1
|
Zhang W, Wang Y, Ma Y, Duan Y, Zhang W, Che S, Fang Y. Enantioselective Abiotic Synthesis of Ribose on Chiral Mesostructured Hydroxyapatite. Angew Chem Int Ed Engl 2025:e202425581. [PMID: 40266672 DOI: 10.1002/anie.202425581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/24/2025]
Abstract
The prebiotic synthesis and symmetry breaking of ribose are crucial processes in the origin of life. However, the prebiotic emergence of enantiomerically enriched ribose on primitive Earth remains an unresolved challenge. Herein, we propose that the prebiotic enantioselective synthesis of ribose from glycolaldehyde and glyceraldehyde can be catalyzed by minerals naturally endowed with chiral structure. The chiral mesostructured hydroxyapatite films (CMHAPFs), which consist of lattice-distorted helical nanorods, can be formed under a hydrothermal condition in the presence of l/d-malic acid (MA), a compound that may have been present during the early stages of life's emergence. An enantiomeric excess (ee) of 22.5% for d-ribose was achieved on the d-CMHAPFs formed by d-MA. The adsorption conformation of d-ribose on the surface of right-handed hydroxyapatite is more stable than that of l-ribose. The different energy barriers for the transition states of ribose enantiomers result in the enantioselective synthesis of ribose, which is attributed to the similar conformation between ribose and the corresponding transition state. Our findings provide valuable insights into the possible role of chiral inorganics in the prebiotic synthesis and symmetry breaking of ribose.
Collapse
Affiliation(s)
- Wendi Zhang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Yao Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Wanning Zhang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Shunai Che
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Yuxi Fang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
2
|
Sastourné-Haletou R, Marynberg S, Pereira A, Su F, Chen M, Valet G, Sindikubwabo F, Cañeque T, Müller S, Colombeau L, Solier S, Gaillet C, Guianvarc'h D, Biot C, Karoyan P, Gueroui Z, Arimondo P, Klausen M, Vauzeilles B, Cossy J, Fontecave M, Gasser G, Policar C, Gautier A, Johannes L, Rodriguez R. PSL Chemical Biology Symposia: The Increasing Impact of Chemistry in Life Sciences. Chembiochem 2025:e2500231. [PMID: 40195606 DOI: 10.1002/cbic.202500231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Indexed: 04/09/2025]
Abstract
This symposium is the 6th Paris Sciences & Lettres (PSL) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024, 2025) being held at Institut Curie. This initiative originally started in 2013 at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette and was mostly focused on organic synthesis. It was then exported at Institut Curie to cover a larger scope, before becoming the official French Chemical Biology meeting. This year, around 200 participants had the opportunity to meet world leaders in chemistry and biology who described their latest innovations and future trends covering topics as diverse as prebiotic chemistry, activity-based protein profiling, high-resolution cell imaging, nanotechnologies, bio-orthogonal chemistry, metal ion signaling, ferroptosis, and biocatalysis.
Collapse
Affiliation(s)
- Romain Sastourné-Haletou
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Sacha Marynberg
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Arthur Pereira
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Fubao Su
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Mengnuo Chen
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Gaspard Valet
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Fabien Sindikubwabo
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Ludovic Colombeau
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Stéphanie Solier
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Christine Gaillet
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | | | - Christophe Biot
- UGSF, Université de Lille, UMR 8576 CNRS, 59655, Villeneuve d'Ascq, France
| | - Philippe Karoyan
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Zoher Gueroui
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Paola Arimondo
- Chimie Biologique Épigénétique, Institut Pasteur, UMR 3523 CNRS, 75724, Paris, France
| | - Maxime Klausen
- ICB, Chimie ParisTech, UMR 8060 CNRS, 75005, Paris, France
| | - Boris Vauzeilles
- ICSN, Université Paris-Saclay, UPR 2301 CNRS, 91190, Gif-sur-Yvette, France
| | | | - Marc Fontecave
- LCPB, Collège de France, UMR 8229 CNRS, 75005, Paris, France
| | - Gilles Gasser
- ICB, Chimie ParisTech, UMR 8060 CNRS, 75005, Paris, France
| | - Clotilde Policar
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Arnaud Gautier
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Ludger Johannes
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| |
Collapse
|
3
|
White S, Rimmer PB. Do-Nothing Prebiotic Chemistry: Chemical Kinetics as a Window into Prebiotic Plausibility. Acc Chem Res 2025; 58:1-10. [PMID: 39699111 PMCID: PMC11713876 DOI: 10.1021/acs.accounts.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
ConspectusOrigin of Life research is a fast growing field of study with each year bringing new breakthroughs. Recent discoveries include novel syntheses of life's building blocks, mechanisms of activation and interaction between molecules, and newly identified environments that provide promising conditions for these syntheses and mechanisms. Even with these new findings, firmly grounded in rigorous laboratory experiments, researchers often find themselves uncertain about how to apply them. How can a bridge be built between the laboratory and the geochemical environment? A critical question to ask when seeking to apply new results in origins is: how can this chemistry occur without direct intervention from a chemist? We believe the first step toward answering this question lies in the determination of rate constants and the construction of chemical networks to describe prebiotic chemistry in geochemical environments.So far, our group has measured several rate constants relevant to different prebiotic reaction networks, starting with the synthetic pathways of the cyanosulfidic network. The reactions we explore often involve ultraviolet light-driven photochemistry, facilitated by our StarLab setup that accurately simulates the spectrum of the young Sun and other stars. Our latest work investigates environments with active photochemistry in the absence of cyanide. In this study, we measure the effective rate constant for the production of formate from the reduction of carbon species using sulfite within the context of early Martian waters. The underlying goal of the work done in our group is to predict the likelihood that certain geological conditions will result in a specific set of chemical products. These predictions can be combined with those we have made for the necessary astrophysical conditions in certain origins of life scenarios on extrasolar planets.In the near future we expect that a sufficient number of rate constants will be measured, by our group and others, to allow for aspects of prebiotic chemistry to be predicted using chemical kinetics models. Once these models have been benchmarked against experimental data, our next step will be applying them to natural environments that better mimic the conditions thought to have been present at the onset of life. Following this, we can test these models by comparing their predictions to additional experiments. After refinement, these models will be able to provide guidance on the optimal conditions for conducting laboratory experiments, while helping to minimize and characterize any interference from a chemist.This approach can provide valuable insights into what is possible within geochemical environments, where all chemistry is by necessity do-nothing chemistry.
Collapse
Affiliation(s)
- Skyla
B. White
- Astrophysics Group, Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Paul B. Rimmer
- Astrophysics Group, Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
4
|
Jarois DR, Schimmelpfennig LE, Gellman SH. A New Mechanism for Formation of Glycine from Glyoxylic Acid: the Aza-Cannizzaro Reaction. Chemistry 2024; 30:e202403202. [PMID: 39349361 DOI: 10.1002/chem.202403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/02/2024]
Abstract
Glyoxylic acid and glycine are widely considered to have been important prebiotic building blocks. Several mechanistic routes have been previously examined for conversion of glyoxylic acid to glycine. Here we provide evidence for a new mechanistic path. Glycine is spontaneously formed from glyoxylic acid in ammonium-rich aqueous solutions at neutral pH; oxamic acid is generated as well. Hydride transfer from the glyoxylate-derived hemiaminal to the corresponding iminium ion appears to underlie this transformation. This proposed mechanism parallels the well-known Cannizzaro reaction mechanism, which leads us to suggest the designation "aza-Cannizzaro reaction." This discovery offers a new perspective on prebiotic nitrogen incorporation because glycine can be a source of nitrogen for more complex molecules, including other α-amino acids.
Collapse
Affiliation(s)
- Dean R Jarois
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, United States
| | - Lars E Schimmelpfennig
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, United States
| |
Collapse
|
5
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
6
|
Könnyű B, Szathmáry E, Czárán T, Szilágyi A. Kinetics and coexistence of autocatalytic reaction cycles. Sci Rep 2024; 14:18441. [PMID: 39117739 PMCID: PMC11310475 DOI: 10.1038/s41598-024-69267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Biological reproduction rests ultimately on chemical autocatalysis. Autocatalytic chemical cycles are thought to have played an important role in the chemical complexification en route to life. There are two, related issues: what chemical transformations allow such cycles to form, and at what speed they are operating. Here we investigate the latter question for solitary as well as competitive autocatalytic cycles in resource-unlimited batch and resource-limited chemostat systems. The speed of growth tends to decrease with the length of a cycle. Reversibility of the reproductive step results in parabolic growth that is conducive to competitive coexistence. Reversibility of resource uptake also slows down growth. Unilateral help by a cycle of its competitor tends to favour the competitor (in effect a parasite on the helper), rendering coexistence unlikely. We also show that deep learning is able to predict the outcome of competition just from the topology and the kinetic rate constants, provided the training set is large enough. These investigations pave the way for studying autocatalytic cycles with more complicated coupling, such as mutual catalysis.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Tamás Czárán
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary.
| | - András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| |
Collapse
|
7
|
Kirschning A. Why pyridoxal phosphate could be a functional predecessor of thiamine pyrophosphate and speculations on a primordial metabolism. RSC Chem Biol 2024; 5:508-517. [PMID: 38846080 PMCID: PMC11151856 DOI: 10.1039/d4cb00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
The account attempts to substantiate the hypothesis that, from an evolutionary perspective, the coenzyme couple pyridoxal phosphate and pyridoxamine phosphate preceded the coenzyme thiamine pyrophosphate and acted as its less efficient chemical analogue in some form of early metabolism. The analysis combines mechanism-based chemical reactivity with biosynthetic arguments and provides evidence that vestiges of "TPP-like reactivity" are still found for PLP today. From these thoughts, conclusions can be drawn about the key elements of a primordial form of metabolism, which includes the citric acid cycle, amino acid biosynthesis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B 30167 Hannover Germany
- Uppsala Biomedical Center (BMC), University Uppsala, Husargatan 3 752 37 Uppsala Sweden
| |
Collapse
|
8
|
Ohata J. Friedel-Crafts reactions for biomolecular chemistry. Org Biomol Chem 2024; 22:3544-3558. [PMID: 38624091 DOI: 10.1039/d4ob00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
9
|
Konieczna J, Wrońska K, Kalińska M, Liberek B, Nowacki A. Conformational preferences of guanine-containing threose nucleic acid building blocks in B3LYP studies. Carbohydr Res 2024; 537:109055. [PMID: 38373388 DOI: 10.1016/j.carres.2024.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
In this paper, detailed and systematic gas-phase B3LYP conformational studies of four monomers of threose nucleic acid (TNA) with guanine attached at the C1' atom and bearing different substituents (OH, OP(=O)OH2 and OCH3) in the C2' and C3' positions of the α-l-threofuranose moiety are presented. All exocyclic single-bond (χ, ε and γ) rotations, as well as the ν0-ν4 endocyclic torsion angles, were taken into consideration. Three (threoguanosines TG1-TG3) or two (TG4) energy minima were found for the rotation about the χ torsion angle. The syn orientation (the A rotamer family) is strongly privileged in geometries TG1 and TG2, whereas the anti orientation (the C rotamer family) and the syn orientation are observed to be in equilibrium (with populations of 56% and 44%, respectively) for TG3. In the case of TG4, the high-anti orientation (the B rotamer family) turned out to be by far the most favourable, with the contribution exceeding 90% in equilibrium. Such a preference can be attributed to the inability of H-bonding between sugar and nucleobase and possibly because of the steric strains. The low-energy conformers of TG1-TG4 occupy the northeastern (P ∼ 40°) and/or southern (P ∼ 210°) parts of the pseudorotational wheel, which fits the A- and B-type DNA helices quite well. Additionally, in the case of TG4, some relatively stable geometries have the furanoid ring in conformation lying on the northwestern part of the pseudorotational wheel (P ∼ 288°).
Collapse
Affiliation(s)
- Justyna Konieczna
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Karolina Wrońska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Marta Kalińska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland.
| |
Collapse
|
10
|
Smith HB, Mathis C. Life detection in a universe of false positives: Can the Fatal Flaws of Exoplanet Biosignatures be Overcome Absent a Theory of Life? Bioessays 2023; 45:e2300050. [PMID: 37821360 DOI: 10.1002/bies.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Astrobiology aims to determine the distribution and diversity of life in the universe. But as the word "biosignature" suggests, what will be detected is not life itself, but an observation implicating living systems. Our limited access to other worlds suggests this observation is more likely to reflect out-of-equilibrium gasses than a writhing octopus. Yet, anything short of a writhing octopus will raise skepticism about what has been detected. Resolving that skepticism requires a theory to delineate processes due to life and those due to abiotic mechanisms. This poses an existential question for life detection: How do astrobiologists plan to detect life on exoplanets via features shared between non-living and living systems? We argue that you cannot without an underlying theory of life. We illustrate this by analyzing the hypothetical detection of an "Earth 2.0" exoplanet. Without a theory of life, we argue the community should focus on identifying unambiguous features of life via four areas: examining life on Earth, building life in the lab, probing the solar system, and searching for technosignatures. Ultimately, we ask, what exactly do astrobiologists hope to learn by searching for life?
Collapse
Affiliation(s)
- Harrison B Smith
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Cole Mathis
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
11
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
12
|
Yi R, Mojica M, Fahrenbach AC, James Cleaves H, Krishnamurthy R, Liotta CL. Carbonyl Migration in Uronates Affords a Potential Prebiotic Pathway for Pentose Production. JACS AU 2023; 3:2522-2535. [PMID: 37772180 PMCID: PMC10523364 DOI: 10.1021/jacsau.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Carbohydrate biosynthesis is fundamental to modern terrestrial biochemistry, but how this collection of metabolic pathways originated remains an open question. Prebiotic sugar synthesis has focused primarily on the formose reaction and Kiliani-Fischer homologation; however, how they can transition to extant biochemical pathways has not been studied. Herein, a nonenzymatic pathway for pentose production with similar chemical transformations as those of the pentose phosphate pathway is demonstrated. Starting from a C6 aldonate, namely, gluconate, nonselective chemical oxidation yields a mixture of 2-oxo-, 4-oxo-, 5-oxo-, and 6-oxo-uronate regioisomers. Regardless at which carbinol the oxidation takes place, carbonyl migration enables β-decarboxylation to yield pentoses. In comparison, the pentose phosphate pathway selectively oxidizes 6-phosphogluconate to afford the 3-oxo-uronate derivative, which undergoes facile subsequent β-decarboxylation and carbonyl migration to afford ribose 5-phosphate. The similarities between these two pathways and the potential implications for prebiotic chemistry and protometabolism are discussed.
Collapse
Affiliation(s)
- Ruiqin Yi
- Earth-Life
Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mike Mojica
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Albert C. Fahrenbach
- School
of Chemistry, Australian Centre for Astrobiology and the UNSW RNA
Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - H. James Cleaves
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | | | - Charles L. Liotta
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Tran QP, Yi R, Fahrenbach AC. Towards a prebiotic chemoton - nucleotide precursor synthesis driven by the autocatalytic formose reaction. Chem Sci 2023; 14:9589-9599. [PMID: 37712016 PMCID: PMC10498504 DOI: 10.1039/d3sc03185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The formose reaction is often cited as a prebiotic source of sugars and remains one of the most plausible forms of autocatalysis on the early Earth. Herein, we investigated how cyanamide and 2-aminooxazole, molecules proposed to be present on early Earth and precursors for nonenzymatic ribonucleotide synthesis, mediate the formose reaction using HPLC, LC-MS and 1H NMR spectroscopy. Cyanamide was shown to delay the exponential phase of the formose reaction by reacting with formose sugars to form 2-aminooxazole and 2-aminooxazolines thereby diverting some of these sugars from the autocatalytic cycle, which nonetheless remains intact. Masses for tetrose and pentose aminooxazolines, precursors for nucleotide synthesis including TNA and RNA, were also observed. The results of this work in the context of the chemoton model are further discussed. Additionally, we highlight other prebiotically plausible molecules that could have mediated the formose reaction and alternative prebiotic autocatalytic systems.
Collapse
Affiliation(s)
- Quoc Phuong Tran
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney NSW 2052 Australia
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo 152-8550 Japan
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney NSW 2052 Australia
- UNSW RNA Institute, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
14
|
Parr JM, Crimmin MR. Carbon-Carbon Bond Formation from Carbon Monoxide and Hydride: The Role of Metal Formyl Intermediates. Angew Chem Int Ed Engl 2023; 62:e202219203. [PMID: 36795352 PMCID: PMC10962544 DOI: 10.1002/anie.202219203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
Current examples of carbon chain production from metal formyl intermediates with homogeneous metal complexes are described in this Minireview. Mechanistic aspects of these reactions as well as the challenges and opportunities in using this understanding to develop new reactions of CO and H2 are also discussed.
Collapse
Affiliation(s)
- Joseph M. Parr
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneShepherds Bush, LondonW12 0BZUK
| | - Mark R. Crimmin
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneShepherds Bush, LondonW12 0BZUK
| |
Collapse
|
15
|
Shalayel I, Leqraa N, Blandin V, Vallée Y. Straightforward Creation of Possibly Prebiotic Complex Mixtures of Thiol-Rich Peptides. Life (Basel) 2023; 13:life13040983. [PMID: 37109512 PMCID: PMC10145665 DOI: 10.3390/life13040983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
At the origin of life, extremely diverse mixtures of oligomers and polymers could be obtained from relatively simple molecular bricks. Here, we present an example of the polymerization of two amidonitriles derived from cysteine, Cys-Ala-CN and Cys-Met-CN. The thiol function in a molecule adds onto the nitrile group of another one, allowing efficient condensation reactions and making available an extensive range of polymers containing amide bonds and/or five-membered heterocycles, namely thiazolines. Macrocycles were also identified, the biggest one containing sixteen residues (cyclo(Cys-Met)8). MALDI-TOF mass spectrometry was used to identify all the present species. What these examples show is that complex mixtures are likely to have formed on the primitive Earth and that, ultimately, the selection that must have followed may have been an even more crucial step towards life than the synthesis of the pre-biological species themselves.
Collapse
Affiliation(s)
- Ibrahim Shalayel
- Université Grenoble Alpes, TIMC-IMAG, CNRS, F-38000 Grenoble, France
| | - Naoual Leqraa
- Université Grenoble Alpes, DCM, CNRS, F-38000 Grenoble, France
| | | | - Yannick Vallée
- Université Grenoble Alpes, DCM, CNRS, F-38000 Grenoble, France
| |
Collapse
|
16
|
Kadyshevich EA, Ostrovskii VE. From Minerals to Simplest Living Matter: Life Origination Hydrate Theory. Acta Biotheor 2023; 71:13. [PMID: 36976380 PMCID: PMC10043859 DOI: 10.1007/s10441-023-09463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Long since, people tried to solve the mystery of the way that led to the appearance and propagation of living entities. However, no harmonious understanding of this mystery existed, because neither the scientifically grounded source minerals nor the ambient conditions were proposed and because it was groundlessly taken that the process of living matter origination is endothermal. The Life Origination Hydrate Theory (LOH-Theory) first suggests the chemical way capable of leading from the specified abundant natural minerals to origination of multitudes of multitudes of simplest living entities and gives an original explanation for the phenomena of chirality and racemization delay. The LOH-Theory covers the period up to origination of the genetic code. The LOH-Theory is grounded on the following three discoveries based on the available information and on the results of our experimental works performed using original instrumentation and computer simulations. (1) There is the only one triad of natural minerals applicable for exothermal thermodynamically possible chemical syntheses of simplest living-matter components. (2) N-base, ribose, and phosphdiester radicals and nucleic acids as whole are size-compatible with structural gas-hydrate cavities. (3) The gas-hydrate structure arises around amido-groups in cooled undisturbed systems consisting of water and highly-concentrated functional polymers with amido-groups.The natural conditions and historic periods favorable for simplest living matter origination are revealed. The LOH-Theory is supported by results of observations, biophysical and biochemical experiments, and wide application of original three-dimensional and two-dimensional computer simulations of biochemical structures within gas-hydrate matrix. The instrumentation and procedures for experimental verification of the LOH-Theory are suggested. If future experiments are successful, they, possibly, could be the first step on the way to industrial synthesis of food from minerals, i.e., to execution of the work that is performed by plants.
Collapse
Affiliation(s)
- Elena A. Kadyshevich
- Obukhov Institute of Atmospheric Physics RAS, Pyzhevsky Side-Str. 3, Moscow, 119017 Russia
| | - Victor E. Ostrovskii
- Karpov Institute of Physical Chemistry present address, Kiev Highway Str. 6 , Obninsk, Kaluga region, 249033 Russia
| |
Collapse
|
17
|
Paczelt V, Wende RC, Schreiner PR, Eckhardt AK. Glycine Imine-The Elusive α-Imino Acid Intermediate in the Reductive Amination of Glyoxylic Acid. Angew Chem Int Ed Engl 2023; 62:e202218548. [PMID: 36656102 DOI: 10.1002/anie.202218548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Simple unhindered aldimines tend to hydrolyze or oligomerize and are therefore spectroscopically not well characterized. Herein we report the formation and spectroscopic characterization of the simplest imino acid, namely glycine imine, by cryogenic matrix isolation IR and UV/Vis spectroscopy. Glycine imine forms after UV irradiation of 2-azidoacetic acid by N2 extrusion in anti-(E,E)- and anti-(Z,Z)-conformation that can be photochemically interconverted. In matrix isolation pyrolysis experiments with 2-azidoacetic acid, glycine imine cannot be trapped as it further decarboxylates to aminomethylene. In aqueous solution glycine imine is hydrolyzed to hydroxy glycine and hydrated glyoxylic acid. At higher concentrations or in the presence of FeII SO4 as a reducing agent glycine imine undergoes self-reduction by oxidative decarboxylation chemistry. Glycine imine may be seen as one of the key reaction intermediates connecting prebiotic amino acid and sugar formation chemistry.
Collapse
Affiliation(s)
- Viktor Paczelt
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - André K Eckhardt
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
18
|
Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells. Life (Basel) 2023; 13:life13020523. [PMID: 36836881 PMCID: PMC9966593 DOI: 10.3390/life13020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
How functional peptides may have arisen is a significant problem for the scenario of the RNA world. An attractive idea, the direct RNA template (DRT) hypothesis, proposes that RNA molecules can bind amino acids specifically and promote the synthesis of corresponding peptides, thereby starting the RNA/peptides world. To investigate the plausibility of this idea, we modeled the emergence of a "membrane-stabilizing peptide" in RNA-based protocells-such a peptide was suggested to have appeared early in the RNA world based on experimental evidence. The computer simulation demonstrated that the protocells containing the "RNA gene" encoding this peptide may spread in the system owing to the peptide's function. The RNA gene may either originate de novo in protocells or emerge in protocells already containing ribozymes-here we adopt a nucleotide synthetase ribozyme as an example. Furthermore, interestingly, we show that a "nucleotide synthetase peptide" encoded by RNA (also via the DRT mechanism) may substitute the nucleotide synthetase ribozyme in evolution, which may represent how "functional-takeover" in the RNA world could have occurred. Overall, we conclude that the transition from the RNA world towards an RNA/peptides world may well have been mediated by the DRT mechanism. Remarkably, the successful modeling on the emergence of membrane-stabilizing peptide in RNA-based protocells is per se significant, which may imply a "promising" way for peptides to enter the RNA world, especially considering the weak interaction between RNA and the membrane in chemistry.
Collapse
|
19
|
Roche TP, Fialho DM, Menor-Salván C, Krishnamurthy R, Schuster GB, Hud NV. A Plausible Prebiotic Path to Nucleosides: Ribosides and Related Aldosides Generated from Ribulose, Fructose, and Similar Abiotic Precursors. Chemistry 2023; 29:e202203036. [PMID: 36261321 DOI: 10.1002/chem.202203036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 12/12/2022]
Abstract
The prebiotic origins of ribose, nucleosides, and eventually RNA are enduring questions whose answers are central to the RNA world hypothesis. The abiotic synthesis of sugars was first demonstrated over a century ago, but no known prebiotic reaction produces ribose (an aldose sugar) selectively and in good yield. In contrast, ribulose, and fructose (ketose sugars) and other monosaccharides are formed in high yield by several robust abiotic reactions. It is reported here that ketose sugars - both ketopentoses and ketohexoes - serve as precursors for the formation of ribosides and other aldosides, as demonstrated by glycoside-forming reactions involving barbituric acid, a plausibly prebiotic nucleobase. Moreover, a one-pot reaction of glyceraldehyde and barbituric acid was discovered which under mild conditions, and without special minerals or other catalysts, results in the formation of glycosides. These results reveal that an exclusive or high-yielding generation of free ribose was not required for its incorporation into processes that provided the foundations for life.
Collapse
Affiliation(s)
- Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - David M Fialho
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Cesar Menor-Salván
- Departmento de Biología de Sistemas/IQAR, Universidad de Alcalá, Madrid, 28806, Spain
| | | | - Gary B Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Magalhães ÁF, Powner MW. Prebiotic triose glycolysis promoted by co-catalytic proline and phosphate in neutral water. Chem Commun (Camb) 2022; 58:13519-13522. [PMID: 36398592 DOI: 10.1039/d2cc05466c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proline and phosphate promote a near-quantitative aldol reaction between glycolaldehyde phosphate and formaldehyde at neutral pH in water. Our results demonstrate the important role of general acid-base catalysis in water and underscore the essential role that amino acid catalysis may have played in early evolution of life's core metabolic pathways.
Collapse
Affiliation(s)
- Álvaro F Magalhães
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
21
|
Xu F, Crisp A, Schinkel T, Dubini RCA, Hübner S, Becker S, Schelter F, Rovó P, Carell T. Isoxazole Nucleosides as Building Blocks for a Plausible Proto-RNA. Angew Chem Int Ed Engl 2022; 61:e202211945. [PMID: 36063071 PMCID: PMC9828505 DOI: 10.1002/anie.202211945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 01/12/2023]
Abstract
The question of how RNA, as the principal carrier of genetic information evolved is fundamentally important for our understanding of the origin of life. The RNA molecule is far too complex to have formed in one evolutionary step, suggesting that ancestral proto-RNAs (first ancestor of RNA) may have existed, which evolved over time into the RNA of today. Here we show that isoxazole nucleosides, which are quickly formed from hydroxylamine, cyanoacetylene, urea and ribose, are plausible precursors for RNA. The isoxazole nucleoside can rearrange within an RNA-strand to give cytidine, which leads to an increase of pairing stability. If the proto-RNA contains a canonical seed-nucleoside with defined stereochemistry, the seed-nucleoside can control the configuration of the anomeric center that forms during the in-RNA transformation. The results demonstrate that RNA could have emerged from evolutionarily primitive precursor isoxazole ribosides after strand formation.
Collapse
Affiliation(s)
- Felix Xu
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Antony Crisp
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thea Schinkel
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Romeo C. A. Dubini
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Sarah Hübner
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Sidney Becker
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Current address: Max Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Florian Schelter
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Petra Rovó
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Current address: Institute of Science and Technology Austria (ISTA)Am Campus 13400KlosterneuburgAustria
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
22
|
Pérez-Fernández C, Vega J, Rayo-Pizarroso P, Mateo-Marti E, Ruiz-Bermejo M. Prebiotic synthesis of noncanonical nucleobases under plausible alkaline hydrothermal conditions. Sci Rep 2022; 12:15140. [PMID: 36071125 PMCID: PMC9452575 DOI: 10.1038/s41598-022-19474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Herein, the potential of alkaline hydrothermal environments for the synthesis of possible ancestral pre-RNA nucleobases using cyanide as a primary source of carbon and nitrogen is described. Water cyanide polymerizations were assisted by microwave radiation to obtain high temperature and a relatively high pressure (MWR, 180 °C, 15 bar) and were also carried out using a conventional thermal system (CTS, 80 °C, 1 bar) to simulate subaerial and aerial hydrothermal conditions, respectively, on the early Earth. For these syntheses, the initial concentration of cyanide and the diffusion effects were studied. In addition, it is well known that hydrolysis conditions are directly related to the amount and diversity of organic molecules released from cyanide polymers. Thus, as a first step, we studied the effect of several hydrolysis procedures, generally used in prebiotic chemistry, on some of the potential pre-RNA nucleobases of interest, together with some of their isomers and/or deamination products, also presumably formed in these complex reactions. The results show that the alkaline hydrothermal scenarios with a relatively constant pH are good geological scenarios for the generation of noncanonical nucleobases using cyanide as a prebiotic precursor.
Collapse
Affiliation(s)
- Cristina Pérez-Fernández
- Centro de Astrobiología (CAB) CSIC-INTA, Dpto. Evolución Molecular, Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Jorge Vega
- Centro de Astrobiología (CAB) CSIC-INTA, Dpto. Evolución Molecular, Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Pedro Rayo-Pizarroso
- Centro de Astrobiología (CAB) CSIC-INTA, Dpto. Evolución Molecular, Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Eva Mateo-Marti
- Centro de Astrobiología (CAB) CSIC-INTA, Dpto. Evolución Molecular, Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Marta Ruiz-Bermejo
- Centro de Astrobiología (CAB) CSIC-INTA, Dpto. Evolución Molecular, Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
23
|
Amante G, Sponer JE, Sponer J, Saija F, Cassone G. A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1012. [PMID: 35892991 PMCID: PMC9394336 DOI: 10.3390/e24081012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022]
Abstract
The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.
Collapse
Affiliation(s)
- Gabriele Amante
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, Università degli Studi di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Judit E. Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czech Republic; (J.E.S.); (J.S.)
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czech Republic; (J.E.S.); (J.S.)
| | - Franz Saija
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), V. le F. Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), V. le F. Stagno d’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
24
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
25
|
Thripati S. Computational studies on the possible formation of glycine via open shell gas-phase chemistry in the interstellar medium. Org Biomol Chem 2022; 20:4189-4203. [PMID: 35543204 DOI: 10.1039/d2ob00407k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycine is the simplest proteinogenic amino acid. It has significant astrobiological implications owing to the ongoing investigation for its detection in the interstellar medium (ISM). Hence, a suitable mechanistic elucidation for its formation in the ISM is of current research interest. In the present work, by employing electronic structure calculations [UCCSD(T) and density functional theory (DFT)], various plausible chemical pathways in the gas phase have been examined for the formation of glycine (whose existence has been indirectly proposed in the ISM) and other simple amino acids (yet to be detected in the ISM) from some simpler molecules present in the ISM. This work suggests that step 1: HO-CO (radical) + CH2NH → NHCH2COOH (radical) and step 2a: NHCH2COOH (radical) + H2 → glycine + H (radical) have very small barriers of 0.14 kcal mol-1 and ∼3 kcal mol-1, respectively (easily surmountable at a temperature of ∼50 K under putative interstellar conditions). Hence this should likely be feasible in interstellar gas-phase chemistry. Therefore, HO-CO (radical), CH2NH, and H2 could be the possible precursors for the formation of glycine (subject to the presence of the HO-CO radical). The energetic information related to the interstellar reactions, and how this work takes the putative interstellar conditions into account are presented. This paper also highlights how a reaction found to be unsuitable for interstellar molecular evolution via surface chemistry could nonetheless occur via gas-phase chemistry. Based on our results, this work also recommends detecting three new open-shell molecules, HO-CO radical, NHCH2COOH radical, and NH2CHCOOH radical, in the ISM.
Collapse
Affiliation(s)
- Sorakayala Thripati
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh - 517507, India.
| |
Collapse
|
26
|
Sallembien Q, Bouteiller L, Crassous J, Raynal M. Possible chemical and physical scenarios towards biological homochirality. Chem Soc Rev 2022; 51:3436-3476. [PMID: 35377372 DOI: 10.1039/d1cs01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The single chirality of biological molecules in terrestrial biology raises more questions than certitudes about its origin. The emergence of biological homochirality (BH) and its connection with the appearance of life have elicited a large number of theories related to the generation, amplification and preservation of a chiral bias in molecules of life under prebiotically relevant conditions. However, a global scenario is still lacking. Here, the possibility of inducing a significant chiral bias "from scratch", i.e. in the absence of pre-existing enantiomerically-enriched chemical species, will be considered first. It includes phenomena that are inherent to the nature of matter itself, such as the infinitesimal energy difference between enantiomers as a result of violation of parity in certain fundamental interactions, and physicochemical processes related to interactions between chiral organic molecules and physical fields, polarized particles, polarized spins and chiral surfaces. The spontaneous emergence of chirality in the absence of detectable chiral physical and chemical sources has recently undergone significant advances thanks to the deracemization of conglomerates through Viedma ripening and asymmetric auto-catalysis with the Soai reaction. All these phenomena are commonly discussed as plausible sources of asymmetry under prebiotic conditions and are potentially accountable for the primeval chiral bias in molecules of life. Then, several scenarios will be discussed that are aimed to reflect the different debates about the emergence of BH: extra-terrestrial or terrestrial origin (where?), nature of the mechanisms leading to the propagation and enhancement of the primeval chiral bias (how?) and temporal sequence between chemical homochirality, BH and life emergence (when?). Intense and ongoing theories regarding the emergence of optically pure molecules at different moments of the evolution process towards life, i.e. at the levels of building blocks of Life, of the instructed or functional polymers, or even later at the stage of more elaborated chemical systems, will be critically discussed. The underlying principles and the experimental evidence will be commented for each scenario with particular attention on those leading to the induction and enhancement of enantiomeric excesses in proteinogenic amino acids, natural sugars, and their intermediates or derivatives. The aim of this review is to propose an updated and timely synopsis in order to stimulate new efforts in this interdisciplinary field.
Collapse
Affiliation(s)
- Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
27
|
Paschek K, Kohler K, Pearce BKD, Lange K, Henning TK, Trapp O, Pudritz RE, Semenov DA. Possible Ribose Synthesis in Carbonaceous Planetesimals. Life (Basel) 2022; 12:404. [PMID: 35330155 PMCID: PMC8955445 DOI: 10.3390/life12030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022] Open
Abstract
The origin of life might be sparked by the polymerization of the first RNA molecules in Darwinian ponds during wet-dry cycles. The key life-building block ribose was found in carbonaceous chondrites. Its exogenous delivery onto the Hadean Earth could be a crucial step toward the emergence of the RNA world. Here, we investigate the formation of ribose through a simplified version of the formose reaction inside carbonaceous chondrite parent bodies. Following up on our previous studies regarding nucleobases with the same coupled physico-chemical model, we calculate the abundance of ribose within planetesimals of different sizes and heating histories. We perform laboratory experiments using catalysts present in carbonaceous chondrites to infer the yield of ribose among all pentoses (5Cs) forming during the formose reaction. These laboratory yields are used to tune our theoretical model that can only predict the total abundance of 5Cs. We found that the calculated abundances of ribose were similar to the ones measured in carbonaceous chondrites. We discuss the possibilities of chemical decomposition and preservation of ribose and derived constraints on time and location in planetesimals. In conclusion, the aqueous formose reaction might produce most of the ribose in carbonaceous chondrites. Together with our previous studies on nucleobases, we found that life-building blocks of the RNA world could be synthesized inside parent bodies and later delivered onto the early Earth.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
| | - Kai Kohler
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, House F, 81377 Munich, Germany
| | - Ben K. D. Pearce
- Origins Institute, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (B.K.D.P.); (R.E.P.)
- Department of Physics and Astronomy, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Kevin Lange
- Institute for Theoretical Astrophysics, Center for Astronomy, Heidelberg University, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany;
| | - Thomas K. Henning
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
| | - Oliver Trapp
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, House F, 81377 Munich, Germany
| | - Ralph E. Pudritz
- Origins Institute, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (B.K.D.P.); (R.E.P.)
- Department of Physics and Astronomy, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Dmitry A. Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, House F, 81377 Munich, Germany
| |
Collapse
|
28
|
Simple Ion-Gas Mixtures as a Source of Key Molecules Relevant to Prebiotic Chemistry. Molecules 2021; 26:molecules26237394. [PMID: 34885977 PMCID: PMC8659102 DOI: 10.3390/molecules26237394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Very simple chemistry can result in the rapid and high-yield production of key prebiotic inorganic molecules. The two reactions investigated here involve such simple systems, (a) carbon disulfide (CS2) and acetate (CH3COO¯) and (b) sulfur dioxide (SO2) and formate (HCOO¯). They have been carried out under non-aqueous conditions, either in an organic solvent or with a powdered salt exposed to the requisite gas. Under such dry conditions the first reaction generated the thioacetate anion [CH3COS]¯ while the second produced the radical [SO2·]¯anion. Anhydrous conditions are not rare and may have arisen on the early earth at sites where an interface between different phases (liquid/gas or solid/gas) could be generated. This is one way to rationalize the formation of molecules and ions (such as we have produced) necessary in the prebiotic world. Interpretation of our results provides insight into scenarios consistent with the more prominent theories of abiogenesis.
Collapse
|
29
|
Racemate Resolution of Alanine and Leucine on Homochiral Quartz, and Its Alteration by Strong Radiation Damage. Life (Basel) 2021; 11:life11111222. [PMID: 34833098 PMCID: PMC8622614 DOI: 10.3390/life11111222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
Homochiral proteins orchestrate biological functions throughout all domains of life, but the origin of the uniform l-stereochemistry of amino acids remains unknown. Here, we describe enantioselective adsorption experiments of racemic alanine and leucine onto homochiral d- and l-quartz as a possible mechanism for the abiotic emergence of biological homochirality. Substantial racemate resolution with enantiomeric excesses of up to 55% are demonstrated to potentially occur in interstitial pores, along grain boundaries or small fractures in local quartz-bearing environments. Our previous hypothesis on the enhanced enantioselectivity due to uranium-induced fission tracks could not be validated. Such capillary tubes in the near-surface structure of quartz have been proposed to increase the overall chromatographic separation of enantiomers, but no systematic positive correlation of accumulated radiation damage and enantioselective adsorption was observed in this study. In general, the natural l-quartz showed stronger enantioselective adsorption affinities than synthetic d-quartz without any significant trend in amino acid selectivity. Moreover, the l-enantiomer of both investigated amino acids alanine and leucine was preferably adsorbed regardless of the handedness of the enantiomorphic quartz sand. This lack of mirror symmetry breaking is probably due to the different crystal habitus of the synthetic z-bar of d-quartz and the natural mountain crystals of l-quartz used in our experiments.
Collapse
|
30
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self-Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021; 60:20120-20143. [PMID: 33704885 PMCID: PMC8453758 DOI: 10.1002/anie.202100274] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Life is a non-equilibrium state of matter maintained at the expense of energy. Nature uses predominantly chemical energy stored in thermodynamically activated, but kinetically stable, molecules. These high-energy molecules are exploited for the synthesis of other biomolecules, for the activation of biological machinery such as pumps and motors, and for the maintenance of structural order. Knowledge of how chemical energy is transferred to biochemical processes is essential for the development of artificial systems with life-like processes. Here, we discuss how chemical energy can be used to control the structural organization of organic molecules. Four different strategies have been identified according to a distinguishable physical-organic basis. For each class, one example from biology and one from chemistry are discussed in detail to illustrate the practical implementation of each concept and the distinct opportunities they offer. Specific attention is paid to the discussion of chemically fueled non-equilibrium self-assembly. We discuss the meaning of non-equilibrium self-assembly, its kinetic origin, and strategies to develop synthetic non-equilibrium systems.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Luca Gabrielli
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Leonard J. Prins
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
31
|
Villafañe-Barajas SA, Ruiz-Bermejo M, Rayo-Pizarroso P, Gálvez-Martínez S, Mateo-Martí E, Colín-García M. A Lizardite-HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life (Basel) 2021; 11:life11070661. [PMID: 34357033 PMCID: PMC8305185 DOI: 10.3390/life11070661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution. The named HCN polymers have been suggested as precursors of important bioorganics. Some novel researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of cyanide species, but until now, their role has been unclear. Understanding the role of minerals in chemical evolution processes is crucial because minerals undoubtedly interacted with the organic molecules formed on the early Earth by different process. Therefore, we simulated the probable interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h, 100 °C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were analyzed by several complementary analytical techniques. The results obtained suggest that: (I) the mineral surfaces can act as mediators in the mechanisms of organic molecule production such as the polymerization of HCN; (II) the thermal and physicochemical properties of the HCN polymer produced are affected by the presence of the mineral surface; and (III) serpentinite seems to inhibit the formation of bioorganic molecules compared with the control (without mineral).
Collapse
Affiliation(s)
- Saúl A. Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Marta Ruiz-Bermejo
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
- Correspondence: ; Tel.: +34-915206458; Fax: +34-915206410
| | - Pedro Rayo-Pizarroso
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
| | - Santos Gálvez-Martínez
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
| | - Eva Mateo-Martí
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
32
|
Thripati S, Ramabhadran RO. Pathways for the Formation of Formamide, a Prebiotic Biomonomer: Metal-Ions in Interstellar Gas-Phase Chemistry. J Phys Chem A 2021; 125:3457-3472. [PMID: 33861935 DOI: 10.1021/acs.jpca.1c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemistry occurring in the interstellar medium (ISM) is an active area of contemporary research. New aspects of interstellar chemistry are getting unraveled regularly. In this context, the role of metal-ions in the chemistry occurring in the ISM is not well-studied so far. Herein, we highlight the role of metal-ions in interstellar chemistry. For this purpose, we choose the problem of gas-phase formamide formation in interstellar molecular clouds. Formamide is a key biomonomer and contains the simplest peptide [-(C═O)-NH-] linkage. With its two electronegative atoms ("O" and "N"), it provides an excellent platform to probe the role of the metal-ions. The metal-ions chosen are Na+, K+, Al+, Mg+, and Mg2+-all of them present in the ISM. The metal-ions are studied in three different forms as bare positively charged ions, as hydrated metal-ions co-ordinated with a molecule of water, and when the metal-ions are part of a neutral covalent molecule. With the aid of electronic structure calculations [CCSD(T) and DFT methods], we study different gas-phase pathways which result in the generation of interstellar formamide. Throughout our study, we find that metal-ions lower the barriers (with Mg+, Mg++, and Al+ offering maximal stabilization of the transition states) and facilitate the reactions. The chemical factors influencing the reactions, how we consider the putative conditions in the ISM, the astrochemical implications of this study, and its connection with terrestrial prebiotic chemistry and refractory astrochemistry are subsequently presented. Based on our results, we also recommend the detection of two new closed-shell molecules, NH2CH2OH (aminomethanol) and CH2NH2+ (iminium ion), and two open-shell molecules, CONH2 (carbamyl radical) and HCONH (an isomer of carbamyl radical), in the ISM.
Collapse
Affiliation(s)
- Sorakayala Thripati
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati Andhra Pradesh 517507, India.,Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati Andhra Pradesh 517507, India.,Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
33
|
Banfalvi G. Prebiotic Pathway from Ribose to RNA Formation. Int J Mol Sci 2021; 22:ijms22083857. [PMID: 33917807 PMCID: PMC8068141 DOI: 10.3390/ijms22083857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
At the focus of abiotic chemical reactions is the synthesis of ribose. No satisfactory explanation was provided as to the missing link between the prebiotic synthesis of ribose and prebiotic RNA (preRNA). Hydrogen cyanide (HCN) is assumed to have been the principal precursor in the prebiotic formation of aldopentoses in the formose reaction and in the synthesis of ribose. Ribose as the best fitting aldopentose became the exclusive sugar component of RNA. The elevated yield of ribose synthesis at higher temperatures and its protection from decomposition could have driven the polymerization of the ribose-phosphate backbone and the coupling of nucleobases to the backbone. RNA could have come into being without the involvement of nucleotide precursors. The first nucleoside monophosphate is likely to have appeared upon the hydrolysis of preRNA contributed by the presence of reactive 2′-OH moieties in the preRNA chain. As a result of phosphorylation, nucleoside monophosphates became nucleoside triphosphates, substrates for the selective synthesis of genRNA.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, 4010 Debrecen, Hungary
| |
Collapse
|
34
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self‐Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
35
|
Abstract
HCN-derived polymers are a heterogeneous group of complex substances synthesized from pure HCN; from its salts; from its oligomers, specifically its trimer and tetramer, amino-nalono-nitrile (AMN) and diamino-maleo-nitrile (DAMN), respectively; or from its hydrolysis products, such as formamide, under a wide range of experimental conditions. The characteristics and properties of HCN-derived polymers depend directly on the synthetic conditions used for their production and, by extension, their potential applications. These puzzling systems have been known mainly in the fields of prebiotic chemistry and in studies on the origins of life and astrobiology since the first prebiotic production of adenine by Oró in the early years of the 1960s. However, the first reference regarding their possible role in prebiotic chemistry was mentioned in the 19th century by Pflüger. Currently, HCN-derived polymers are considered keys in the formation of the first and primeval protometabolic and informational systems, and they may be among the most readily formed organic macromolecules in the solar system. In addition, HCN-derived polymers have attracted a growing interest in materials science due to their potential biomedical applications as coatings and adhesives; they have also been proposed as valuable models for multifunctional materials with emergent properties such as semi-conductivity, ferroelectricity, catalysis and photocatalysis, and heterogeneous organo-synthesis. However, the real structures and the formation pathways of these fascinating substances have not yet been fully elucidated; several models based on either computational approaches or spectroscopic and analytical techniques have endeavored to shed light on their complete nature. In this review, a comprehensive perspective of HCN-derived polymers is presented, taking into account all the aspects indicated above.
Collapse
|
36
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
37
|
Zimmermann P, Ar D, Rößler M, Holze P, Cula B, Herwig C, Limberg C. Selective Transformation of Nickel‐Bound Formate to CO or C−C Coupling Products Triggered by Deprotonation and Steered by Alkali‐Metal Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philipp Zimmermann
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Deniz Ar
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Marie Rößler
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Patrick Holze
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Cula
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Herwig
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Limberg
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
38
|
Zimmermann P, Ar D, Rößler M, Holze P, Cula B, Herwig C, Limberg C. Selective Transformation of Nickel-Bound Formate to CO or C-C Coupling Products Triggered by Deprotonation and Steered by Alkali-Metal Ions. Angew Chem Int Ed Engl 2021; 60:2312-2321. [PMID: 33084156 PMCID: PMC7898393 DOI: 10.1002/anie.202010180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Indexed: 11/23/2022]
Abstract
The complexes [LtBu Ni(OCO-κ2 O,C)]M3 [N(SiMe3 )2 ]2 (M=Li, Na, K), synthesized by deprotonation of a nickel formate complex [LtBu NiOOCH] with the corresponding amides M[N(SiMe3 )2 ], feature a NiII -CO2 2- core surrounded by Lewis-acidic cations (M+ ) and the influence of the latter on the behavior and reactivity was studied. The results point to a decrease of CO2 activation within the series Li, Na, and K, which is also reflected in the reactivity with Me3 SiOTf leading to the liberation of CO and formation of a Ni-OSiMe3 complex. Furthermore, in case of K+ , the {[K3 [N(SiMe3 )2 ]2 }+ shell around the Ni-CO2 2- entity was shown to have a large impact on its stabilization and behavior. If the number of K[N(SiMe3 )2 ] equivalents used in the reaction with [LtBu NiOOCH] is decreased from 3 to 0.5, the deprotonated part of the precursor enters a complex reaction sequence with formation of [LtBu NiI (μ-OOCH)NiI LtBu ]K and [LtBu Ni(C2 O4 )NiLtBu ]. The same reaction at higher concentrations additionally led to the formation of a unique hexanuclear NiII complex containing both oxalate and mesoxalate ([O2 C-CO2 -CO2 ]4- ) ligands.
Collapse
Affiliation(s)
- Philipp Zimmermann
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Deniz Ar
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Marie Rößler
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Patrick Holze
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Beatrice Cula
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Herwig
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Limberg
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
39
|
Wu LF, Liu Z, Sutherland JD. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem Commun (Camb) 2021; 57:73-76. [PMID: 33242043 PMCID: PMC7808311 DOI: 10.1039/d0cc06042a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
A novel mechanism enabling selective peptide elongation by coupling α-amino acids over other potentially competing prebiotic amines under acidic aqueous condition is suggested. It proceeds via the generation of a carboxylic acid anhydride intermediate with subsequent intramolecular formation of the amide bond.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
40
|
Hortal L, Pérez-Fernández C, de la Fuente JL, Valles P, Mateo-Martí E, Ruiz-Bermejo M. A dual perspective on the microwave-assisted synthesis of HCN polymers towards the chemical evolution and design of functional materials. Sci Rep 2020; 10:22350. [PMID: 33339853 PMCID: PMC7749158 DOI: 10.1038/s41598-020-79112-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022] Open
Abstract
In this paper, the first study on NH4CN polymerization induced by microwave radiation is described, where a singular kinetic behaviour, especially when this reaction is conducted in the absence of air, is found. As a result, a complex conjugated N-heterocyclic polymer system is obtained, whose properties are very different, and even improved according to morphological features, characterized by their X-ray diffraction patterns and scanning electron microscopy analysis, with respect to those produced under conventional thermal treatment. In addition, a wide variety of relevant bioorganics have been identified, such as amino acids, nucleobases, co-factors, etc., from the synthetized NH4CN polymers. These particular families of polymers are of high interest in the fields of astrobiology and prebiotic chemistry and, more recently, in the development of smart multifunctional materials. From an astrobiological perspective, microwave-driven syntheses may simulate hydrothermal environments, which are considered ideal niches for increasing organic molecular complexity, and eventually as scenarios for an origin of life. From an industrial point of view and for potential applications, a microwave irradiation process leads to a notable decrease in the reaction times, and tune the properties of these new series macromolecular systems. The characteristics found for these materials encourage the development of further systematic research on this alternative HCN polymerization.
Collapse
Affiliation(s)
- Lucía Hortal
- Dpto. Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir, km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Cristina Pérez-Fernández
- Dpto. Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir, km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - José L de la Fuente
- Instituto Nacional de Técnica Aeroespacial "Esteban Terradas" (INTA), Ctra. Torrejón-Ajalvir, km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Pilar Valles
- Instituto Nacional de Técnica Aeroespacial "Esteban Terradas" (INTA), Ctra. Torrejón-Ajalvir, km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Eva Mateo-Martí
- Dpto. Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir, km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Marta Ruiz-Bermejo
- Dpto. Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir, km 4, 28850, Torrejón de Ardoz, Madrid, Spain.
| |
Collapse
|
41
|
Kruse FM, Teichert JS, Trapp O. Prebiotic Nucleoside Synthesis: The Selectivity of Simplicity. Chemistry 2020; 26:14776-14790. [PMID: 32428355 PMCID: PMC7756251 DOI: 10.1002/chem.202001513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/10/2020] [Indexed: 12/29/2022]
Abstract
Ever since the discovery of nucleic acids 150 years ago,[1] major achievements have been made in understanding and decrypting the fascinating scientific questions of the genetic code.[2] However, the most fundamental question about the origin and the evolution of the genetic code remains a mystery. How did nature manage to build up such intriguingly complex molecules able to encode structure and function from simple building blocks? What conditions were required? How could the precursors survive the unhostile environment of early Earth? Over the past decades, promising synthetic concepts were proposed providing clarity in the field of prebiotic nucleic acid research. In this Minireview, we show the current status and various approaches to answer these fascinating questions.
Collapse
Affiliation(s)
- Florian M. Kruse
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–13'81377MunichGermany
| | - Jennifer S. Teichert
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–13'81377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Oliver Trapp
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–13'81377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| |
Collapse
|
42
|
Kirschning A. The coenzyme/protein pair and the molecular evolution of life. Nat Prod Rep 2020; 38:993-1010. [PMID: 33206101 DOI: 10.1039/d0np00037j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2020What was first? Coenzymes or proteins? These questions are archetypal examples of causal circularity in living systems. Classically, this "chicken-and-egg" problem was discussed for the macromolecules RNA, DNA and proteins. This report focuses on coenzymes and cofactors and discusses the coenzyme/protein pair as another example of causal circularity in life. Reflections on the origin of life and hypotheses on possible prebiotic worlds led to the current notion that RNA was the first macromolecule, long before functional proteins and hence DNA. So these causal circularities of living systems were solved by a time travel into the past. To tackle the "chicken-and-egg" problem of the protein-coenzyme pair, this report addresses this problem by looking for clues (a) in the first hypothetical biotic life forms such as protoviroids and the last unified common ancestor (LUCA) and (b) in considerations and evidence of the possible prebiotic production of amino acids and coenzymes before life arose. According to these considerations, coenzymes and cofactors can be regarded as very old molecular players in the origin and evolution of life, and at least some of them developed independently of α-amino acids, which here are evolutionarily synonymous with proteins. Discussions on "chicken-and-egg" problems open further doors to the understanding of evolution.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
43
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
44
|
Haas M, Lamour S, Christ SB, Trapp O. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting. Commun Chem 2020; 3:140. [PMID: 36703456 PMCID: PMC9814773 DOI: 10.1038/s42004-020-00387-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023] Open
Abstract
The formation of carbohydrates represents an essential step to provide building blocks and a source of chemical energy in several models for the emergence of life. Formaldehyde, glycolaldehyde and a basic catalyst are the initial components forming a variety of sugar molecules in the cascade-type multi-step formose reaction. While numerous side reactions and even deterioration can be observed in aqueous media, selective prebiotic sugar formation is feasible in solid-state, mechanochemical reactions and might have occurred in early geochemistry. However, the precise role of different basic catalysts and the influence of the atmospheric conditions in the solid-state formose reaction remain unknown. Here we show, that in a primordial scenario the mechanochemical formose reaction is capable to form monosaccharides with a broad variety of mineral classes as catalysts with only minute amounts of side products such as lactic acid or methanol, independent of the atmospheric conditions. The results give insight into recent findings of formose sugars on meteorites and offer a water-free and robust pathway for monosaccharides independent of the external conditions both for the early Earth or an extra-terrestrial setting.
Collapse
Affiliation(s)
- Maren Haas
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| | - Saskia Lamour
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Babette Christ
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Oliver Trapp
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| |
Collapse
|
45
|
Freire MÁ. Phosphorylation and acylation transfer reactions: Clues to a dual origin of metabolism. Biosystems 2020; 198:104260. [PMID: 32987142 DOI: 10.1016/j.biosystems.2020.104260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
Many theories of the origin of life focus on only one primitive polymer as an archetype of a world paradigm. However, life would have emerged within more complex scenarios where a variety of molecules and diverse polymers interconnected by a few similar chemical reactions. Previous work suggested that the ancestors of all major biopolymers would have arisen from abiotic template independent replication processes. They would have been organized in two closed sets of polymerization cycles: polysaccharides, polyribonucleotides and polyphosphates on one site; and peptides, fatty acids and polyhydroxyalkanoates on the other site. Then, these polymerization reaction cycles integrated into a minimal organization closure. Here, the purpose was to explore which kind of reactions could have supported the chemical networks that led to the early (bio)polymers. As a result, the proposed overview suggests that phosphorylation and acylation transfer reactions would have arisen independently and forged two distinct chemical systems that provided the phosphorylated and carboxylated intermediates used for the synthesis of the corresponding polymers. In this sense, modern metabolism may still reflect its dual nature, probably relying on these two reaction networks from the beginnings.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC). Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
46
|
Xu X, He F, Yang W, Yao J. Effect of Homochirality of Dipeptide to Polymers’ Degradation. Polymers (Basel) 2020; 12:polym12092164. [PMID: 32971890 PMCID: PMC7570312 DOI: 10.3390/polym12092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
As natural polymer materials, proteins are readily biodegradable, interestingly, the synthetic polyamides (PAs) that are based on the same amide bonds (also called peptide bonds in proteins) are barely degradable. Whether did the chirality and configuration of the amino acids play an important role. By using different configuration of amino acids, 4 types of polyamide-imides (PAIs) containing dipeptides of LL, DL, LD, and DD configurations, respectively, were synthesized. It was found that the PAIs based on natural LL configuration of dipeptide structure are much more readily biodegradable than those based on non-natural LD, DL, and DD configuration of dipeptides. It was confirmed that the natural L-configuration of amino acids play a critical role in degradability of proteins. And it also suggested that different type and amount of peptide fragments can be introduced in polymer to create series of polymer materials that can be biodegraded at controllable speed.
Collapse
Affiliation(s)
- Xinqiang Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.X.); (F.H.); (W.Y.)
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, Jinan 250353, China
| | - Fuyan He
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.X.); (F.H.); (W.Y.)
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, Jinan 250353, China
| | - Wenke Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.X.); (F.H.); (W.Y.)
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, Jinan 250353, China
| | - Jinshui Yao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.X.); (F.H.); (W.Y.)
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, Jinan 250353, China
- Correspondence:
| |
Collapse
|
47
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
48
|
Muchowska KB, Varma SJ, Moran J. Nonenzymatic Metabolic Reactions and Life's Origins. Chem Rev 2020; 120:7708-7744. [PMID: 32687326 DOI: 10.1021/acs.chemrev.0c00191] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prebiotic chemistry aims to explain how the biochemistry of life as we know it came to be. Most efforts in this area have focused on provisioning compounds of importance to life by multistep synthetic routes that do not resemble biochemistry. However, gaining insight into why core metabolism uses the molecules, reactions, pathways, and overall organization that it does requires us to consider molecules not only as synthetic end goals. Equally important are the dynamic processes that build them up and break them down. This perspective has led many researchers to the hypothesis that the first stage of the origin of life began with the onset of a primitive nonenzymatic version of metabolism, initially catalyzed by naturally occurring minerals and metal ions. This view of life's origins has come to be known as "metabolism first". Continuity with modern metabolism would require a primitive version of metabolism to build and break down ketoacids, sugars, amino acids, and ribonucleotides in much the same way as the pathways that do it today. This review discusses metabolic pathways of relevance to the origin of life in a manner accessible to chemists, and summarizes experiments suggesting several pathways might have their roots in prebiotic chemistry. Finally, key remaining milestones for the protometabolic hypothesis are highlighted.
Collapse
Affiliation(s)
| | - Sreejith J Varma
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Joseph Moran
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| |
Collapse
|
49
|
Ottelé J, Hussain AS, Mayer C, Otto S. Chance emergence of catalytic activity and promiscuity in a self-replicator. Nat Catal 2020. [DOI: 10.1038/s41929-020-0463-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Affiliation(s)
- Ramanarayanan Krishnamurthy
- The Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|