1
|
Ojomoko LO, Kryukova EV, Egorova NS, Salikhov AI, Epifanova LA, Denisova DA, Khomutov AR, Sukhov DA, Vassilevski AA, Khomutov MA, Tsetlin VI, Shelukhina IV. Inhibition of nicotinic acetylcholine receptors by oligoarginine peptides and polyamine-related compounds. Front Pharmacol 2023; 14:1327603. [PMID: 38169863 PMCID: PMC10758494 DOI: 10.3389/fphar.2023.1327603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Oligoarginine peptides, known mostly for their cell-penetrating properties, are also inhibitors of the nicotinic acetylcholine receptors (nAChRs). Since octa-arginine (R8) inhibits α9α10 nAChR and suppresses neuropathic pain, we checked if other polycationic compounds containing amino and/or guanidino groups could be effective and tested the activity of the disulfide-fixed "cyclo"R8, a series of biogenic polyamines (putrescine, spermidine, and spermine), C-methylated spermine analogs, agmatine and its analogs, as well as acylpolyamine argiotoxin-636 from spider venom. Their inhibitory potency on muscle-type, α7 and α9α10 nAChRs was determined using radioligand analysis, electrophysiology, and calcium imaging. "Cyclo"R8 showed similar activity to that of R8 against α9α10 nAChR (IC50 ≈ 60 nM). Biogenic polyamines as well as agmatine and its analogs displayed low activity on muscle-type Torpedo californica, as well as α7 and α9α10 nAChRs, which increased with chain length, the most active being spermine and its C-methylated derivatives having IC50 of about 30 μM against muscle-type T. californica nAChR. Argiotoxin-636, which contains a polyamine backbone and terminal guanidino group, also weakly inhibited T. californica nAChR (IC50 ≈ 15 μM), but it revealed high potency against rat α9α10 nAChR (IC50 ≈ 200 nM). We conclude that oligoarginines and similar polycationic compounds effectively inhibiting α9α10 nAChR may serve as a basis for the development of analgesics to reduce neuropathic pain.
Collapse
Affiliation(s)
- Lucy O. Ojomoko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalya S. Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arthur I. Salikhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov A. Epifanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daria A. Denisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Sukhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow, Russia
| | - Maxim A. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Stewart TM, Foley JR, Holbert CE, Khomutov M, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome. EMBO Mol Med 2023; 15:e17833. [PMID: 37702369 PMCID: PMC10630878 DOI: 10.15252/emmm.202317833] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Maxim Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - Noushin Rastkari
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Xianzun Tao
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Alex R Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - R Grace Zhai
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
3
|
Stewart TRM, Foley JR, Holbert CE, Khomutov MA, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome: mechanism of action and therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534977. [PMID: 37034775 PMCID: PMC10081208 DOI: 10.1101/2023.03.30.534977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Snyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease. Reduced SMS catalytic activity in cells of SRS patients causes the accumulation of spermidine, while spermine levels are reduced. The resulting exaggeration in spermidine-to-spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity in the patient. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this polyamine imbalance and investigate the potential of this approach as a therapeutic strategy for affected individuals. Here we report the use of difluoromethylornithine (DFMO; eflornithine), an FDA-approved inhibitor of polyamine biosynthesis, in re-establishing normal spermidine-to-spermine ratios in SRS patient cells. Through mechanistic studies, we demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of existing spermidine into spermine in cell lines with hypomorphic variants of SMS. Further, DFMO treatment induces a compensatory uptake of exogenous polyamines, including spermine and spermine mimetics, cooperatively reducing spermidine and increasing spermine levels. In a Drosophila SRS model characterized by reduced lifespan, adding DFMO to the feed extended lifespan. As nearly all known SRS patient mutations are hypomorphic, these studies form a foundation for future translational studies with significant therapeutic potential.
Collapse
|
4
|
Hyvönen MT, Khomutov M, Vepsäläinen J, Khomutov AR, Keinänen TA. α-Difluoromethylornithine-Induced Cytostasis is Reversed by Exogenous Polyamines, Not by Thymidine Supplementation. Biomolecules 2021; 11:biom11050707. [PMID: 34068700 PMCID: PMC8151227 DOI: 10.3390/biom11050707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/04/2022] Open
Abstract
Polyamine spermidine is essential for the proliferation of eukaryotic cells. Administration of polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) induces cytostasis that occurs in two phases; the early phase which can be reversed by spermidine, spermine, and some of their analogs, and the late phase which is characterized by practically complete depletion of cellular spermidine pool. The growth of cells at the late phase can be reversed by spermidine and by very few of its analogs, including (S)-1-methylspermidine. It was reported previously (Witherspoon et al. Cancer Discovery 3(9); 1072–81, 2013) that DFMO treatment leads to depletion of cellular thymidine pools, and that exogenous thymidine supplementation partially prevents DFMO-induced cytostasis without affecting intracellular polyamine pools in HT-29, SW480, and LoVo colorectal cancer cells. Here we show that thymidine did not prevent DFMO-induced cytostasis in DU145, LNCaP, MCF7, CaCo2, BT4C, SV40MES13, HepG2, HEK293, NIH3T3, ARPE19 or HT-29 cell lines, whereas administration of functionally active mimetic of spermidine, (S)-1-methylspermidine, did. Thus, the effect of thymidine seems to be specific only for certain cell lines. We conclude that decreased polyamine levels and possibly also distorted pools of folate-dependent metabolites mediate the anti-proliferative actions of DFMO. However, polyamines are necessary and sufficient to overcome DFMO-induced cytostasis, while thymidine is generally not.
Collapse
Affiliation(s)
- Mervi T. Hyvönen
- Kuopio Campus, School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; (J.V.); (T.A.K.)
- Correspondence:
| | - Maxim Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (A.R.K.)
| | - Jouko Vepsäläinen
- Kuopio Campus, School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; (J.V.); (T.A.K.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (A.R.K.)
| | - Tuomo A. Keinänen
- Kuopio Campus, School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; (J.V.); (T.A.K.)
| |
Collapse
|
5
|
Khomutov MA, Hyvönen MT, Salikhov AI, Chizhov AO, Ryzhov IM, Kochetkov SN, Vepsäläinen J, Keinänen TA, Khomutov AR. Synthesis of (3R,10R)- and (3S,10S)-Diastereomers of 3,10-Dimethylspermine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Murray Stewart T, Khomutov M, Foley JR, Guo X, Holbert CE, Dunston TT, Schwartz CE, Gabrielson K, Khomutov A, Casero RA. ( R, R)-1,12-Dimethylspermine can mitigate abnormal spermidine accumulation in Snyder-Robinson syndrome. J Biol Chem 2020; 295:3247-3256. [PMID: 31996374 DOI: 10.1074/jbc.ra119.011572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Indexed: 11/06/2022] Open
Abstract
Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Maxim Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Tiffany T Dunston
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | | | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alexey Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287.
| |
Collapse
|
7
|
Khomutov M, Hyvönen MT, Simonian A, Formanovsky AA, Mikhura IV, Chizhov AO, Kochetkov SN, Alhonen L, Vepsäläinen J, Keinänen TA, Khomutov AR. Unforeseen Possibilities To Investigate the Regulation of Polyamine Metabolism Revealed by Novel C-Methylated Spermine Derivatives. J Med Chem 2019; 62:11335-11347. [PMID: 31765147 PMCID: PMC7076719 DOI: 10.1021/acs.jmedchem.9b01666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/02/2022]
Abstract
The biogenic polyamines, spermine (Spm) and spermidine, are organic polycations present in millimolar concentrations in all eukaryotic cells participating in the regulation of vital cellular functions including proliferation and differentiation. The design and biochemical evaluation of polyamine analogues are cornerstones of polyamine research. Here we synthesized and studied novel C-methylated Spm analogues: 2,11-dimethylspermine (2,11-Me2Spm), 3,10-dimethylspermine (3,10-Me2Spm), 2-methylspermine, and 2,2-dimethylspermine. The tested analogues overcame growth arrest induced by a 72 h treatment with α-difluoromethylornithine, an ornithine decarboxylase (ODC) inhibitor, and entered into DU145 cells via the polyamine transporter. 3,10-Me2Spm was a poor substrate of spermine oxidase and spermidine/spermine-N1-acetyltransferase (SSAT) when compared with 2,11-Me2Spm, thus resembling 1,12-dimethylspermine, which lacks the substrate properties required for the SSAT reaction. The antizyme (OAZ1)-mediated downregulation of ODC and inhibition of polyamine transport are crucial in the maintenance of polyamine homeostasis. Interestingly, 3,10-Me2Spm was found to be the first Spm analogue that did not induce OAZ1 and, consequently, was a weak downregulator of ODC activity in DU145 cells.
Collapse
Affiliation(s)
- Maxim Khomutov
- Engelhardt
Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Mervi T. Hyvönen
- School
of Pharmacy, Biocenter Kuopio, University
of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland
| | - Alina Simonian
- Engelhardt
Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | | | - Irina V. Mikhura
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander O. Chizhov
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey N. Kochetkov
- Engelhardt
Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Leena Alhonen
- School
of Pharmacy, Biocenter Kuopio, University
of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland
| | - Jouko Vepsäläinen
- School
of Pharmacy, Biocenter Kuopio, University
of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland
| | - Tuomo A. Keinänen
- School
of Pharmacy, Biocenter Kuopio, University
of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland
| | - Alex R. Khomutov
- Engelhardt
Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| |
Collapse
|
8
|
Khomutov MA, Mikhura IV, Kochetkov SN, Khomutov AR. C-Methylated Analogs of Spermine and Spermidine: Synthesis and Biological Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019060207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Khomutov MA, Chizhov AO, Kochetkov SN, Khomutov AR. Synthesis of (R)- and (S)-isomers of 2-methylspermidine. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Ivanova ON, Snezhkina AV, Krasnov GS, Valuev-Elliston VT, Khomich OA, Khomutov AR, Keinanen TA, Alhonen L, Bartosch B, Kudryavtseva AV, Kochetkov SN, Ivanov AV. Activation of Polyamine Catabolism by N¹,N 11-Diethylnorspermine in Hepatic HepaRG Cells Induces Dedifferentiation and Mesenchymal-Like Phenotype. Cells 2018; 7:275. [PMID: 30567412 PMCID: PMC6316793 DOI: 10.3390/cells7120275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is accompanied by the metabolic adaptation of cells to support enhanced proliferation rates and to optimize tumor persistence and amplification within the local microenvironment. In particular, cancer cells exhibit elevated levels of biogenic polyamines. Inhibitors of polyamine biosynthesis and inducers of their catabolism have been evaluated as antitumor drugs, however, their efficacy and safety remain controversial. Our goal was to investigate if drug-induced modulation of polyamine metabolism plays a role in dedifferentiation using differentiated human hepatocyte-like HepaRG cell cultures. N¹,N11-diethylnorspermine (DENSpm), a potent inducer of polyamine catabolism, triggered an epithelial-mesenchymal transition (EMT)-like dedifferentiation in HepaRG cultures, as shown by down-regulation of mature hepatocytes markers and upregulation of classical EMT markers. Albeit the fact that polyamine catabolism produces H2O2, DENSpm-induced de-differentiation was not affected by antioxidants. Use of a metabolically stable spermidine analogue showed furthermore, that spermidine is a key regulator of hepatocyte differentiation. Comparative transcriptome analyses revealed, that the DENSpm-triggered dedifferentiation of HepaRG cells was accompanied by dramatic metabolic adaptations, exemplified by down-regulation of the genes of various metabolic pathways and up-regulation of the genes involved in signal transduction pathways. These results demonstrate that polyamine metabolism is tightly linked to EMT and differentiation of liver epithelial cells.
Collapse
Affiliation(s)
- Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | - Olga A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69000 Lyon, France.
| | - Alexey R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Tuomo A Keinanen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Leena Alhonen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69000 Lyon, France.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
11
|
Ucal S, Häkkinen MR, Alanne AL, Alhonen L, Vepsäläinen J, Keinänen TA, Hyvönen MT. Controlling of N-alkylpolyamine analogue metabolism by selective deuteration. Biochem J 2018; 475:663-676. [PMID: 29301981 DOI: 10.1042/bcj20170887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 01/26/2023]
Abstract
Replacing protium with deuterium is an efficient method to modulate drug metabolism. N-alkylated polyamine analogues are polyamine antimetabolites with proven anticancer efficacy. We have characterized earlier the preferred metabolic routes of N1,N12-diethylspermine (DESpm), N1-benzyl-N12-ethylspermine (BnEtSpm) and N1,N12-dibenzylspermine (DBSpm) by human recombinant spermine oxidase (SMOX) and acetylpolyamine oxidase (APAO). Here, we studied the above analogues, their variably deuterated counterparts and their metabolites as substrates and inhibitors of APAO, SMOX, semicarbazide-sensitive amine oxidase (SSAO), diamine oxidase (DAO) and monoamine oxidases. We found that targeted deuteration efficiently redirected the preferable cleavage site and suppressed reaction rate by APAO and SMOX in vitro We found a three- to six-fold decline in Vmax with moderate variable effect on Km when deuterium was located at the preferred hydrogen abstraction site of the analogue. We also found some of the metabolites to be potent inhibitors of DAO and SSAO. Surprisingly, analogue deuteration did not markedly alter the anti-proliferative efficacy of the drugs in DU145 prostate cancer cells, while in mouse embryonic fibroblasts, which had higher basal APAO and SMOX activities, moderate effect was observed. Interestingly, the anti-proliferative efficacy of the analogues did not correlate with their ability to suppress polyamine biosynthetic enzymes, induce spermidine/spermine-N1-acetyltransferase or deplete intracellular polyamine levels, but correlated with their ability to induce SMOX. Our data show that selective deuteration of N-alkyl polyamine analogues enables metabolic switching, offering the means for selective generation of bioactive metabolites inhibiting, e.g. SSAO and DAO, thus setting a novel basis for in vivo studies of this class of analogues.
Collapse
Affiliation(s)
- Sebahat Ucal
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Aino-Liisa Alanne
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Leena Alhonen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Tuomo A Keinänen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Mervi T Hyvönen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| |
Collapse
|
12
|
Khomutov MA, Keinanen TA, Hyvonen MT, Weisell J, Vepsalainen J, Alhonen L, Kochetkov SN, Khomutov AR. [Enantioselective Synthesis of (R)- and (S)-3-Methylspermidines]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:612-8. [PMID: 26762100 DOI: 10.1134/s1068162015050064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Earlier unknown enantiomerically pure (R)- and (S)-1,8-diamino-3-methyl-4-azaoctane's (3-MeSpd's) were synthesized with high overall yields and optical purity starting from commercially available R- and S-isomers of N-Boc-2-aminopropanol-1. Application of R- and S-isomers of 3-MeSpd for the investigation of the stereospecificity of spermidine transporter and peculiarities of deoxyhypusine synthase reaction are discussed.
Collapse
|
13
|
Spermidine promotes adipogenesis of 3T3-L1 cells by preventing interaction of ANP32 with HuR and PP2A. Biochem J 2013; 453:467-74. [DOI: 10.1042/bj20130263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have shown previously that the polyamine spermidine is indispensable for differentiation of 3T3-L1 preadipocytes. In the present study, we examined the mechanism of spermidine function by using the polyamine biosynthesis inhibitor α-difluoromethylornithine in combination with the metabolically stable polyamine analogues γ-methylspermidine or (R,R)-α,ω-bismethylspermine. At the early phase of differentiation, spermidine-depleted 3T3-L1 cells showed decreased translation of the transcription factor C/EBPβ (CCAAT/enhancer-binding protein β), decreased PP2A (protein phosphatase 2A) activity and increased cytoplasmic localization of the RNA-binding protein HuR (human antigen R). The amount of HuR bound to C/EBPβ mRNA was reduced, whereas the amount of bound CUGBP2, an inhibitor of C/EBPβ translation, was increased. ANP32 (acidic nuclear phosphoprotein 32) proteins, which are known PP2A inhibitors and HuR ligands, bound more PP2A and HuR in spermidine-depleted than in control cells, whereas immunodepletion of ANP32 proteins from the lysate of spermidine-depleted cells restored PP2A activity. Taken together, our data shows that spermidine promotes C/EBPβ translation in differentiating 3T3-L1 cells, and that this process is controlled by the interaction of ANP32 with HuR and PP2A.
Collapse
|
14
|
Hyvönen MT, Keinänen TA, Khomutov M, Simonian A, Vepsäläinen J, Park JH, Khomutov AR, Alhonen L, Park MH. Effects of novel C-methylated spermidine analogs on cell growth via hypusination of eukaryotic translation initiation factor 5A. Amino Acids 2012; 42:685-95. [PMID: 21861168 PMCID: PMC3223563 DOI: 10.1007/s00726-011-0984-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/17/2011] [Indexed: 12/13/2022]
Abstract
The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.
Collapse
Affiliation(s)
- Mervi T. Hyvönen
- A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tuomo A. Keinänen
- Department of Biosciences, Laboratory of Chemistry, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Maxim Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Alina Simonian
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Jouko Vepsäläinen
- Department of Biosciences, Laboratory of Chemistry, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jong Hwan Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Leena Alhonen
- A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Khomutov MA, Hyvönen MT, Simonian AR, Vepsäläinen J, Alhonen L, Kochetkov SN, Keinänen TA. Novel metabolically stable and functionally active mimetic of spermidine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:253-8. [DOI: 10.1134/s1068162011020075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Khomutov AR, Weisell J, Khomutov MA, Grigorenko NA, Simonian AR, Häkkinen MR, Keinänen TA, Hyvönen MT, Alhonen L, Kochetkov SN, Vepsäläinen J. Methylated polyamines as research tools. Methods Mol Biol 2011; 720:449-461. [PMID: 21318892 DOI: 10.1007/978-1-61779-034-8_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Earlier unknown racemic β-methylspermidine (β-MeSpd) and γ-methylspermidine (γ-MeSpd) were -synthesized starting from crotononitrile or methacrylonitrile and putrescine. Lithium aluminum hydride reduction of the intermediate di-Boc-nitriles resulted in corresponding di-Boc-amines, which after deprotection gave target β- and γ-MeSpd's. To prepare α-MeSpd, the starting compound, 3-amino-1-butanol, was converted into N-Cbz-3-amino-1-butyl methanesulfonate, which alkylated putrescine to give (after deprotection of amino group) the required α-MeSpd. Novel β- and γ-MeSpd's in combination with earlier α-MeSpd are useful tools for studying enzymology and cell biology of polyamines.
Collapse
Affiliation(s)
- Alex R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hyvönen MT, Sinervirta R, Keinänen TA, Fashe T, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L. Acute pancreatitis induced by activated polyamine catabolism is associated with coagulopathy: effects of alpha-methylated polyamine analogs on hemostasis. Pancreatology 2010; 10:208-21. [PMID: 20453551 DOI: 10.1159/000243730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Polyamines are ubiquitous organic cations essential for cellular proliferation and tissue integrity. We have previously shown that pancreatic polyamine depletion in rats overexpressing the catabolic enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT), results in the development of severe acute pancreatitis, and that therapeutic administration of metabolically stable alpha-methylated polyamine analogs protects the animals from pancreatitis-associated mortality. Our aim was to elucidate the therapeutic mechanism(s) of alpha-methylspermidine (MeSpd). METHODS The effect of MeSpd on hemostasis and the extent of organ failure were studied in SSAT transgenic rats with either induced pancreatitis or lipopolysaccharide (LPS)-induced coagulopathy. The effect of polyamines on fibrinolysis and coagulation was also studied in vitro. RESULTS Pancreatitis caused a rapid development of intravascular coagulopathy, as assessed by prolonged coagulation times, decreased plasma fibrinogen level and antithrombin activity, enhanced fibrinolysis, reduced platelet count and presence of schistocytes. Therapeutic administration of MeSpd restored these parameters to almost control levels within 24 h. In vitro, polyamines dose-dependently inhibited fibrinolysis and intrinsic coagulation pathway. In LPS-induced coagulopathy, SSAT transgenic rats were more sensitive to the drug than their syngeneic littermates, and MeSpd-ameliorated LPS-induced coagulation disorders. CONCLUSION Pancreatitis-associated mortality in SSAT rats is due to coagulopathy that is alleviated by treatment with MeSpd.
Collapse
Affiliation(s)
- M T Hyvönen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nayvelt I, Hyvönen MT, Alhonen L, Pandya I, Thomas T, Khomutov AR, Vepsäläinen J, Patel R, Keinänen TA, Thomas TJ. DNA Condensation by Chiral α-Methylated Polyamine Analogues and Protection of Cellular DNA from Oxidative Damage. Biomacromolecules 2009; 11:97-105. [DOI: 10.1021/bm900958c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irina Nayvelt
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Mervi T. Hyvönen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Leena Alhonen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Ipsit Pandya
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Thresia Thomas
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Alex R. Khomutov
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Jouko Vepsäläinen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Rajesh Patel
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Tuomo A. Keinänen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - T. J. Thomas
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| |
Collapse
|
19
|
Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogues. Biochem J 2009; 422:321-8. [PMID: 19522702 DOI: 10.1042/bj20090737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The natural polyamines are ubiquitous multifunctional organic cations which play important roles in regulating cellular proliferation and survival. Here we present a novel approach to investigating polyamine functions by using optical isomers of MeSpd (alpha-methylspermidine) and Me2Spm (alpha,omega-bismethylspermine), metabolically stable functional mimetics of natural polyamines. We studied the ability of MeSpd and Me2Spm to alter the normal polyamine regulation pathways at the level of polyamine uptake and the major control mechanisms known to affect the key polyamine metabolic enzymes. These include: (i) ODC (ornithine decarboxylase), which catalyses the rate-limiting step of polyamine synthesis; (ii) ODC antizyme, an inhibitor of ODC and polyamine uptake; (iii) SSAT (spermidine/spermine N1-acetyltransferase), the major polyamine catabolic enzyme; and (iv) AdoMetDC (S-adenosyl-L-methionine decarboxylase), which is required for the conversion of putrescine into spermidine, and spermidine into spermine. We show that the stereoisomers differ in their cellular uptake and ability to downregulate ODC and AdoMetDC, and to induce SSAT. These effects are mediated by the ability of the enantiomers to induce +1 ribosomal frameshifting on ODC antizyme mRNA, to suppress the translation of AdoMetDC uORF (upstream open reading frame) and to regulate the alternative splicing of SSAT pre-mRNA. The unique effects of chiral polyamine analogues on polyamine metabolism may offer novel possibilities for studying the physiological functions, control mechanisms, and targets of the natural polyamines, as well as advance therapeutic drug development in cancer and other human health-related issues.
Collapse
|
20
|
Vuohelainen S, Pirinen E, Cerrada-Gimenez M, Keinänen TA, Uimari A, Pietilä M, Khomutov AR, Jänne J, Alhonen L. Spermidine is indispensable in differentiation of 3T3-L1 fibroblasts to adipocytes. J Cell Mol Med 2009; 14:1683-92. [PMID: 19538475 PMCID: PMC3829030 DOI: 10.1111/j.1582-4934.2009.00808.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3-L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis have remained ambiguous as the natural polyamines are readily interconvertible inside the cells. Here, we have defined the roles of spermidine and spermine in adipogenesis of 3T3-L1 cells by using (S’)- and (R’)- isomers of α-methylspermidine and (S,S’)-, (R,S)- and (R,R’)-diastereomers of α,ω-bismethylspermine. Polyamine depletion caused by α-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, prevented adipocyte differentiation by suppressing the expression of its key regulators, peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α. Adipogenesis was restored by supplementation of methylspermidine isomers but not of bismethylspermine diastereomers. Although both spermidine analogues supported adipocyte differentiation only (S)-methylspermidine was able to fully support cell growth after extended treatment with α-DFMO. The distinction between the spermidine analogues in maintaining growth was found to be in their different capability to maintain functional hypusine synthesis. However, the differential ability of spermidine analogues to support hypusine synthesis did not correlate with their ability to support differentiation. Our results show that spermidine, but not spermine, is essential for adipogenesis and that the requirement of spermidine for adipogenesis is not strictly associated with hypusine modification. The involvement of polyamines in the regulation of adipogenesis may offer a potential application for the treatment of dysfunctional adipocytes in patients with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Susanna Vuohelainen
- A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khomutov AR, Keinanen TA, Grigorenko NA, Hyvonen MT, Uimari A, Pietila M, Cerrada-Gimenez M, Simonian AR, Khomutov MA, Vepsalainen J, Alhonen L, Janne J. Methylated analogs of spermine and spermidine as tools to investigate cellular functions of polyamines and enzymes of their metabolism. Mol Biol 2009. [DOI: 10.1134/s0026893309020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
|
23
|
Hyvönen MT, Keinänen TA, Cerrada-Gimenez M, Sinervirta R, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J. Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis. J Biol Chem 2007; 282:34700-6. [PMID: 17901051 DOI: 10.1074/jbc.m704282200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have earlier shown that alpha-methylated spermidine and spermine analogues rescue cells from polyamine depletion-induced growth inhibition and maintain pancreatic integrity under severe polyamine deprivation. However, because alpha-methylspermidine can serve as a precursor of hypusine, an integral part of functional eukaryotic translation initiation factor 5A required for cell proliferation, and because alpha, omega-bismethylspermine can be converted to methylspermidine, it is not entirely clear whether the restoration of cell growth is actually attributable to hypusine formed from these polyamine analogues. Here, we have used optically active isomers of methylated spermidine and spermine and show that polyamine depletion-induced acute cytostasis in cultured cells could be reversed by all the isomers of the methylpolyamines irrespective of whether they served or not as precursors of hypusine. In transgenic rats with activated polyamine catabolism, all the isomers similarly restored liver regeneration and reduced plasma alpha-amylase activity associated with induced pancreatitis. Under the above experimental conditions, the (S, S)- but not the (R, R)-isomer of bismethylspermine was converted to methylspermidine apparently through the action of spermine oxidase strongly preferring the (S, S)-isomer. Of the analogues, however, only (S)-methylspermidine sustained cell growth during prolonged (more than 1 week) inhibition of polyamine biosynthesis. It was also the only isomer efficiently converted to hypusine, indicating that deoxyhypusine synthase likewise possesses hidden stereospecificity. Taken together, the results show that growth inhibition in response to polyamine depletion involves two phases, an acute and a late hypusine-dependent phase.
Collapse
Affiliation(s)
- Mervi T Hyvönen
- A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|