1
|
Akolgo GA, Asiedu KB, Amewu RK. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 2024; 16:528. [PMID: 39728786 PMCID: PMC11678992 DOI: 10.3390/toxins16120528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure-activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott-Aldrich Syndrome protein (WASP)/neural Wiskott-Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed.
Collapse
Affiliation(s)
| | - Kingsley Bampoe Asiedu
- Department of Neglected Tropical Diseases, World Health Organization, 1211 Geneva, Switzerland;
| | | |
Collapse
|
2
|
Isak D, Schwartz LA, Schulthoff S, Pérez-Moreno G, Bosch-Navarrete C, González-Pacanowska D, Fürstner A. Collective and Diverted Total Synthesis of the Strasseriolides: A Family of Macrolides Endowed with Potent Antiplasmodial and Antitrypanosomal Activity. Angew Chem Int Ed Engl 2024; 63:e202408725. [PMID: 38864359 DOI: 10.1002/anie.202408725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
The strasseriolide macrolides show promising in vitro and in vivo activities against P. falciparum and T. cruzi, the parasites causing malaria and Chagas disease, respectively. However, the as yet poor understanding of structure/activity relationships and the fact that one family member proved systemically toxic for unknown reasons render a more detailed assessment of these potential lead compounds difficult. To help overcome these issues, a collective total synthesis was devised. The key steps consisted of a ring closing alkyne metathesis (RCAM) reaction to forge a common macrocyclic intermediate followed by a hydroxy-directed ruthenium catalyzed trans-hydrostannation of the propargyl alcohol site thus formed. The resulting alkenyltin derivative served as the central node of the synthesis blueprint, which could be elaborated into the natural products themselves as well as into a set of non-natural analogues according to the concept of diverted total synthesis. The recorded biological data confirmed the potency of the compounds and showed the lack of any noticeable cytotoxicity. The "northern" allylic alcohol subunit was recognized as an integral part of the pharmacophore, yet it provides opportunities for chemical modification.
Collapse
Affiliation(s)
- Daniel Isak
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Leyah A Schwartz
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Saskia Schulthoff
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Guiomar Pérez-Moreno
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
3
|
Saint-Auret S, Abdelkafi H, Le Nouen D, Guenin-Macé L, Demangel C, Bisseret P, Blanchard N. Modular total syntheses of mycolactone A/B and its [ 2H]-isotopologue. Org Biomol Chem 2018; 15:7518-7522. [PMID: 28871293 DOI: 10.1039/c7ob01943b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular total synthesis of mycolactone A/B, the exotoxin produced by Mycobacterium ulcerans, has been achieved through the orchestration of several Pd-catalyzed key steps. While this route leads to a mixture of the natural product and its C12 epimer (4 : 1 ratio), this was inconsequential from the biological activity standpoint. Compared to the previously reported routes, this synthetic blueprint allows the late-stage modification of the toxin, as exemplified by the preparation of [22,22,22-2H3]-mycolactone A/B.
Collapse
Affiliation(s)
- Sarah Saint-Auret
- Université de Strasbourg, CNRS, Laboratoire de Chimie Moléculaire UMR 7509, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
4
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Babu VS, Zhou Y, Kishi Y. Design, synthesis, and cytotoxicity of stabilized mycolactone analogs. Bioorg Med Chem Lett 2017; 27:1274-1277. [PMID: 28159417 DOI: 10.1016/j.bmcl.2017.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
On exposure to visible light, mycolactone A/B, the causative toxin of Buruli ulcer, rearranges to a mixture of four photo-mycolactones apparently via a rare photochemically-induced [4πs+2πa] cycloaddition. In order to prevent the rearrangement, two C6'-C7' dihydromycolactone analogs 6'α-15 and 6'β-15 were designed and synthesized. 6'α-15 and 6'β-15 were shown to be stable under not only photochemical, but also acidic and basic conditions. Cytotoxicity was tested against arbitrarily chosen four cell lines (human Hek-293, human lung carcinoma A-549, human melanoma LOX-IMVI, and mouse L-929), thereby revealing that: (1) both analogs maintain potent cytotoxicity; (2) 6'β-15 exhibits significantly higher potency against human cell lines than 6'α-15; (3) in comparison with parent mycolactone A/B, 6'β-15 exhibits equal potency against human Hek-293, whereas significantly lower potency against human lung carcinoma A-549 and human melanoma LOX-IMVI.
Collapse
Affiliation(s)
- Vaddela Sudheer Babu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Ya Zhou
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Yoshito Kishi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Saint-Auret S, Abdelkafi H, Le Nouen D, Bisseret P, Blanchard N. Synthetic strategies towards mycolactone A/B, an exotoxin secreted by Mycobacterium ulcerans. Org Chem Front 2017. [DOI: 10.1039/c7qo00608j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pitfalls and dead-ends pave the way to mycolactone A/B. This full account reports synthetic efforts towards this natural product that eventually culminated in a de novo total synthesis.
Collapse
Affiliation(s)
- Sarah Saint-Auret
- Université de Strasbourg
- CNRS
- Laboratoire de Chimie Moléculaire UMR 7509
- 67000 Strasbourg
- France
| | - Hajer Abdelkafi
- Université de Strasbourg
- CNRS
- Laboratoire de Chimie Moléculaire UMR 7509
- 67000 Strasbourg
- France
| | - Didier Le Nouen
- Université de Haute-Alsace
- Laboratoire de Chimie Organique et Bioorganique EA 4566
- 68093 Mulhouse Cedex
- France
| | - Philippe Bisseret
- Université de Strasbourg
- CNRS
- Laboratoire de Chimie Moléculaire UMR 7509
- 67000 Strasbourg
- France
| | - Nicolas Blanchard
- Université de Strasbourg
- CNRS
- Laboratoire de Chimie Moléculaire UMR 7509
- 67000 Strasbourg
- France
| |
Collapse
|
7
|
Nakazaki A, Nakane Y, Ishikawa Y, Yotsu-Yamashita M, Nishikawa T. Asymmetric synthesis of crambescin A–C carboxylic acids and their inhibitory activity on voltage-gated sodium channels. Org Biomol Chem 2016; 14:5304-9. [DOI: 10.1039/c6ob00914j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both enantiomers of crambescin A–C carboxylic acids were synthesized via Katsuki asymmetric epoxidation and bromocation-triggered cascade cyclization.
Collapse
Affiliation(s)
- Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Yoshiki Nakane
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Yuki Ishikawa
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | | | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| |
Collapse
|
8
|
Irie R, Uchida T, Matsumoto K. Katsuki Catalysts for Asymmetric Oxidation: Design Concepts, Serendipities for Breakthroughs, and Applications. CHEM LETT 2015. [DOI: 10.1246/cl.150747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ryo Irie
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
| | - Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, and International Institute of Carbon-Neutral Energy Research (I2CNER)
| | | |
Collapse
|
9
|
Brown CA, Aggarwal VK. Short Convergent Synthesis of the Mycolactone Core Through Lithiation-Borylation Homologations. Chemistry 2015; 21:13900-3. [PMID: 26332797 PMCID: PMC6519258 DOI: 10.1002/chem.201503122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Using iterative lithiation-borylation homologations, the mycolactone toxin core has been synthesized in 13 steps and 17% overall yield. The rapid build-up of molecular complexity, high convergence and high stereoselectivity are noteworthy features of this synthesis.
Collapse
Affiliation(s)
- Christopher A Brown
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK).
| |
Collapse
|
10
|
Li X, Babu VS, Kishi Y. Stereoselective total synthesis and stereochemistry confirmation of photo-mycolactones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Abstract
Benzoquinone ansamycin antibiotic herbimycin A was synthesized in 19 linear steps and 4.2% yield. Highlighted is the design of a chiral γ-lactone as the C11-C15 synthon that enabled a facile catalytic asymmetric synthesis of the challenging C8-C20 fragment of the target molecule. The easy access to the stereogenic centers and high overall yield made the strategy applicable in the molecular editing of benzoquinone ansamycins.
Collapse
Affiliation(s)
- Rui Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences , No. 1 Xiannongtan Street, Beijing 100050, China
| | | | | |
Collapse
|
12
|
Chany AC, Tresse C, Casarotto V, Blanchard N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 2014; 30:1527-67. [PMID: 24178858 DOI: 10.1039/c3np70068b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4566, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | |
Collapse
|
13
|
Structure-activity relationship studies on the macrolide exotoxin mycolactone of Mycobacterium ulcerans. PLoS Negl Trop Dis 2013; 7:e2143. [PMID: 23556027 PMCID: PMC3610637 DOI: 10.1371/journal.pntd.0002143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/14/2013] [Indexed: 01/28/2023] Open
Abstract
Background Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans, the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play a central role in the pathogenesis of M. ulcerans. Methodology/Principal Findings We have synthesized and tested a series of mycolactone derivatives to conduct structure-activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain (comprising C12–C20) caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus pneumoniae) or Gram-negative bacteria (Neisseria meningitis and Escherichia coli), the fungus Saccharomyces cerevisae or the amoeba Dictyostelium discoideum. Conclusion Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways. Buruli ulcer is a chronic necrotizing skin disease caused by Mycobacterium ulcerans. The characteristic histopathological features of Buruli ulcer, severe destruction of subcutaneous tissue with minimal inflammation in the core of the lesion, are primarily attributed to the cytotoxic activity of mycolactone, the macrolide exotoxin of M. ulcerans. Different geographical lineages of M. ulcerans produce different structural variants of mycolactone. By using highly defined synthetic mycolactones, including both naturally occurring molecular species and additional non-natural variants, we have assessed the influence of the structure of the C-linked upper side chain and the lower C5-O-linked polyunsaturated acyl side chain on biological activity. Changes in the lower side chain affected the cytotoxic activity against mammalian cells more profoundly than changes in the upper side chain. Mycolactone A/B had no antimicrobial activity against Gram-positive and Gram-negative bacteria and was also inactive against Saccharomyces and Dictyostelium.
Collapse
|
14
|
Parenty A, Moreau X, Niel G, Campagne JM. Update 1 of: Macrolactonizations in the Total Synthesis of Natural Products. Chem Rev 2013; 113:PR1-40. [DOI: 10.1021/cr300129n] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A. Parenty
- Institut de Chimie des Substances
Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
| | - X. Moreau
- Institut de Chimie des Substances
Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Gilles Niel
- Institut Charles Gerhardt, UMR5253, Ecole Nationale Supérieure de Chimie, 8 rue de l’Ecole Normale, F-34296 Montpellier, France
| | - J.-M. Campagne
- Institut de Chimie des Substances
Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
- Institut Charles Gerhardt, UMR5253, Ecole Nationale Supérieure de Chimie, 8 rue de l’Ecole Normale, F-34296 Montpellier, France
| |
Collapse
|
15
|
Xing Y, Hande SM, Kishi Y. Photochemistry of Mycolactone A/B, the Causative Toxin of Buruli Ulcer. J Am Chem Soc 2012; 134:19234-9. [DOI: 10.1021/ja309215m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yalan Xing
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138,
United States
| | - Sudhir M. Hande
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138,
United States
| | - Yoshito Kishi
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138,
United States
| |
Collapse
|
16
|
Hande SM, Kazumi Y, Lai WG, Jackson KL, Maeda S, Kishi Y. Synthesis and Structure of Two New Mycolactones Isolated from M. ulcerans subsp. shinshuense. Org Lett 2012; 14:4618-21. [DOI: 10.1021/ol302072b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudhir M. Hande
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States, Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan, and Eisai, Inc., Andover, Massachsetts 01810, United States
| | - Yuko Kazumi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States, Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan, and Eisai, Inc., Andover, Massachsetts 01810, United States
| | - W. George Lai
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States, Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan, and Eisai, Inc., Andover, Massachsetts 01810, United States
| | - Katrina L. Jackson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States, Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan, and Eisai, Inc., Andover, Massachsetts 01810, United States
| | - Shinji Maeda
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States, Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan, and Eisai, Inc., Andover, Massachsetts 01810, United States
| | - Yoshito Kishi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States, Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan, and Eisai, Inc., Andover, Massachsetts 01810, United States
| |
Collapse
|
17
|
Hutacharoen P, Ruchirawat S, Boonyarattanakalin S. Biological Activities of Synthetic Oligosaccharides and Glycolipids from Mycobacteria. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.621041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Panatpong Hutacharoen
- a School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani , 12121 , Thailand
- b Program in Chemical Biology, Chulabhorn Graduate Institute and the Center of Excellence on Environmental Health, Toxicology and Management of Chemicals , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
| | - Somsak Ruchirawat
- b Program in Chemical Biology, Chulabhorn Graduate Institute and the Center of Excellence on Environmental Health, Toxicology and Management of Chemicals , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
- c Laboratory of Medicinal Chemistry, Chulabhorn Research Institute , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- a School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani , 12121 , Thailand
| |
Collapse
|
18
|
Chany AC, Casarotto V, Schmitt M, Tarnus C, Guenin-Macé L, Demangel C, Mirguet O, Eustache J, Blanchard N. A diverted total synthesis of mycolactone analogues: an insight into Buruli ulcer toxins. Chemistry 2011; 17:14413-9. [PMID: 22127975 DOI: 10.1002/chem.201102542] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Indexed: 12/20/2022]
Abstract
Mycolactones are complex macrolides responsible for a severe necrotizing skin disease called Buruli ulcer. Deciphering their functional interactions is of fundamental importance for the understanding, and ultimately, the control of this devastating mycobacterial infection. We report herein a diverted total synthesis approach of mycolactones analogues and provide the first insights into their structure-activity relationship based on cytopathic assays on L929 fibroblasts. The lowest concentration inducing a cytopathic effect was determined for selected analogues, allowing a clear picture to emerge by comparison with the natural toxins.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Chimie Organique et Bioorganique EA4566, 3 rue A. Werner, 68093 Mulhouse Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gersbach P, Jantsch A, Feyen F, Scherr N, Dangy JP, Pluschke G, Altmann KH. A ring-closing metathesis (RCM)-based approach to mycolactones A/B. Chemistry 2011; 17:13017-31. [PMID: 21971832 DOI: 10.1002/chem.201101799] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Indexed: 11/07/2022]
Abstract
The total synthesis of the mycobacterial toxins mycolactones A/B (1 a/b) has been accomplished based on a strategy built around the construction of the mycolactone core through ring-closing metathesis. By employing the Grubbs second-generation catalyst, the 12-membered core macrocycle of mycolactones, with a functionalized C2 handle attached to C11, was obtained in 60-80 % yield. The C-linked upper side chain (comprising C12-C20) was completed by a highly efficient modified Suzuki coupling between C13 and C14, while the attachment of the C5-O-linked polyunsaturated acyl side chain was achieved by Yamaguchi esterification. Surprisingly, a diene containing a simple isopropyl group attached to C11 could not be induced to undergo ring-closing metathesis. By employing fluorescence microscopy and flow cytometry techniques, the synthetic mycolactones A/B (1 a/b) were demonstrated to display similar apoptosis-inducing and cytopathic effects as mycolactones A/B extracted from Mycobacterium ulcerans. In contrast, a simplified analogue with truncated upper and lower side chains was found to be inactive.
Collapse
Affiliation(s)
- Philipp Gersbach
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zürich, HCI H405, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang G, Yin N, Negishi EI. Highly stereoselective total synthesis of fully hydroxy-protected mycolactones A and B and their stereoisomerization upon deprotection. Chemistry 2011; 17:4118-30. [PMID: 21412860 DOI: 10.1002/chem.201002627] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/15/2010] [Indexed: 11/11/2022]
Abstract
Unprecedentedly efficient and highly (≥98 %) stereoselective syntheses of mycolactones A and B side chains relied heavily on Pd-catalyzed alkenylation (Negishi version) and were completed in 11 longest linear steps from ethyl (S)-3-hydroxybutyrate in 12% and 11% overall yield, respectively, roughly corresponding to an average of 82% yield per step. The synthesis of mycolactone core was realized by using Pd-catalyzed alkenyl-allyl coupling and an epoxide-opening reaction with a trialkylalkenylaluminate as key steps. Fully hydroxy-protected mycolactones A and B of ≥98% isomeric purity were synthesized successfully for the first time. However, unexpected 4:3-5:4 inseparable mixtures of mycolactones A and B were obtained upon deprotection.
Collapse
Affiliation(s)
- Guangwei Wang
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | | | | |
Collapse
|
21
|
Abstract
Buruli ulcer is a severe and devastating skin disease caused by Mycobacterium ulcerans infection, yet it is one of the most neglected diseases. The causative toxin, referred to as mycolactone A/B, was isolated and characterized as a polyketide-derived macrolide in 1999. The current status of the mycolactone chemistry is described, highlighting the stereochemistry assignment of mycolactone A/B; total synthesis; the structure determination of mycolactone congeners from the human pathogen M. ulcerans, the frog pathogen Mycobacterium liflandii, and the fish pathogen Mycobacterium marinum; the structural diversity in the mycolactone class of natural products; the highly sensitive detection/structure-analysis of mycolactones; and some biological activity.
Collapse
|
22
|
Ko KS, Alexander MD, Fontaine SD, Biggs-Houck JE, La Clair JJ, Burkart MD. Synthetic studies on the mycolactone core. Org Biomol Chem 2010; 8:5159-65. [DOI: 10.1039/c0ob00540a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|