1
|
Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Shu HZ, Peng C, Bu L, Guo L, Liu F, Xiong L. Bisabolane-type sesquiterpenoids: Structural diversity and biological activity. PHYTOCHEMISTRY 2021; 192:112927. [PMID: 34492546 DOI: 10.1016/j.phytochem.2021.112927] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Bisabolane-type sesquiterpenoids, a class of monocyclic sesquiterpenoids, are widely distributed in nature and have a variety of biological activities. To provide a reference for the further research and development of these compounds, the phytochemical and biological properties of natural bisabolane-type sesquiterpenoids (356 compounds in total) isolated between 1985 and 2020 from 24 families, primarily Compositae, Zingiberaceae, Aspergillaceae, Halichondriidae, and Aplysiidae were reviewed. In vitro and in vivo studies have indicated that antibacterial, anti-inflammatory, and cytotoxic effects are the most commonly reported pharmacological properties of bisabolane-type sesquiterpenoids. Owing to their extensive significant effects, a lot of traditional medicines containing this type of compounds have been used for a long history. Thus, bisabolane-type sesquiterpenoids are a rich source of important natural products, which show great potential for the development of new drugs.
Collapse
Affiliation(s)
- Hong-Zhen Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lan Bu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
4
|
Halogenated Metabolites from the Diet of Aplysia dactylomela Rang. Molecules 2020; 25:molecules25040815. [PMID: 32070000 PMCID: PMC7070258 DOI: 10.3390/molecules25040815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022] Open
Abstract
Invertebrates are an important source of structurally-diverse and biologically-active halogenated metabolites. The sea hare Aplysia dactylomela Rang has long been known to possess halogenated metabolites of dietary origin that are used as a self-defense mechanism. The compounds from Aplysia dactylomela Rang are comprised mainly of terpenoids and small percentages of C-15 acetogenins, indoles, macrolides, sterols and alkaloids with potent cytotoxic, anti-microbial and anti-inflammatory properties. For decades the metabolites discovered have been investigated for their medical and pharmaceutical applications, so much so that the ecological role of the metabolites has been overlooked. The interaction between Aplysia dactylomela Rang and its diet that is comprised of seaweed can provide information into the distribution and diversity of the seaweed, the application of bioaccumulated secondary metabolites as part of its defense mechanism and the potential roles of these metabolites for adaptation in the marine environment. This paper compiles the diversity of halogenated secondary metabolites documented from Aplysia dactylomela Rang.
Collapse
|
5
|
Burckle AJ, Gál B, Seidl FJ, Vasilev VH, Burns NZ. Enantiospecific Solvolytic Functionalization of Bromochlorides. J Am Chem Soc 2017; 139:13562-13569. [PMID: 28858493 PMCID: PMC5987033 DOI: 10.1021/jacs.7b07792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, we report that under mild solvolytic conditions, enantioenriched bromochlorides can be ionized, stereospecifically cyclized to an array of complex bromocyclic scaffolds, or intermolecularly trapped by exogenous nucleophiles. Mechanistic investigations support an ionic mechanism wherein the bromochloride serves as an enantioenriched bromonium surrogate. Several natural product-relevant motifs are accessed in enantioenriched form for the first time with high levels of stereocontrol, and this technology is applied to the scalable synthesis of a polycyclic brominated natural product. Arrays of nucleophiles including olefins, alkynes, heterocycles, and epoxides are competent traps in the bromonium-induced cyclizations, leading to the formation of enantioenriched mono-, bi-, and tricyclic products. This strategy is further amenable to intermolecular coupling between cinnamyl bromochlorides and a diverse set of commercially available nucleophiles. Collectively, this work demonstrates that enantioenriched bromonium chlorides are configurationally stable under solvolytic conditions in the presence of a variety of functional groups.
Collapse
Affiliation(s)
- Alexander J. Burckle
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bálint Gál
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Frederick J. Seidl
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Vasil H. Vasilev
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Noah Z. Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Guo R, Zheng X, Zhang D, Zhang G. Rhodium(i)-catalyzed stereoselective [4+2] cycloaddition of oxetanols with alkynes through C(sp 3)-C(sp 3) bond cleavage. Chem Sci 2017; 8:3002-3006. [PMID: 28451367 PMCID: PMC5380880 DOI: 10.1039/c6sc05246k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/22/2017] [Indexed: 12/31/2022] Open
Abstract
An efficient and convenient synthesis of highly functionalized dihydropyrans has been achieved through rhodium(i)-catalysed tandem C(sp3)–C(sp3) bond cleavage and annulation of oxetanols with alkynes.
An efficient and convenient synthesis of highly functionalized dihydropyrans has been achieved through rhodium(i)-catalysed tandem C(sp3)–C(sp3) bond cleavage and annulation of oxetanols with alkynes. An enantioselective version was enabled using a Binaphine ligand. Excellent site-selectivity and remarkable enantioretention are obtained for 2-substituted oxetanols.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Xinxin Zheng
- Institute of Pharmaceutical Science , China Pharmaceutical University , Nanjing , P. R. China .
| | - Dayong Zhang
- Institute of Pharmaceutical Science , China Pharmaceutical University , Nanjing , P. R. China .
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
7
|
Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Mar Drugs 2016; 14:md14020039. [PMID: 26907303 PMCID: PMC4771992 DOI: 10.3390/md14020039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.
Collapse
|
8
|
Harizani M, Ioannou E, Roussis V. The Laurencia Paradox: An Endless Source of Chemodiversity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2016; 102:91-252. [PMID: 27380407 DOI: 10.1007/978-3-319-33172-0_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth's surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to the MarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.Red algae of the genus Laurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. Since mollusks feeding on Laurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed on Laurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.The chapter addresses: (1) the "Laurencia complex", the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.
Collapse
Affiliation(s)
- Maria Harizani
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| |
Collapse
|
9
|
Takahashi S, Yasuda M, Nakamura T, Hatano K, Matsuoka K, Koshino H. Synthesis and structural revision of a brominated sesquiterpenoid, aldingenin C. J Org Chem 2014; 79:9373-80. [PMID: 25216028 DOI: 10.1021/jo501228v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper describes a short step synthesis of the proposed structure for aldingenin C from trans-limonene oxide. The tetrahydropyran-fused 2-oxabicyclo[3.2.2]nonane skeleton as the structural feature was constructed by an intramolecular epoxide-opening reaction and a brominative cyclization. The spectral data of the synthetic compound did not match those of the natural product reported. Re-examination of the reported NMR data using new CAST/CNMR Structure Elucidator suggests that the structure of aldingenin C should be revised to that of known caespitol.
Collapse
|
10
|
Wang B, Wang L, Li Y, Liu Y. Heterocyclic terpenes: linear furano- and pyrroloterpenoids. RSC Adv 2014. [DOI: 10.1039/c3ra48040b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review of furano- and pyrroloterpenoids covers the literature, 180 articles in all, published from January 2006 to December 2013.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
- Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University
| | - Lishu Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
- Jilin Provincial Academy of Chinese Medicine Sciences
| | - Yinglei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
- Jilin Provincial Academy of Chinese Medicine Sciences
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
| |
Collapse
|
11
|
Díaz-Marrero AR, de la Rosa JM, Brito I, Darias J, Cueto M. Dactylomelatriol, a biogenetically intriguing omphalane-derived marine sesquiterpene. JOURNAL OF NATURAL PRODUCTS 2012; 75:115-118. [PMID: 22220686 DOI: 10.1021/np200845f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dactylomelatriol (1), obtained from the sea hare Aplysia dactylomela, is the first naturally occurring omphalane-derived sesquiterpene from the marine environment. From this species the known chamigrene and modified bisabolene sesquiterpenes 2-6 were also isolated. The structure and relative configuration of 1 were established by spectroscopic evidence. Its chemical structure is related to omphalic acid, the unique terrestrial-derived omphalane sesquiterpene isolated from a liverwort. A biogenetic route for this compound is proposed. The antimicrobial activities of compounds 1-6 were evaluated against a panel of microorganisms.
Collapse
Affiliation(s)
- Ana-R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (CSIC), Avenida Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
12
|
Lhullier C, Falkenberg M, Ioannou E, Quesada A, Papazafiri P, Horta PA, Schenkel EP, Vagias C, Roussis V. Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. JOURNAL OF NATURAL PRODUCTS 2010; 73:27-32. [PMID: 20039643 DOI: 10.1021/np900627r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Seven new (1-7) and seven previously reported (8-14) halogenated metabolites were isolated from the organic extract of the Brazilian red alga Laurencia catarinensis. The structure elucidation and the assignment of the relative configurations of the new natural products were based on detailed NMR and MS spectroscopic analyses, whereas the structure of metabolite 6 was confirmed by single-crystal X-ray diffraction analysis. The absolute configuration of metabolite 1 was determined using the modified Mosher's method. The in vitro cytotoxicity of compounds 1-14 was evaluated against HT29, MCF7, and A431 cell lines.
Collapse
Affiliation(s)
- Cintia Lhullier
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2008; 25:35-94. [PMID: 18250897 DOI: 10.1039/b701534h] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
|