström O. Antimicrobial Potency of Nor-Pyochelin Analogues and Their Cation Complexes against Multidrug-Resistant Pathogens. ACS Infect Dis 2024; 10:3842-3852. [PMID: 39469860 DOI: 10.1021/acsinfecdis.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa develops increasing resistance toward even the most potent antibiotics. Like other bacteria, the pathogen produces a number of virulence factors including metallophores, which constitute an important group. Pseudomonads produce the iron-chelating metallophore (siderophore) pyochelin, which, in addition to its iron-scavenging ability, is an effector for the transcriptional regulator PchR in its FeIII-bound form (ferripyochelin). In the present study, docking studies predicted a major ferripyochelin binding site in PchR, which prompted the exploration of nor-pyochelin analogues to produce tight binding to PchR, and thereby upregulation of the pyochelin metabolism. In addition, we investigated the effects of using the analogues to bind the antimicrobial cations GaIII and InIII. Selected analogues of nor-pyochelin were synthesized, and their GaIII- and InIII-based complexes were assessed for antimicrobial activity. The results indicate that the GaIII complexes inhibit the pathogens under iron-limited conditions, while the InIII-based systems are more effective in iron-rich media. Several of the GaIII complexes were shown to be highly effective against a multidrug-resistant P. aeruginosa clinical isolate, with minimum inhibitory concentrations (MICs) of ≤1 μg/mL. Similarly, two of the InIII-based systems were particularly effective against the isolate, with an MIC of 8 μg/mL. These results show high promise in comparison with other, traditionally potent antibiotics, as the compounds generally indicated low cytotoxicity toward mammalian cells. Preliminary mechanistic investigations using pseudomonal transposon mutants suggested that the inhibitory effects of the InIII-based systems could be due to acute iron deficiency as a result of InIII-bound bacterioferritin.
Collapse
Affiliation(s)
- N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Harini A Perera
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
2
|
Benramdane S, De Loose J, Filippi N, Espadinha M, Beyens O, Rymenant YV, Dirkx L, Bozdag M, Feijens PB, Augustyns K, Caljon G, De Winter H, De Meester I, Van der Veken P. Highly Selective Inhibitors of Dipeptidyl Peptidase 9 (DPP9) Derived from the Clinically Used DPP4-Inhibitor Vildagliptin. J Med Chem 2023; 66:12717-12738. [PMID: 37721854 DOI: 10.1021/acs.jmedchem.3c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a proline-selective serine protease that plays a key role in NLRP1- and CARD8-mediated inflammatory cell death (pyroptosis). No selective inhibitors have hitherto been reported for the enzyme: all published molecules have grossly comparable affinities for DPP8 and 9 because of the highly similar architecture of these enzymes' active sites. Selective DPP9 inhibitors would be highly instrumental to address unanswered research questions on the enzyme's role in pyroptosis, and they could also be investigated as therapeutics for acute myeloid leukemias. Compounds presented in this manuscript (42 and 47) combine low nanomolar DPP9 affinities with unprecedented DPP9-to-DPP8 selectivity indices up to 175 and selectivity indices >1000 toward all other proline-selective proteases. To rationalize experimentally obtained data, a molecular dynamics study was performed. We also provide in vivo pharmacokinetics data for compound 42.
Collapse
Affiliation(s)
- Siham Benramdane
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Nicolò Filippi
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Margarida Espadinha
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Olivier Beyens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Murat Bozdag
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pim-Bart Feijens
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Nosran A, Kaur P, Randhawa V, Chhibber S, Singh V, Harjai K. Design, synthesis, molecular docking, anti-quorum sensing, and anti-biofilm activity of pyochelin-zingerone conjugate. Drug Dev Res 2021; 82:605-615. [PMID: 33398901 DOI: 10.1002/ddr.21781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/05/2022]
Abstract
In this article, we report the chemical synthesis of pyochelin-zingerone conjugate via a hydrolysable ester linkage for drug delivery as a "Trojan Horse Strategy." It is a new therapeutic approach to combat microbial infection and to address the issue of multi drug resistance in Gram-negative, nosocomial pathogen Pseudomonas aeruginosa. Pyochelin (Pch) is a catecholate type of phenolate siderophore produced and utilized by the pathogen P. aeruginosa to assimilate iron when colonizing the vertebrate host. Zingerone, is active component present in ginger, a dietary herb known for its anti-virulent approach against P. aeruginosa. In the present study, zingerone was exploited to act as a good substitute for existing antibiotics, known to have developed resistance by most pathogens. Encouraging results were obtained by docking analysis of pyochelin-zingerone conjugate with FptA, the outer membrane receptor of pyochelin. Conjugate also showed anti-quorum sensing activity and also inhibited swimming, swarming, and twitching motilities as well as biofilm formation in vitro.
Collapse
Affiliation(s)
- Anu Nosran
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Parleen Kaur
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Vinay Randhawa
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
5
|
(Propargylsulfanyl)-2-aza-1,3,5-trienes as a direct source for novel family of highly functionalized 4,5-dihydro-1,3-thiazoles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Segade Y, Montaos MA, Rodríguez J, Jiménez C. A Short Stereoselective Synthesis of Prepiscibactin Using a SmI2-Mediated Reformatsky Reaction and Zn2+-Induced Asymmetric Thiazolidine Formation. Org Lett 2014; 16:5820-3. [DOI: 10.1021/ol502958u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuri Segade
- Departamento de
Química
Fundamental, Facultade de Ciencias e Centro de Investigacións
de Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña E-15071, Spain
| | - Marcos A. Montaos
- Departamento de
Química
Fundamental, Facultade de Ciencias e Centro de Investigacións
de Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña E-15071, Spain
| | - Jaime Rodríguez
- Departamento de
Química
Fundamental, Facultade de Ciencias e Centro de Investigacións
de Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña E-15071, Spain
| | - Carlos Jiménez
- Departamento de
Química
Fundamental, Facultade de Ciencias e Centro de Investigacións
de Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña E-15071, Spain
| |
Collapse
|
7
|
Mislin GLA, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014; 6:408-20. [PMID: 24481292 DOI: 10.1039/c3mt00359k] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- UMR 7242, Université de Strasbourg-CNRS, ESBS, 300 Boulevard, Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|
8
|
Noël S, Gasser V, Pesset B, Hoegy F, Rognan D, Schalk IJ, Mislin GLA. Synthesis and biological properties of conjugates between fluoroquinolones and a N3''-functionalized pyochelin. Org Biomol Chem 2011; 9:8288-300. [PMID: 22052022 DOI: 10.1039/c1ob06250f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyochelin is a siderophore common to Pseudomonas aeruginosa and several other pathogenic bacteria. A pyochelin functionalized at the N3'' position with a propyl-amine extension was previously synthesized. In the present work we proved that this analog binds FptA, the pyochelin outer membrane receptor, and transports iron(III) efficiently into bacteria. This functionalized pyochelin seemed to be a good candidate for antibiotic vectorization in the framework of a Trojan horse prodrug strategy. In this context, conjugates between pyochelin and three fluoroquinolones (norfloxacin, ciprofloxacin and N-desmethyl-ofloxacin) were synthesized with a spacer arm that was either stable or hydrolyzable in vivo. Some pyochelin-fluoroquinolone conjugates had antibacterial activities in growth inhibition experiments on several P. aeruginosa strains. However, these activities were weaker than those of the antibiotic alone. These properties appeared to be related to both the solubility and bioavailability of conjugates and to the stability of the spacer arm used.
Collapse
Affiliation(s)
- Sabrina Noël
- Team Transports Membranaires Bactériens, UMR 7242 Université de Strasbourg-CNRS, Boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Yoganathan S, Sit CS, Vederas JC. Chemical synthesis and biological evaluation of gallidermin-siderophore conjugates. Org Biomol Chem 2011; 9:2133-41. [PMID: 21290068 DOI: 10.1039/c0ob00846j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lantibiotic gallidermin was modified at lysine residues by regioselective attachment of derivatives of pyochelin, agrobactin and desferrioxamine B with the objective of having siderophore receptors of Gram-negative bacteria transport the antibiotic-iron chelator conjugate through the outer membrane. All of the conjugates retained activity against the Gram-positive indicator strain, Lactococcus lactis subsp. cremoris HP. However, testing of the conjugates against several Gram-negative strains yielded unexpected results. Bacteria treated with 100 μM of the conjugates complexed with Fe(3+) grew better than bacteria grown in iron-free media but worse than bacteria grown in the same media supplemented with 10 μM FeCl(3). Although these findings indicate that the conjugates are unable to inhibit the growth of Gram-negative bacteria, they indicate penetration of the outer membrane and provide structure-activity information for design of other lantibiotic conjugates. The synthetic strategy is applicable for linking biomarkers or fluorescence probes to gallidermin for studies on its localization and mode of action. As there are many lantibiotics that operate with unknown mechanisms of action, this chemical approach provides a means to modify such peptides with biomarkers for biological investigations.
Collapse
Affiliation(s)
- Sabesan Yoganathan
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | |
Collapse
|
10
|
Concise and modular synthesis of regioisomeric haptens for the production of high-affinity and stereoselective antibodies to the strobilurin azoxystrobin. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.11.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Roberts AA, Ryan KS, Moore BS, Gulder TA. Total (bio)synthesis: strategies of nature and of chemists. Top Curr Chem (Cham) 2010; 297:149-203. [PMID: 21495259 PMCID: PMC3109256 DOI: 10.1007/128_2010_79] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The biosynthetic pathways to a number of natural products have been reconstituted in vitro using purified enzymes. Many of these molecules have also been synthesized by organic chemists. Here we compare the strategies used by nature and by chemists to reveal the underlying logic and success of each total synthetic approach for some exemplary molecules with diverse biosynthetic origins.
Collapse
|
12
|
|
13
|
Liyanage W, Weerasinghe L, Strong RK, Del Valle JR. Synthesis of carbapyochelins via diastereoselective azidation of 5-(ethoxycarbonyl)methylproline derivatives. J Org Chem 2008; 73:7420-3. [PMID: 18698823 DOI: 10.1021/jo801294p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two configurationally stable carbon-based analogues of pyochelin have been prepared from Boc-pyroglutamic acid-tert-butyl ester in 11 and 13 steps. Introduction of the amino group was achieved by a highly diastereoselective electrophilic azidation reaction to afford novel bis-alpha-amino acid proline derivatives.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Department of Chemistry and Biochemistry, New Mexico State University, MSC3C, Las Cruces, New Mexico 88003, USA
| | | | | | | |
Collapse
|
14
|
Díez R, Badorrey R, Díaz-de-Villegas MD, Gálvez JA. Highly Stereoselective Synthesis of Stereochemically Defined Polyhydroxylated Propargylamines by Alkynylation ofN-Benzylimines Derived from (R)-Glyceraldehyde. European J Org Chem 2007. [DOI: 10.1002/ejoc.200601011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Rivault F, Liébert C, Burger A, Hoegy F, Abdallah MA, Schalk IJ, Mislin GLA. Synthesis of pyochelin-norfloxacin conjugates. Bioorg Med Chem Lett 2006; 17:640-4. [PMID: 17123817 DOI: 10.1016/j.bmcl.2006.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 11/28/2022]
Abstract
Using synthetic functionalized analogues of pyochelin, a siderophore common to several pathogenic Pseudomonas and Burkholderia species, four fluoroquinolone-pyochelin conjugates were efficiently synthesized and evaluated for their biological activities.
Collapse
Affiliation(s)
- Freddy Rivault
- Métaux et Microorganismes: Chimie, Biologie et Applications, UMR 7175-LC1 Institut Gilbert Laustriat CNRS-Université Louis Pasteur (Strasbourg I), ESBS, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|