1
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Zawadzki S, Martín-Serrano Á, Okła E, Kędzierska M, Garcia-Gallego S, López PO, de la Mata FJ, Michlewska S, Makowski T, Ionov M, Pędziwiatr-Werbicka E, Bryszewska M, Miłowska K. Synthesis and biophysical evaluation of carbosilane dendrimers as therapeutic siRNA carriers. Sci Rep 2024; 14:1615. [PMID: 38238354 PMCID: PMC10796380 DOI: 10.1038/s41598-024-51238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Serafin Zawadzki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki St., 90-237, Lodz, Poland.
| | - Ángela Martín-Serrano
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
| | - Elżbieta Okła
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Sandra Garcia-Gallego
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Paula O López
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Francisco J de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
3
|
Synthesis, dynamics and applications (cytotoxicity and biocompatibility) of dendrimers: a mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
|
5
|
pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. NANOMATERIALS 2020; 10:nano10101899. [PMID: 32977594 PMCID: PMC7598245 DOI: 10.3390/nano10101899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy.
Collapse
|
6
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic macromolecular carrier-drug conjugates. Org Biomol Chem 2020; 18:5764-5783. [PMID: 32677650 DOI: 10.1039/d0ob01101k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many metabolic inhibitors, considered potential antimicrobial or anticancer drug candidates, exhibit very limited ability to cross the biological membranes of target cells. The restricted cellular penetration of those molecules is often due to their highhydrophilicity. One of the possible solutions to this problem is a conjugation of an inhibitor with a molecular organic nanocarrier. The conjugate thus formed should be able to penetrate the membrane(s) by direct translocation, endocytosis or active transport mechanisms and once internalized, the active component could reach its intracellular target, either after release from the conjugate or in an intact form. Several such nanocarriers have been proposed so far, including macromolecular systems, carbon nanotubes and dendrimers. Herein, we present a comprehensive review of the current status of rational design and synthesis of macromolecular organic nanocarrier-drug conjugates, with special attention focused on the mode of coupling of a nanocarrier moiety with a "cargo" molecule through linking fragments of non-cleavable or cleavable type.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
7
|
Synthesis of imidazolium-terminated carbosilane dendrimers and dendrons and study of their interactions with a cell membrane model. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. Molecules 2020; 25:molecules25040807. [PMID: 32069852 PMCID: PMC7070408 DOI: 10.3390/molecules25040807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/03/2023] Open
Abstract
The fluorination of dendritic structures has attracted special attention in terms of self-assembly processes and biological applications. The presence of fluorine increases the hydrophobicity of the molecule, resulting in a better interaction with biological membranes and viability. In addition, the development of 19F magnetic resonance imaging (19F-MRI) has greatly increased interest in the design of new fluorinated structures with specific properties. Here, we present the synthesis of new water-soluble fluorinated carbosilane dendrons containing fluorinated chains in different positions on the skeleton, focal point or surface, and their preliminary supramolecular aggregation studies. These new dendritic systems could be considered as potential systems to be employed in drug delivery or gene therapy and monitored by 19F-MRI.
Collapse
|
9
|
Maroto-Diaz M, Sanz del Olmo N, Garcia-Gallego S, Gómez R, Ortega P, de la Mata FJ. Synthesis and structural characterization of carbosilane ruthenium(II) metallodendrons containing cymene units. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Shukla R, Singh A, Pardhi V, Kashyap K, Dubey SK, Dandela R, Kesharwani P. Dendrimer-Based Nanoparticulate Delivery System for Cancer Therapy. POLYMERIC NANOPARTICLES AS A PROMISING TOOL FOR ANTI-CANCER THERAPEUTICS 2019:233-255. [DOI: 10.1016/b978-0-12-816963-6.00011-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Gutierrez-Ulloa CE, Buyanova MY, Apartsin EK, Venyaminova AG, de la Mata FJ, Valiente M, Gómez R. Amphiphilic carbosilane dendrons as a novel synthetic platform toward micelle formation. Org Biomol Chem 2018; 15:7352-7364. [PMID: 28829094 DOI: 10.1039/c7ob01331k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel family of amphiphilic ionic carbosilane dendrons containing fatty acids at the focal point were synthesized and characterized. They spontaneously self-assembled in aqueous solution into micelles both in the absence and presence of salt, as confirmed by surface tension, conductivity, and DLS measurements. Dendron based micelles have spherical shapes and increase in size on decreasing dendron generation. These dendritic micelles have been demonstrated to be able to form complexes with therapeutic macromolecules such as siRNA and show a high loading capacity for drugs such as procaine, suggesting their potential use as nanocarriers for therapeutics.
Collapse
Affiliation(s)
- Carlos E Gutierrez-Ulloa
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain. and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marina Yu Buyanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | - F Javier de la Mata
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain. and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Mercedes Valiente
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain.
| | - Rafael Gómez
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain. and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
12
|
Study of non-covalent interactions on dendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions. Colloids Surf B Biointerfaces 2018; 162:380-388. [PMID: 29241096 DOI: 10.1016/j.colsurfb.2017.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022]
|
13
|
Mahmoodi NO, Zeydi MM. Recent synthetic routes for the synthesis of symmetrical tris-compound. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1233-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules 2017; 22:molecules22101581. [PMID: 28934169 PMCID: PMC6151464 DOI: 10.3390/molecules22101581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/03/2022] Open
Abstract
In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and this is probably due to their multi-valency and to the fact that several other chemicals can be coupled to them to obtain desired compounds. In this review we will describe the different production strategies and the tools and technologies for the study of their characteristics. Finally, we provide a panoramic overview of their applications to meet biomedical needs, especially their use as novel antimicrobials.
Collapse
|
15
|
Fuentes-Paniagua E, Hernández-Ros JM, Soliveri J, Copa-Patiño JL, Gómez R, Sánchez-Nieves J, de la Mata FJ. Strategies for penicillin V dendronization with cationic carbosilane dendrons and study of antibacterial properties. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strategies to synthesize a cationic carbosilane dendron containing the antibiotic penicillin V potassium salt (PenVK) at the focal point are discussed. The preparation of such a compound requires the use of systems with no donor atoms such as N or S in their framework, because their presence favours the rupture of the penicillin β-lactam ring. The antibacterial activity of the new dendron containing ammonium groups, at the periphery, and the PenV moiety, at the focal point, against gram-positive Staphylococcus aureus strains was evaluated. These results were compared with those obtained for free PenVK, a related cationic dendron without a penicillin moiety at the focal point, and also compared with an equimolar mixture of this last dendron with free PenV. The data obtained indicate that, on one hand, the conjugation or interaction of PenV with cationic dendrons reduces its activity in comparison with free PenVK. On the other hand, the penicillin dendron is able to release the antibiotic in the presence of esterease, due to the breaking of the ester bond in this derivative.
Collapse
Affiliation(s)
- Elena Fuentes-Paniagua
- Departamento de Química Orgánica y Química Inorgánica, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - José M. Hernández-Ros
- Departamento de Biomedicina y Biotecnología, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Juan Soliveri
- Departamento de Biomedicina y Biotecnología, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
| | - José L. Copa-Patiño
- Departamento de Biomedicina y Biotecnología, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Javier Sánchez-Nieves
- Departamento de Química Orgánica y Química Inorgánica, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - F. Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
16
|
Synthesis of novel bifunctional organosilicon dendrons via platinum-catalyzed hydrosilylation. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 2016; 22:314-326. [PMID: 27671487 DOI: 10.1016/j.drudis.2016.09.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/20/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.
Collapse
Affiliation(s)
- Ashok Kumar Sharma
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Avinash Gothwal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutical Technology, School of Pharmacy, The International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Hashem Alsaab
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
18
|
Rodríguez-Prieto T, Barrios-Gumiel A, de la Mata FJ, Sánchez-Nieves J, Gómez R. Synthesis of degradable cationic carbosilane dendrimers based on Si–O or ester bonds. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Sepúlveda-Crespo D, Jiménez JL, Gómez R, De La Mata FJ, Majano PL, Muñoz-Fernández MÁ, Gastaminza P. Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:49-58. [PMID: 27562210 DOI: 10.1016/j.nano.2016.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/11/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a major biomedical problem worldwide. Although new direct antiviral agents (DAAs) have been developed for the treatment of chronic HCV infection, the potential emergence of resistant virus variants and the difficulties to implement their administration worldwide make the development of novel antiviral agents an urgent need. Moreover, no effective vaccine is available against HCV and transmission of the virus still occurs particularly when prophylactic measures are not taken. We used a cell-based system to screen a battery of polyanionic carbosilane dendrimers (PCDs) to identify compounds with antiviral activity against HCV and show that they inhibit effective virus adsorption of major HCV genotypes. Interestingly, one of the PCDs irreversibly destabilized infectious virions. This compound displays additive effect in combination with a clinically relevant DAA, sofosbuvir. Our results support further characterization of these molecules as nanotools for the control of hepatitis C virus spread.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José Luis Jiménez
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier De La Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro L Majano
- Molecular Biology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Gastaminza
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
20
|
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med Res Rev 2016; 37:149-179. [PMID: 27518199 DOI: 10.1002/med.21405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
21
|
Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, Sánchez-Nieves J, Guzmán-Navarro M, de la Mata FJ, Gómez R, de Las Heras B, Argüeso P, Ponchel G, Herrero-Vanrell R, Molina-Martínez IT. Novel Water-Soluble Mucoadhesive Carbosilane Dendrimers for Ocular Administration. Mol Pharm 2016; 13:2966-76. [PMID: 27149661 DOI: 10.1021/acs.molpharmaceut.6b00182] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purpose of this research was to determine the potential use of water-soluble anionic and cationic carbosilane dendrimers (generations 1-3) as mucoadhesive polymers in eyedrop formulations. Cationic carbosilane dendrimers decorated with ammonium -NH3(+) groups were prepared by hydrosylilation of Boc-protected allylamine and followed by deprotection with HCl. Anionic carbosilane dendrimers with terminal carboxylate groups were also employed in this study. In vitro and in vivo tolerance studies were performed in human ocular epithelial cell lines and rabbit eyes respectively. The interaction of dendrimers with transmembrane ocular mucins was evaluated with a surface biosensor. As proof of concept, the hypotensive effect of a carbosilane dendrimer eyedrop formulation containing acetazolamide (ACZ), a poorly water-soluble drug with limited ocular penetration, was tested after instillation in normotensive rabbits. The methodology used to synthesize cationic dendrimers avoids the difficulty of obtaining neutral -NH2 dendrimers that require harsher reaction conditions and also present high aggregation tendency. Tolerance studies demonstrated that both prototypes of water-soluble anionic and cationic carbosilane dendrimers were well tolerated in a range of concentrations between 5 and 10 μM. Permanent interactions between cationic carbosilane dendrimers and ocular mucins were observed using biosensor assays, predominantly for the generation-three (G3) dendrimer. An eyedrop formulation containing G3 cationic carbosilane dendrimers (5 μM) and ACZ (0.07%) (289.4 mOsm; 5.6 pH; 41.7 mN/m) induced a rapid (onset time 1 h) and extended (up to 7 h) hypotensive effect, and led to a significant increment in the efficacy determined by AUC0(8h) and maximal intraocular pressure reduction. This work takes advantage of the high-affinity interaction between cationic carbosilane dendrimers and ocular transmembrane mucins, as well as the tensioactive behavior observed for these polymers. Our results indicate that low amounts of cationic carbosilane dendrimers are well tolerated and able to improve the hypotensive effect of an acetazolamide solution. Our results suggest that carbosilane dendrimers can be used in a safe range of concentrations to enhance the bioavailability of drugs topically administered in the eye.
Collapse
Affiliation(s)
- I Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain.,Pharmaceutical Innovation in Ophthalmology Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III , Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.,Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain
| | - M Vicario-de-la-Torre
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain.,Pharmaceutical Innovation in Ophthalmology Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III , Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.,Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain
| | - V Andrés-Guerrero
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain.,Pharmaceutical Innovation in Ophthalmology Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III , Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.,Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain
| | - J Sánchez-Nieves
- Department of Organic and Inorganic Chemistry, University of Alcalá , Plaza San Diego, 28801 Alcalá de Henares, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Plaza San Diego, 28801 Alcalá de Henares, Spain
| | - M Guzmán-Navarro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Alcalá de Henares , Plaza San Diego, 28801 Alcalá de Henares, Spain
| | - F J de la Mata
- Department of Organic and Inorganic Chemistry, University of Alcalá , Plaza San Diego, 28801 Alcalá de Henares, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Plaza San Diego, 28801 Alcalá de Henares, Spain
| | - R Gómez
- Department of Organic and Inorganic Chemistry, University of Alcalá , Plaza San Diego, 28801 Alcalá de Henares, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Plaza San Diego, 28801 Alcalá de Henares, Spain
| | - B de Las Heras
- Department of Pharmacology, School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain
| | - P Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - G Ponchel
- CNRS UMR 8612, Université de Paris Sud, Laboratoire de Physicochimie, Pharmacotechnie et Biopharmacie, Faculté de Pharmacie, Université Paris-Sud 5 , rue Jean-Baptiste Clément, 92 296 Châtenay-Malabry, Paris, France
| | - R Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain.,Pharmaceutical Innovation in Ophthalmology Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III , Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.,Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain
| | - I T Molina-Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain.,Pharmaceutical Innovation in Ophthalmology Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III , Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.,Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense , Avenida Complutense, 28040 Madrid, Spain
| |
Collapse
|
22
|
Zhang Z, Feng S, Zhang J. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene. Macromol Rapid Commun 2015; 37:318-22. [PMID: 26676283 DOI: 10.1002/marc.201500607] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/13/2015] [Indexed: 01/22/2023]
Abstract
A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.
Collapse
Affiliation(s)
- Zhida Zhang
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jie Zhang
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
23
|
Lozano-Cruz T, Ortega P, Batanero B, Copa-Patiño JL, Soliveri J, de la Mata FJ, Gómez R. Synthesis, characterization and antibacterial behavior of water-soluble carbosilane dendrons containing ferrocene at the focal point. Dalton Trans 2015; 44:19294-304. [PMID: 26489707 DOI: 10.1039/c5dt02230d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of novel water-soluble ammonium-terminated carbosilane dendrons containing a ferrocene unit at the focal point were synthesized, in order to combine the unique redox activity of ferrocene and the precisely designed structure of the dendrons with the aim to evaluate them as a new class of potential organometallic-based antibacterial compounds. The synthetic route is based on the initial amination of ferrocenecarboxaldehyde with carbosilane dendrons that contain allyl groups on the surface followed by reduction of the in situ prepared imine product, and the subsequent functionalization of the periphery with terminal amine groups by hydrosilylation reactions. Systems quaternized with HCl are soluble and stable in water or other protic solvents. The obtained compounds were spectrally and electrochemically (cyclic voltammetry) characterized, and diffusion-ordered spectroscopy experiments were conducted to determine the size of the dendritic wedges in solution. The antibacterial activity of these compounds was evaluated using Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), which shows that the first and second generations of cationic dendrons are broad spectrum antibacterial agents, i.e. selective and effective in both bacterial strains.
Collapse
Affiliation(s)
- Tania Lozano-Cruz
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain.
| | | | | | | | | | | | | |
Collapse
|
24
|
Elshan NGRD, Jayasundera T, Anglin BL, Weber CS, Lynch RM, Mash EA. Trigonal scaffolds for multivalent targeting of melanocortin receptors. Org Biomol Chem 2015; 13:1778-91. [PMID: 25502141 DOI: 10.1039/c4ob02094d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanocortin receptors can be used as biomarkers to detect and possibly treat melanoma. To these ends, molecules bearing one, two, or three copies of the weakly binding ligand MSH(4) were attached to scaffolds based on phloroglucinol, tripropargylamine, and 1,4,7-triazacyclononane by means of the copper-assisted azide-alkyne cyclization. This synthetic design allows rapid assembly of multivalent molecules. The bioactivities of these compounds were evaluated using a competitive binding assay that employed human embryonic kidney cells engineered to overexpress the melanocortin 4 receptor. The divalent molecules exhibited 10- to 30-fold higher levels of inhibition when compared to the corresponding monovalent molecules, consistent with divalent binding. The trivalent molecules were only statistically (∼2-fold) better than the divalent molecules, still consistent with divalent binding but inconsistent with trivalent binding. Possible reasons for these behaviors and planned refinements of the multivalent constructs targeting melanocortin receptors based on these scaffolds are discussed.
Collapse
Affiliation(s)
- N G R Dayan Elshan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Sepúlveda-Crespo D, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1481-98. [DOI: 10.1016/j.nano.2015.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/20/2015] [Accepted: 03/19/2015] [Indexed: 12/22/2022]
|
26
|
Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjug Chem 2015; 26:1198-211. [PMID: 25654320 DOI: 10.1021/acs.bioconjchem.5b00031] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments. These have included the use of dendrimers as pro-drugs and vehicles for solubilization, encapsulation, complexation, delivery, and site-specific targeting of small-molecule drugs, biopharmaceuticals, and contrast agents. We briefly review these advances, paying particular attention to attributes that make dendrimers versatile for drug formulation as well as challenging issues surrounding the future development of dendrimer-based medicines.
Collapse
Affiliation(s)
- Lin-Ping Wu
- †Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Mario Ficker
- ‡Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jørn B Christensen
- ‡Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | - Seyed Moein Moghimi
- †Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.,∥NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
27
|
Galán M, Fuentes-Paniagua E, de la Mata FJ, Gómez R. Heterofunctionalized Carbosilane Dendritic Systems: Bifunctionalized Dendrons as Building Blocks versus Statistically Decorated Dendrimers. Organometallics 2014. [DOI: 10.1021/om500464k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marta Galán
- Departamento de
Quı́mica
Orgánica y Quı́mica Inorgánica and Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Elena Fuentes-Paniagua
- Departamento de
Quı́mica
Orgánica y Quı́mica Inorgánica and Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - F. Javier de la Mata
- Departamento de
Quı́mica
Orgánica y Quı́mica Inorgánica and Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Rafael Gómez
- Departamento de
Quı́mica
Orgánica y Quı́mica Inorgánica and Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
| |
Collapse
|
28
|
Sánchez-Nieves J, Fransen P, Pulido D, Lorente R, Muñoz-Fernández MÁ, Albericio F, Royo M, Gómez R, de la Mata FJ. Amphiphilic Cationic Carbosilane–PEG Dendrimers: Synthesis and Applications in Gene Therapy. Eur J Med Chem 2014; 76:43-52. [DOI: 10.1016/j.ejmech.2014.01.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 01/28/2023]
|
29
|
Moreno S, Lozano-Cruz T, Ortega P, Tarazona MP, de la Mata FJ, Gómez R. Synthesis of new amphiphilic water-stable hyperbranched polycarbosilane polymers. POLYM INT 2014. [DOI: 10.1002/pi.4679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Silvia Moreno
- Departamento de Química Organica y Química Inorganica; Universidad de Alcalá, Campus Universitario; E-28871 Alcalá de Henares Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Spain
| | - Tania Lozano-Cruz
- Departamento de Química Organica y Química Inorganica; Universidad de Alcalá, Campus Universitario; E-28871 Alcalá de Henares Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Spain
| | - Paula Ortega
- Departamento de Química Organica y Química Inorganica; Universidad de Alcalá, Campus Universitario; E-28871 Alcalá de Henares Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Spain
| | - M Pilar Tarazona
- Departamento Química Analítica, Química Física e Ingeniería Química; Universidad de Alcalá, Campus Universitario; E-28871 Alcalá de Henares Spain
| | - F Javier de la Mata
- Departamento de Química Organica y Química Inorganica; Universidad de Alcalá, Campus Universitario; E-28871 Alcalá de Henares Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Spain
| | - Rafael Gómez
- Departamento de Química Organica y Química Inorganica; Universidad de Alcalá, Campus Universitario; E-28871 Alcalá de Henares Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Spain
| |
Collapse
|
30
|
Galán M, Sánchez Rodríguez J, Jiménez JL, Relloso M, Maly M, de la Mata FJ, Muñoz-Fernández MA, Gómez R. Synthesis of new anionic carbosilane dendrimers via thiol–ene chemistry and their antiviral behaviour. Org Biomol Chem 2014; 12:3222-37. [DOI: 10.1039/c4ob00162a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Fuentes-Paniagua E, Hernández-Ros JM, Sánchez-Milla M, Camero MA, Maly M, Pérez-Serrano J, Copa-Patiño JL, Sánchez-Nieves J, Soliveri J, Gómez R, Javier de la Mata F. Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv 2014. [DOI: 10.1039/c3ra45408h] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 2014. [DOI: 10.1039/c4py00339j] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.
Collapse
Affiliation(s)
- Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Kensington Sydney, Australia
| |
Collapse
|
33
|
Novel ‘SiC’ carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids Surf B Biointerfaces 2013; 109:183-9. [DOI: 10.1016/j.colsurfb.2013.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 01/30/2023]
|
34
|
Fuentes-Paniagua E, Peña-González CE, Galán M, Gómez R, de la Mata FJ, Sánchez-Nieves J. Thiol-Ene Synthesis of Cationic Carbosilane Dendrons: a New Family of Synthons. Organometallics 2013. [DOI: 10.1021/om301217g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fuentes-Paniagua
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Cornelia E. Peña-González
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Marta Galán
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Rafael Gómez
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - F. Javier de la Mata
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Javier Sánchez-Nieves
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
35
|
Rasines B, Sánchez-Nieves J, Maiolo M, Maly M, Chonco L, Jiménez JL, Muñoz-Fernández MÁ, de la Mata FJ, Gómez R. Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Trans 2013; 41:12733-48. [PMID: 22968584 DOI: 10.1039/c2dt31099f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anionic carbosilane dendrimers of generations 1-3 have been synthesized containing carboxylate G(n)X(C(2)H(4)CO(2)Na)(m) and sulfonate G(n)X(C(2)H(4)SO(3)Na)(m) peripheral groups and derived from two different cores, 1,3,5-(HO)(3)C(6)H(3) (X = O(3)) and Si(C(3)H(5))(4) (X = Si). The peripheral anionic groups make these dendrimers water soluble, despite their highly hydrophobic framework. These dendrimers present a net negative charge in water, which was influenced by the pH of the medium. This characteristic was studied by pH titration. Also molecular modeling calculations have been performed to study differences in an aqueous medium between carboxylate and sulfonate dendrimers of different cores. The results obtained were also compared with those obtained from DOSY NMR experiments and zeta-potential measurements.
Collapse
Affiliation(s)
- Beatriz Rasines
- Dpto. de Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares (Madrid), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sánchez-Nieves J, Perisé-Barrios AJ, Ortega P, Corbí ÁL, Domínguez-Soto Á, Muñoz-Fernández MÁ, Gómez R, Javier de la Mata F. Study of cationic carbosilane dendrimers as potential activating stimuli in macrophages. RSC Adv 2013. [DOI: 10.1039/c3ra43338b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
37
|
Vigo S, Andrés R, Gómez-Sal P, de la Mata J, de Jesús E. Synthesis of palladium(II) complexes of bidentate phosphano ligands with carbosilane substituents. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ionov M, Garaiova Z, Waczulikova I, Wróbel D, Pędziwiatr-Werbicka E, Gomez-Ramirez R, de la Mata FJ, Klajnert B, Hianik T, Bryszewska M. siRNA carriers based on carbosilane dendrimers affect zeta potential and size of phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2209-16. [DOI: 10.1016/j.bbamem.2012.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 01/28/2023]
|
39
|
Ortega P, Moreno S, Tarazona MP, de la Mata FJ, Gómez Ramirez R. New hyperbranched carbosiloxane–carbosilane polymers with aromatic units in the backbone. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|