1
|
Sunde-Brown P, Miller GJ, Houston TA. Multigram-Scale Synthesis of 2,5-Dideoxy-2,5-imino-d-mannitol (DMDP) and 2,5-Dideoxy-2,5-imino-d-glucitol (DGDP) from d-Fructose and l-Sorbose Using a Regioselective Appel Reaction. J Org Chem 2025; 90:2288-2297. [PMID: 39909918 PMCID: PMC11833879 DOI: 10.1021/acs.joc.4c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
We report a practical 5 g scale stereoselective synthesis of the valuable iminosugar DMDP from d-fructose in only 7 synthetic steps and in a 70% overall yield, which doubles previously reported yields. This process requires only two chromatographic purification steps, taking advantage of a regioselective Appel reaction. The regioselective reaction has also been applied on a similar scale to prepare the C-2 diastereomer of DMDP, DGDP, from l-sorbose in 7 steps (two purifications) and 56% overall yield, albeit with diminished diastereomeric purity (d.r. 90:10). The C-5 regioselectivity has also been illustrated on d-psicose and d-tagatose, making this an attractive method for preparing pyrrolidine iminosugars or 5-thiosugars from ketopyranoses.
Collapse
Affiliation(s)
- Peter Sunde-Brown
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport 4215 , Queensland, Australia
- School
of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Gavin J. Miller
- School
of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Todd A. Houston
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport 4215 , Queensland, Australia
- School
of Environment and Science, Griffith University, Gold Coast Campus, 4215 Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Li HY, Chen WA, Lin HY, Tsai CW, Chiu YT, Yun WY, Lee NC, Chien YH, Hwu WL, Cheng WC. A practical synthesis of nitrone-derived C5a-functionalized isofagomines as protein stabilizers to treat Gaucher disease. Commun Chem 2024; 7:91. [PMID: 38643239 PMCID: PMC11032326 DOI: 10.1038/s42004-024-01164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
Isofagomine (IFG) and its analogues possess promising glycosidase inhibitory activities. However, a flexible synthetic strategy toward both C5a-functionalized IFGs remains to be explored. Here we show a practical synthesis of C5a-S and R aminomethyl IFG-based derivatives via the diastereoselective addition of cyanide to cyclic nitrone 1. Nitrone 1 was conveniently prepared on a gram scale and in high yield from inexpensive (-)-diethyl D-tartrate via a straightforward method, with a stereoselective Michael addition of a nitroolefin and a Nef reaction as key steps. A 268-membered library (134 × 2) of the C5a-functionalized derivatives was submitted to enzyme- or cell-based bio-evaluations, which resulted in the identification of a promising β-glucocerebrosidase (GCase) stabilizer demonstrating a 2.7-fold enhancement at 25 nM in p.Asn370Ser GCase activity and a 13-fold increase at 1 μM in recombinant human GCase activity in Gaucher cell lines.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Wei-An Chen
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Hung-Yi Lin
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Chi-Wei Tsai
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Yu-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Wen-Yi Yun
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
- Center for Precision Medicine, China Medical University Hospital, 2, Yude Road, Taichung, 404327, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan.
- Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan, 701, Taiwan.
- Department of Applied Chemistry, National Chiayi University, 300, Xuefu Road, Chiayi, 600, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
3
|
Ziarani GM, Jamasbi N, Mohajer F. The Synthesis of Australine and its Stereoisomers as Naturally Pyrrolizidine Alkaloids. MINI-REV ORG CHEM 2024; 21:40-57. [DOI: 10.2174/1570193x19666220704115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Natural products are important from researchers’ perspectives due to their importance and applicability. Polyhydroxylated pyrrolizidine alkaloids are sugar mimics and received a growing interest in the last few years. Australine is a naturally polyhydroxylated pyrrolizidine, which was isolated from the seeds of Castanospermum austral, and exhibits potent biological activities such as inhibited glycosidases, as well as anti-virus, and anti-HIV activities. Thus, there is a considerable deal of interest in the synthesis of these classes of compounds. Different synthetic strategies and methodologies for the preparation of Australine and its stereoisomers were considered.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Negar Jamasbi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| |
Collapse
|
4
|
Park S, Myeong IS, Ham WH. Recent advances in the total synthesis of polyhydroxylated alkaloids via chiral oxazines. Org Biomol Chem 2024; 22:894-926. [PMID: 38230703 DOI: 10.1039/d3ob01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This review summarizes recently established methodologies developed for the enantioselective and diastereoselective synthesis of chiral 1,3-oxazines. These compounds are of interest as advanced synthetic intermediates in the total synthesis of structurally complex and biologically active polyhydroxylated alkaloids such as (+)-1-deoxynojirimycin, (-)-anisomycin, (+)-castanospermine, (+)-casuarine, (-)-conduramine F-1, (-)-sphingofungin B, Neu5Ac methyl ester, and other natural products. The devised synthetic approach aims to offer a direct, efficient, and adaptable method for obtaining both pure enantiomers and pure diastereomers. It revolves around utilizing chiral building blocks like syn,syn-, syn,syn,anti-, syn,anti-, syn,anti,syn-, anti,syn-, anti,syn,syn-, and anti,syn,anti-oxazines. By integrating oxazine chemistry with established and innovative transformations, this approach enabled the synthesis of 30 polyhydroxylated amines across various studies conducted between 2007 and 2022.
Collapse
Affiliation(s)
- Seokhwi Park
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
| | - In-Soo Myeong
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Won-Hun Ham
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
5
|
Zi D, Song YY, Lu TT, Kise M, Kato A, Wang JZ, Jia YM, Li YX, Fleet GWJ, Yu CY. Nanomolar β-glucosidase and β-galactosidase inhibition by enantiomeric α-1-C-alkyl-1,4-dideoxy-1,4-imino-arabinitol derivatives. Eur J Med Chem 2023; 247:115056. [PMID: 36603505 DOI: 10.1016/j.ejmech.2022.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
A series of α-1-C-alkyl DAB (1,4-dideoxy-1,4-imino-d-arabinitol) and LAB (1,4-dideoxy-1,4-imino-l-arabinitol) derivatives with aryl substituents have been designed as analogues of broussonetine W (12), and assayed as glycosidase inhibitors. While the inhibition spectrum of α-1-C-alkyl DAB derivative 16 showed a good correlation to that of broussonetine W (12), introduction of substituents on the terminal aryl (17a-f) or hydroxyl groups at C-1' position of the alkyl chains (18a-e) decreased their α-glucosidase inhibitions but greatly improved their inhibitions of bovine liver β-glucosidase and β-galactosidase. Furthermore, epimerization of C-1' configurations of compounds 18a-e clearly lowered their inhibition potency of bovine liver β-glucosidase and β-galactosidase. Notably, some of the α-1-C-alkyl DAB derivatives were also found to have potent human lysosome β-glucosidase inhibitions. In contrast, enantiomers of compounds 18a-e and 1'-epi-18a-e generally showed increased α-glucosidase inhibitions, but sharply decreased bovine liver β-glucosidase and β-galactosidase inhibitions. Molecular docking calculations unveiled the novel two set of binding modes for each series of compounds; introduction of C-1' hydroxyl altered the conformations of the pyrrolidine rings and orientation of their long chains, resulting in improved accommodation in the hydrophobic grooves. The compounds reported herein are very potent β-glucosidase and β-galactosidase inhibitions with novel binding mode; and the structure-activity relationship provides guidance for design and development of more pyrrolidine pharmacological chaperones for lysosomal storage diseases.
Collapse
Affiliation(s)
- Dong Zi
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Ying Song
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, 250014, Shandong, China
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Li HY, Lee NC, Chiu YT, Chang YW, Lin CC, Chou CL, Chien YH, Hwu WL, Cheng WC. Harnessing polyhydroxylated pyrrolidines as a stabilizer of acid alpha-glucosidase (GAA) to enhance the efficacy of enzyme replacement therapy in Pompe disease. Bioorg Med Chem 2023; 78:117129. [PMID: 36542959 DOI: 10.1016/j.bmc.2022.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
To discover small molecules as acid alpha-glucosidase (GAA) stabilizers for potential benefits of the exogenous enzyme treatment toward Pompe disease cells, we started from the initial screening of the unique chemical space, consisting of sixteen stereoisomers of 2-aminomethyl polyhydroxylated pyrrolidines (ADMDPs) to find out two primary stabilizers 17 and 18. Further external or internal structural modifications of 17 and 18 were performed to increase structural diversity, followed by the protein thermal shift study to evaluate the GAA stabilizing ability. Fortunately, pyrrolidine 21, possessing an l-arabino-typed configuration pattern, was identified as a specific potent rh-GAA stabilizer, enabling the suppression of rh-GAA protein denaturation. In a cell-based Pompe model, co-administration of 21 with rh-GAA protein significantly improved enzymatic activity (up to 5-fold) compared to administration of enzyme alone. Potentially, pyrrolidine 21 enables the direct increase of ERT (enzyme replacement therapy) efficacy in cellulo and in vivo.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan
| | - Yu-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Wen Chang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chu-Chung Lin
- AnHorn Medicines Co., Ltd. National Biotechnology Research Park C522, 99, Lane 130, Academia Road, Section 1, Nankang, Taipei 11529, Taiwan
| | - Cheng-Li Chou
- AnHorn Medicines Co., Ltd. National Biotechnology Research Park C522, 99, Lane 130, Academia Road, Section 1, Nankang, Taipei 11529, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan.
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Department of Chemistry, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan; Department of Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan; Department of Chemistry, National Chiayi University, 300, Syuefu Road, Chiayi 60004, Taiwan.
| |
Collapse
|
7
|
Wang Y, Xiao J, Meng A, Liu C. Multivalent Pyrrolidine Iminosugars: Synthesis and Biological Relevance. Molecules 2022; 27:molecules27175420. [PMID: 36080188 PMCID: PMC9457877 DOI: 10.3390/molecules27175420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, the strategy of multivalency has been widely employed to design glycosidase inhibitors, as glycomimetic clusters often induce marked enzyme inhibition relative to monovalent analogs. Polyhydroxylated pyrrolidines, one of the most studied classes of iminosugars, are an attractive moiety due to their potent and specific inhibition of glycosidases and glycosyltransferases, which are associated with many crucial biological processes. The development of multivalent pyrrolidine derivatives as glycosidase inhibitors has resulted in several promising compounds that stand out. Herein, we comprehensively summarized the different synthetic approaches to the preparation of multivalent pyrrolidine clusters, from total synthesis of divalent iminosugars to complex architectures bearing twelve pyrrolidine motifs. Enzyme inhibitory properties and multivalent effects of these synthesized iminosugars were further discussed, especially for some less studied therapeutically relevant enzymes. We envision that this comprehensive review will help extend the applications of multivalent pyrrolidine iminosugars in future studies.
Collapse
Affiliation(s)
- Yali Wang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Jian Xiao
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Aiguo Meng
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China
| | - Chunyan Liu
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
- Correspondence:
| |
Collapse
|
8
|
Chen WA, Li HY, Sayyad A, Huang CY, Cheng WC. Synthesis of Nitrone-derived Pyrrolidine Scaffolds and Their Combinatorial Libraries to Develop Selective α-l-Rhamnosidase Inhibitors. Chem Asian J 2022; 17:e202200172. [PMID: 35535638 DOI: 10.1002/asia.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Indexed: 11/06/2022]
Abstract
A general and flexible approach toward the development of α-l-rhamnosidase (α-l-Rha-ase) inhibitors is described. Five enantiopure poly-substituted pyrrolidine-based scaffolds bearing the C1-aminomethyl moiety were designed and synthesized from five-membered cyclic nitrones. Each structurally diversified amide library of these scaffolds was rapidly generated via combinatorial parallel synthesis and applied for in-situ inhibition study against α-l-Rha-ase, allowing us to efficiently identify new inhibition hits. Surprisingly, all promising inhibitors are derived from the same scaffold 3. Among them, the most potent and selective inhibitor is pyrrolidine 19 with Ki =0.24 μM, approximately 24-fold more potent than the reference compound DAA (Ki =5.7 μM). It is the first study to comprehensively prepare pyrrolidine-based scaffolds and libraries for inhibition study against α-l-Rha-ase.
Collapse
Affiliation(s)
- Wei-An Chen
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Huang-Yi Li
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Ashik Sayyad
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Chun-Yen Huang
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
- Department of Chemistry, National Cheng-Kung University, 1, University Road, 701, Tainan, Taiwan
- Department of Applied Chemistry, National Chiayi University, 300, Xuefu Rd., East Dist., 600, Chiayi, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., 807, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Chen WA, Chen YH, Hsieh CY, Hung PF, Chen CW, Chen CH, Lin JL, Cheng TJR, Hsu TL, Wu YT, Shen CN, Cheng WC. Harnessing natural-product-inspired combinatorial chemistry and computation-guided synthesis to develop N-glycan modulators as anticancer agents. Chem Sci 2022; 13:6233-6243. [PMID: 35733906 PMCID: PMC9159088 DOI: 10.1039/d1sc05894k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Modulation of N-glycosylation using human Golgi α-mannosidase II (α-hGMII) inhibitors is a potential anticancer approach, but the clinical utility of current α-hGMII inhibitors is limited by their co-inhibition of human lysosomal α-mannosidase (α-hLM), resulting in abnormal storage of oligomannoses. We describe the synthesis and screening of a small library of novel bicyclic iminosugar-based scaffolds, prepared via natural product-inspired combinatorial chemistry (NPICC), which resulted in the identification of a primary α-hGMII inhibitor with 13.5-fold selectivity over α-hLM. Derivatization of this primary inhibitor using computation-guided synthesis (CGS) yielded an advanced α-hGMII inhibitor with nanomolar potency and 106-fold selectivity over α-hLM. In vitro studies demonstrated its N-glycan modulation and inhibitory effect on hepatocellular carcinoma (HCC) cells. In vivo studies confirmed its encouraging anti-HCC activity, without evidence of oligomannose accumulation. An integrated strategy of Natural-Product-Inspired Combinatorial Chemistry (NPICC) and Computation-Guided Synthesis is used to develop an α-hGMII inhibitor with 106-fold selectivity over α-hLM, with inhibitory effect on hepatocellular carcinoma.![]()
Collapse
Affiliation(s)
- Wei-An Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Yu-Hsin Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Yun Hsieh
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Pi-Fang Hung
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Wen Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chien-Hung Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ting-Jen R Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan .,Department of Chemistry, National Cheng-Kung University 1, University Road Tainan 701 Taiwan.,Department of Applied Chemistry, National Chiayi University 300, Xuefu Rd, East Dist. Chiayi 600 Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University 100 Shih-Chuan 1st Rd Kaohsiung 807 Taiwan
| |
Collapse
|
10
|
Li YX, Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Fleet GWJ, Yu CY. Diastereoselective Synthesis, Glycosidase Inhibition, and Docking Study of C-7-Fluorinated Casuarine and Australine Derivatives. J Org Chem 2022; 87:7291-7307. [PMID: 35584209 DOI: 10.1021/acs.joc.2c00485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-7-fluorinated derivatives of two important polyhydroxylated pyrrolizidines, casuarine and australine, were synthesized with organocatalytic stereoselective α-fluorination of aldehydes as the key step. The strategy is extensively applicable to some synthetically challenging fluorinated iminosugars and carbohydrates. The docking studies indicated that the potent inhibitions of trehalase and amyloglucosidase by the fluorinated polyhydroxylated pyrrolizidines are due to the interaction modes dominated by fluorine atoms in these iminosugars with the amino acids' residues of the corresponding enzymes. Steady interactions were established between the C-7 fluoride and a hydrophobic pocket in amyloglucosidase by untypical anion-π interactions. These unexpected docking modes and related structure-activity relationship studies emphasize the value of fluorination in the design of polyhydroxylated pyrrolizidine glycosidase inhibitors.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.,Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.,Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.,Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Total synthesis of α-1-C-propyl-3,6-di-epi-nojirimycin and polyhydroxyindolizidine alkaloids via regio- and diastereoselective amination of anomeric acetals. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Bouquet J, Auberger N, Ashmus R, King D, Bordes A, Fontelle N, Nakagawa S, Madden Z, Proceviat C, Kato A, Désiré J, Vocadlo DJ, Blériot Y. Structural variation of the 3-acetamido-4,5,6-trihydroxyazepane iminosugar through epimerization and C-alkylation leads to low micromolar HexAB and NagZ inhibitors. Org Biomol Chem 2021; 20:619-629. [PMID: 34940771 DOI: 10.1039/d1ob02280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of seven-membered iminosugars derived from a 3S-acetamido-4R,5R,6S-trihydroxyazepane scaffold and their evaluation as inhibitors of functionally related exo-N-acetylhexosaminidases including human O-GlcNAcase (OGA), human lysosomal β-hexosaminidase (HexAB), and Escherichia coli NagZ. Capitalizing on the flexibility of azepanes and the active site tolerances of hexosaminidases, we explore the effects of epimerization of stereocenters at C-3, C-5 and C-6 and C-alkylation at the C-2 or C-7 positions. Accordingly, epimerization at C-6 (L-ido) and at C-5 (D-galacto) led to selective HexAB inhibitors whereas introduction of a propyl group at C-7 on the C-3 epimer furnished a potent NagZ inhibitor.
Collapse
Affiliation(s)
- J Bouquet
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - N Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - R Ashmus
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - D King
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - A Bordes
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - N Fontelle
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - S Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Z Madden
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - C Proceviat
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - A Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - J Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - D J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - Y Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| |
Collapse
|
13
|
Li YX, Wang JZ, Kato A, Shimadate Y, Kise M, Jia YM, Fleet GWJ, Yu CY. Stereocomplementary synthesis of casuarine and its 6- epi-, 7- epi-, and 6,7-di epi-stereoisomers. Org Biomol Chem 2021; 19:9410-9420. [PMID: 34668913 DOI: 10.1039/d1ob01725j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four diastereomers belonging to the family of casuarines, including casuarine (1), 6-epi-casuarine (2), 7-epi-casuarine (13) and 6,7-diepi-casuarine (14), have been synthesized from D-arabinose-derived cyclic nitrone 7 and nitrone-derived aldehyde 4 by a stereocomplementary strategy. Glycosidase inhibition comparison showed that 6-epi-casuarine (2) exhibits enhanced inhibition of trehalase (IC50 = 9.7 μM) and 6,7-diepi-casuarine (14) leads to specific inhibition of trehalase.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
A Convenient Approach towards the Synthesis of ADMDP Type Iminosugars and Nojirimycin Derivatives from Sugar-Derived Lactams. Molecules 2021; 26:molecules26185459. [PMID: 34576929 PMCID: PMC8464940 DOI: 10.3390/molecules26185459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
An efficient method for the synthesis of nojirimycin- and pyrrolidine-based iminosugar derivatives has been developed. The strategy is based on the partial reduction in sugar-derived lactams by Schwartz’s reagent and tandem stereoselective nucleophilic addition of cyanide or a silyl enol ether dictated by Woerpel’s or diffusion control models, which affords amino-modified iminosugars, such as ADMDP or higher nojirimycin derivatives.
Collapse
|
15
|
Szcześniak P, Furman B. Concise synthesis of bicyclic iminosugars via reductive functionalization of sugar-derived lactams and subsequent RCM reaction. Org Biomol Chem 2021; 19:6842-6846. [PMID: 34318856 DOI: 10.1039/d1ob01172c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of bicyclic iminosugars has been developed. The strategy is based on the partial reduction of sugar-derived lactams by Schwartz's reagent and tandem stereoselective nucleophile addition dictated by Woerpel's model which affords polyhydroxylated cyclic amines as key intermediates. Introduction of a vinyl or allyl group to the iminosugar produces diene derivatives that can be subjected to the ring-closing metathesis reaction (RCM) to furnish polyhydroxylated pyrrolizidine, indolizidine and quinozilidine derivatives in good to excellent yields. This sequence of reactions has been applied to the formal synthesis of hyacinthacine A2, a polyhydroxylated pyrrolizidine alkaloid.
Collapse
Affiliation(s)
- Piotr Szcześniak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | |
Collapse
|
16
|
Yan X, Shimadate Y, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis of Pyrrolidine Monocyclic Analogues of Pochonicine and Its Stereoisomers: Pursuit ofSimplified Structures and Potent β- N-Acetylhexosaminidase Inhibition. Molecules 2020; 25:E1498. [PMID: 32218360 PMCID: PMC7180638 DOI: 10.3390/molecules25071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases (β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.
Collapse
Affiliation(s)
- Xin Yan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK;
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
17
|
Zhang M, Xue F, Ou J, Huang Y, Lu F, Zhou B, Zheng Z, Liu XY, Zhong W, Qin Y. Practical synthesis of immucillins BCX-1777 and BCX-4430. Org Chem Front 2020. [DOI: 10.1039/d0qo01026j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical synthesis of the immucillins BCX-1777 and BCX-4430 has been described.
Collapse
|
18
|
Chen W, Sayyad A, Chen C, Chen Y, Cheng TR, Cheng W. Divergent Synthesis of Bicyclic Iminosugars: Preparation of (−)‐Swainsonine‐Based Alkaloids and Their Inhibition Study towardsα‐Human Mannosidases. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei‐An Chen
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Ashik Sayyad
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Chiao‐Wen Chen
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Yu‐Hsin Chen
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Ting‐Jen R. Cheng
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
| | - Wei‐Chieh Cheng
- Genomics Research CenterAcademia Sinica 128 Academia Road, Sec. 2 Taipei 115 Taiwan
- Department of ChemistryNational Cheng-Kung University 1 University Road Tainan 701 Taiwan
- Department of Applied ChemistryNational Chiayi University 300, Xuefu Rd., East Dist. Chiayi 600 Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University 100 Shih-Chuan 1st Rd. Kaohsiung 807 Taiwan
| |
Collapse
|
19
|
Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wu QK, Kinami K, Kato A, Li YX, Fleet GWJ, Yu CY, Jia YM. Synthesis and Glycosidase Inhibition of Broussonetine M and Its Analogues. Molecules 2019; 24:molecules24203712. [PMID: 31619020 PMCID: PMC6832352 DOI: 10.3390/molecules24203712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Cross-metathesis (CM) and Keck asymmetric allylation, which allows access to defined stereochemistry of a remote side chain hydroxyl group, are the key steps in a versatile synthesis of broussonetine M (3) from the d-arabinose-derived cyclic nitrone 14. By a similar strategy, ent-broussonetine M (ent-3) and six other stereoisomers have been synthesized, respectively, starting from l-arabino-nitrone (ent-14), l-lyxo-nitrone (ent-3-epi-14), and l-xylo-nitrone (2-epi-14) in five steps, in 26%–31% overall yield. The natural product broussonetine M (3) and 10’-epi-3 were potent inhibitors of β-glucosidase (IC50 = 6.3 μM and 0.8 μM, respectively) and β-galactosidase (IC50 = 2.3 μM and 0.2 μM, respectively); while their enantiomers, ent-3 and ent-10’-epi-3, were selective and potent inhibitors of rice α-glucosidase (IC50 = 1.2 μM and 1.3 μM, respectively) and rat intestinal maltase (IC50 = 0.29 μM and 18 μM, respectively). Both the configuration of the polyhydroxylated pyrrolidine ring and C-10’ hydroxyl on the alkyl side chain affect the specificity and potency of glycosidase inhibition.
Collapse
Affiliation(s)
- Qing-Kun Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX13TA Oxford, UK.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Zhang M, Liu S, Li H, Guo Y, Li N, Guan M, Mehfooz H, Zhao J, Zhang Q. Copper‐Catalyzed Cope‐Type Hydroamination of Nonactivated Olefins toward Cyclic Nitrones: Scope, Mechanism, and Enantioselective Process Development. Chemistry 2019; 25:12620-12627. [DOI: 10.1002/chem.201902683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Mengru Zhang
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Shuang Liu
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Hexin Li
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Yajing Guo
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Na Li
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Meihui Guan
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Haroon Mehfooz
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Jinbo Zhao
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Qian Zhang
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
22
|
Matassini C, D'Adamio G, Vanni C, Goti A, Cardona F. Studies for the Multimerization of DAB-1-Based Iminosugars through Iteration of the Nitrone Cycloaddition/Ring-Opening/Allylation Sequence. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Camilla Matassini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Giampiero D'Adamio
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Costanza Vanni
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- Associated with Consorzio Interuniversitatio Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS); Università di Bari; 70125 Bari Italy
| | - Francesca Cardona
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- Associated with Consorzio Interuniversitatio Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS); Università di Bari; 70125 Bari Italy
- Associated with LENS; via N. Carrara 1 50019 Sesto Fiorentino, FI Italy
| |
Collapse
|
23
|
Messire G, Massicot F, Vallée A, Vasse JL, Behr JB. Aza-Henry Reaction with Nitrones, an Under-Explored Transformation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gatien Messire
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Fabien Massicot
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Alexis Vallée
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Jean-Luc Vasse
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims; CNRS, UMR 7312, FR CNRS 3417; 51687 Reims Cedex 2 France
| |
Collapse
|
24
|
Exploring substituent diversity on pyrrolidine-aryltriazole iminosugars: Structural basis of β-glucocerebrosidase inhibition. Bioorg Chem 2019; 86:652-664. [PMID: 30825709 DOI: 10.1016/j.bioorg.2019.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 01/03/2023]
Abstract
The synthesis of a library of pyrrolidine-aryltriazole hybrids through CuAAC between two epimeric dihydroxylated azidomethylpyrrolidines and differently substituted phenylacetylenes is reported. The evaluation of the new compounds as inhibitors of lysosomal β-glucocerebrosidase showed the importance of the substitution pattern of the phenyl moiety in the inhibition. Crystallization and docking studies revealed key interactions of the pyrrolidine motif with aminoacid residues of the catalytic site while the aryltriazole moiety extended along a hydrophobic surface groove. Some of these compounds were able to increase the enzyme activity in Gaucher patient fibroblasts, acting as a new type of chemical chaperone for Gaucher disease.
Collapse
|
25
|
Lewis acid-catalysed nucleophilic opening of a bicyclic hemiaminal followed by ring contraction: Access to functionalized L-idonojirimycin derivatives. Carbohydr Res 2019; 472:65-71. [PMID: 30496874 DOI: 10.1016/j.carres.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
The Lewis acid-catalyzed nucleophilic opening of a D-gluco-configured bicyclic hemiaminal has been examined. Several Lewis acids and silylated nucleophiles have been screened allowing the introduction of acetophenone, phosphonate or nitrile at the pseudoanomeric position in satisfactory yields and high 1,2 trans stereoselectivities. Their skeletal rearrangement triggered by the N-benzyl anchimeric assistance provided the corresponding L-ido-configured piperidines displaying various functional groups at C-6 position in good yield.
Collapse
|
26
|
Malatinský T, Puhová Z, Babjak M, Doháňošová J, Moncol J, Marchalín Š, Fischer R. Influence of the side chain protecting group on the stereoselectivity of the 1,3-dipolar cycloaddition of d-talo-configured nitrones. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Lieou Kui E, Kanazawa A, Behr JB, Py S. Ring-Junction-Substituted Polyhydroxylated Pyrrolizidines and Indolizidines from Ketonitrone Cycloadditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Evelyn Lieou Kui
- Univ. Grenoble Alpes; CNRS; Département de Chimie Moléculaire (DCM); 38000 Grenoble France
| | - Alice Kanazawa
- Univ. Grenoble Alpes; CNRS; Département de Chimie Moléculaire (DCM); 38000 Grenoble France
| | - Jean-Bernard Behr
- Univ. Reims Champagne-Ardenne; Institut de Chimie Moléculaire de Reims (ICMR); CNRS UMR 7312; 51687 Reims CEDEX 2 France
| | - Sandrine Py
- Univ. Grenoble Alpes; CNRS; Département de Chimie Moléculaire (DCM); 38000 Grenoble France
| |
Collapse
|
28
|
Glawar AFG, Martínez RF, Ayers BJ, Hollas MA, Ngo N, Nakagawa S, Kato A, Butters TD, Fleet GWJ, Jenkinson SF. Structural essentials for β-N-acetylhexosaminidase inhibition by amides of prolines, pipecolic and azetidine carboxylic acids. Org Biomol Chem 2018; 14:10371-10385. [PMID: 27735004 DOI: 10.1039/c6ob01549b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper explores the computer modelling aided design and synthesis of β-N-acetylhexosaminidase inhibitors along with their applicability to human disease treatment through biological evaluation in both an enzymatic and cellular setting. We investigated the importance of individual stereocenters, variations in structure-activity relationships along with factors influencing cell penetration. To achieve these goals we modified nitrogen heterocycles in terms of ring size, side chains present and ring nitrogen derivatization. By reducing the inhibitor interactions with the active site down to the essentials we were able to determine that besides the established 2S,3R trans-relationship, the presence and stereochemistry of the CH2OH side chain is of crucial importance for activity. In terms of cellular penetration, N-butyl side chains favour cellar uptake, while hydroxy- and carboxy-group bearing sidechains on the ring nitrogen retarded cellular penetration. Furthermore we show an early proof of principle study that β-N-acetylhexosaminidase inhibitors can be applicable to use in a potential anti-invasive anti-cancer strategy.
Collapse
Affiliation(s)
- A F G Glawar
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - R F Martínez
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - B J Ayers
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - M A Hollas
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - N Ngo
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - S Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - A Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - T D Butters
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - G W J Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - S F Jenkinson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
29
|
Li HY, Lee JD, Chen CW, Sun YC, Cheng WC. Synthesis of (3S,4S,5S)-trihydroxylpiperidine derivatives as enzyme stabilizers to improve therapeutic enzyme activity in Fabry patient cell lines. Eur J Med Chem 2018; 144:626-634. [PMID: 29289886 DOI: 10.1016/j.ejmech.2017.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
A series of 3S,4S,5S-trihydroxylated piperidines bearing structural diversity at C-2 or C-6 positions has been synthesized and tested to determine their ability to stabilize the activity of recombinant human α-Galactosidase A (rh-α-Gal A). Hit molecules were identified by rapid inhibitory activity screening, and then further investigated for their ability to protect this enzyme from thermo-induced denaturation and enhance its activity in Fabry patient cell lines. Our study resulted in the identification of a new class of small molecules as enzyme stabilizers for the potential treatment of Fabry disease. Of these, stabilizer 21 was the most effective, showing a 12-fold increase in rh-α-Gal A activity in Fabry disease cell lines.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Linong Street, Section 2, Taipei 112, Taiwan
| | - Jay-Der Lee
- Department of Chemistry, National Taiwan Normal University, 162, Section 1, Heping East Road, Taipei 106, Taiwan
| | - Chiao-Wen Chen
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, 162, Section 1, Heping East Road, Taipei 106, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
30
|
Harris LD, Harijan RK, Ducati RG, Evans GB, Hirsch BM, Schramm VL. Synthesis of bis-Phosphate Iminoaltritol Enantiomers and Structural Characterization with Adenine Phosphoribosyltransferase. ACS Chem Biol 2018; 13:152-160. [PMID: 29178779 DOI: 10.1021/acschembio.7b00601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.
Collapse
Affiliation(s)
- Lawrence D. Harris
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
| | - Rajesh K. Harijan
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G. Ducati
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brett M. Hirsch
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
31
|
Tangara S, Kanazawa A, Fayolle M, Philouze C, Poisson JF, Behr JB, Py S. Short synthesis, X-ray and conformational analysis of a cyclic peracetylated l-sorbose-derived nitrone, a useful intermediate towards N–O-containing d-gluco-iminosugars. NEW J CHEM 2018. [DOI: 10.1039/c8nj03868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crystalline peracetylated nitrone underwent regio- and stereoselective 1,3-dipolar cycloaddition with alkynes, affording d-gluco-configured isoxazolines as a new class of iminosugars.
Collapse
Affiliation(s)
- Salia Tangara
- Univ. Grenoble Alpes
- DCM, F-38000 Grenoble
- France CNRS
- DCM
- F-38000 Grenoble
| | - Alice Kanazawa
- Univ. Grenoble Alpes
- DCM, F-38000 Grenoble
- France CNRS
- DCM
- F-38000 Grenoble
| | - Martine Fayolle
- Univ. Grenoble Alpes
- DCM, F-38000 Grenoble
- France CNRS
- DCM
- F-38000 Grenoble
| | | | | | - Jean-Bernard Behr
- Univ. Reims Champagne-Ardenne
- ICMR, CNRS UMR 7312
- 51687 Reims Cedex 2
- France
| | - Sandrine Py
- Univ. Grenoble Alpes
- DCM, F-38000 Grenoble
- France CNRS
- DCM
- F-38000 Grenoble
| |
Collapse
|
32
|
|
33
|
Rössler SL, Schreib BS, Ginterseder M, Hamilton JY, Carreira EM. Total Synthesis and Stereochemical Assignment of (+)-Broussonetine H. Org Lett 2017; 19:5533-5536. [DOI: 10.1021/acs.orglett.7b02620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon L. Rössler
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, HCI H335, 8093 Zürich, Switzerland
| | - Benedikt S. Schreib
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, HCI H335, 8093 Zürich, Switzerland
| | - Matthias Ginterseder
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, HCI H335, 8093 Zürich, Switzerland
| | - James Y. Hamilton
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, HCI H335, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, HCI H335, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Vieira Da Cruz A, Kanazawa A, Poisson JF, Behr JB, Py S. Polyhydroxylated Quinolizidine Iminosugars as Nanomolar Selective Inhibitors of α-Glucosidases. J Org Chem 2017; 82:9866-9872. [PMID: 28752763 DOI: 10.1021/acs.joc.7b01494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyhydroxylated quinolizidines bearing a hydroxymethyl group at the ring junction were synthesized from a readily available l-sorbose-derived ketonitrone. Evaluated as glycoside hydrolase inhibitors, these quinolizidines revealed to be potent and selective α-glucosidase inhibitors. Quinolizidine 9a is the first quinolizidine-scaffolded iminosugar exhibiting nanomolar inhibition of a glycoenzyme.
Collapse
Affiliation(s)
| | - Alice Kanazawa
- Univ. Grenoble Alpes , DCM and CNRS, DCM, F-38000 Grenoble, France
| | | | - Jean-Bernard Behr
- Univ. Reims Champagne-Ardenne , ICMR, CNRS UMR 7312, 51687 Reims Cedex 2, France
| | - Sandrine Py
- Univ. Grenoble Alpes , DCM and CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
35
|
Mirabella S, D'Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jiménez-Barbero J, Cardona F. Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases. Chemistry 2017; 23:14585-14596. [DOI: 10.1002/chem.201703011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Giampiero D'Adamio
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Sandra Delgado
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Ana Gimeno
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Inmaculada Robina
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Antonio J. Moreno-Vargas
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Sergej Šesták
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Dúbravska cesta 9 84538 Bratislava Slovakia
| | - Jesús Jiménez-Barbero
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 5 48005 Bilbao Spain
- Departament Organic Chemistry II; EHU-UPV; 48040 Leioa Spain
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| |
Collapse
|
36
|
Cheng B, Hirokami Y, Li YX, Kato A, Jia YM, Yu CY. Synthesis and glycosidase inhibition of C-7 modified casuarine derivatives. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Pecchioli T, Cardona F, Reissig HU, Zimmer R, Goti A. Alkoxyallene-Based Stereodivergent Syntheses of (−)-Hyacinthacine B4 and of Putative Hyacinthacine C5 Epimers: Proposal of Hyacinthacine C5 Structure. J Org Chem 2017; 82:5835-5844. [DOI: 10.1021/acs.joc.7b00667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tommaso Pecchioli
- Department
of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Francesca Cardona
- Department
of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Hans-Ulrich Reissig
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Reinhold Zimmer
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Andrea Goti
- Department
of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
38
|
Malatinský T, Spišáková M, Babjak M, Doháňošová J, Marek J, Moncol J, Fischer R. Reversal of Stereoselectivity in Cycloadditions of Five-Membered Cyclic Nitrones Derived from Hexoses. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomáš Malatinský
- Institute of Organic Chemistry, Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Mária Spišáková
- Institute of Organic Chemistry, Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Matej Babjak
- Institute of Organic Chemistry, Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Jana Doháňošová
- Central Laboratories; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Jaromír Marek
- Central European Institute of Technology; Masaryk University; Kamenice 753/5 62500 Brno Czech Republic
| | - Ján Moncol
- Institute of Inorganic Chemistry, Technology and Materials; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry, Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| |
Collapse
|
39
|
Rapid preparation of (3R,4S,5R) polyhydroxylated pyrrolidine-based libraries to discover a pharmacological chaperone for treatment of Fabry disease. Eur J Med Chem 2017; 126:1-6. [DOI: 10.1016/j.ejmech.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/30/2022]
|
40
|
Racine E, Burchak ON, Py S. Synthesis of α-Acyloxynitrones and Reactivity towards Samarium Diiodide. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Emilie Racine
- Univ. Grenoble Alpes; DCM; CNRS; DCM; 38000 Grenoble France
| | | | - Sandrine Py
- Univ. Grenoble Alpes; DCM; CNRS; DCM; 38000 Grenoble France
| |
Collapse
|
41
|
Davies SG, Figuccia ALA, Fletcher Paul AM, Roberts M, Thomson JE. Asymmetric Syntheses of (−)-ADMJ and (+)-ADANJ: 2-Deoxy-2-amino Analogues of (−)-1-Deoxymannojirimycin and (+)-1-Deoxyallonojirimycin. J Org Chem 2016; 81:6481-95. [DOI: 10.1021/acs.joc.6b01107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen G. Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Aude L. A. Figuccia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ai M. Fletcher Paul
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - M. Roberts
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - James E. Thomson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
42
|
Cheng WC, Wang JH, Li HY, Lu SJ, Hu JM, Yun WY, Chiu CH, Yang WB, Chien YH, Hwu WL. Bioevaluation of sixteen ADMDP stereoisomers toward alpha-galactosidase A: Development of a new pharmacological chaperone for the treatment of Fabry disease and potential enhancement of enzyme replacement therapy efficiency. Eur J Med Chem 2016; 123:14-20. [PMID: 27474919 DOI: 10.1016/j.ejmech.2016.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022]
Abstract
A unique molecular library consisting of all sixteen synthetic ADMDP (1-aminodeoxy-DMDP) stereoisomers has been prepared and evaluated for inhibitory activity against α-Gal A, and ability to impart thermal stabilization of this enzyme. The results of this testing led us to develop a novel pharmacological chaperone for the treatment of Fabry disease. 3-Epimer ADMDP was found to be an effective pharmacological chaperone, able to rescue α-Gal A activity in the lymphoblast of the N215S Fabry patient-derived cell line, without impairment of cellular β-galactosidase activity. When 3-epimer ADMDP was administered with rh-α-Gal A (enzyme replacement therapy) for the treatment of Fabry patient-derived cell lines, improvements in the efficacy of rh-α-Gal A was observed, which suggests this small molecule can also provide clinical benefit of enzyme replacement therapy in Fabry disease.
Collapse
Affiliation(s)
- Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan.
| | - Jen-Hon Wang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan
| | - Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Sheng-Jhih Lu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Jia-Ming Hu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Wen-Yi Yun
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Hsin Chiu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Wen-Bin Yang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Martella D, D'Adamio G, Parmeggiani C, Cardona F, Moreno-Clavijo E, Robina I, Goti A. Cycloadditions of Sugar-Derived Nitrones Targeting Polyhydroxylated Indolizidines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501427] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Salunke RV, Ramesh NG. A Concise Total Synthesis of the Stereoisomers of (-)-Pochonicine. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Song YY, Kinami K, Kato A, Jia YM, Li YX, Fleet GWJ, Yu CY. First total synthesis of (+)-broussonetine W: glycosidase inhibition of natural product & analogs. Org Biomol Chem 2016; 14:5157-74. [DOI: 10.1039/c6ob00720a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broussonetine W and its 11 analogues have been first synthesized from cyclic nitrones and assayed as potential gycosidase inhibitors.
Collapse
Affiliation(s)
- Ying-Ying Song
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
46
|
Li YX, Kinami K, Hirokami Y, Kato A, Su JK, Jia YM, Fleet GWJ, Yu CY. Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars: synthesis and glycosidase inhibition. Org Biomol Chem 2016; 14:2249-63. [DOI: 10.1039/c5ob02474a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars have been synthesized from cyclic nitrones and assayed against various glycosidases.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Yuki Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Jia-Kun Su
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
47
|
Harit VK, Ramesh NG. Amino-functionalized iminocyclitols: synthetic glycomimetics of medicinal interest. RSC Adv 2016. [DOI: 10.1039/c6ra23513a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A review on the syntheses and biological activities of unnatural glycomimetics highlighting the effect of replacement of hydroxyl groups of natural iminosugars by amino functionalities is presented.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| |
Collapse
|
48
|
Csatayová K, Davies SG, Figuccia AL, Fletcher AM, Ford JG, Lee JA, Roberts PM, Saward BG, Song H, Thomson JE. Asymmetric syntheses of polysubstituted homoprolines and homoprolinols. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Parmeggiani C, Catarzi S, Matassini C, D'Adamio G, Morrone A, Goti A, Paoli P, Cardona F. Human Acid β-Glucosidase Inhibition by Carbohydrate Derived Iminosugars: Towards New Pharmacological Chaperones for Gaucher Disease. Chembiochem 2015; 16:2054-64. [DOI: 10.1002/cbic.201500292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Camilla Parmeggiani
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CNR-INO; U.O.S. Sesto Fiorentino and LENS; Via Nello Carrara 1 50019 Sesto Fiorentino Italy
| | - Serena Catarzi
- Paediatric Neurology Unit and Laboratories; Neuroscience Department; Meyer Children's Hospital; Department of Neurosciences; Pharmacology and Child Health; University of Florence; Viale Pieraccini n. 24 50139 Firenze Italy
| | - Camilla Matassini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Giampiero D'Adamio
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories; Neuroscience Department; Meyer Children's Hospital; Department of Neurosciences; Pharmacology and Child Health; University of Florence; Viale Pieraccini n. 24 50139 Firenze Italy
| | - Andrea Goti
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences; University of Florence; Viale Morgagni 50 50134 Florence Italy
| | - Francesca Cardona
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| |
Collapse
|
50
|
Park SH, Kim JY, Kim JS, Jung C, Song DK, Ham WH. 1,3-Oxazine as a chiral building block used in the total synthesis of (+)-1-deoxynojirimycin and (2R,5R)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|