1
|
Park S, Myeong IS, Ham WH. Recent advances in the total synthesis of polyhydroxylated alkaloids via chiral oxazines. Org Biomol Chem 2024; 22:894-926. [PMID: 38230703 DOI: 10.1039/d3ob01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This review summarizes recently established methodologies developed for the enantioselective and diastereoselective synthesis of chiral 1,3-oxazines. These compounds are of interest as advanced synthetic intermediates in the total synthesis of structurally complex and biologically active polyhydroxylated alkaloids such as (+)-1-deoxynojirimycin, (-)-anisomycin, (+)-castanospermine, (+)-casuarine, (-)-conduramine F-1, (-)-sphingofungin B, Neu5Ac methyl ester, and other natural products. The devised synthetic approach aims to offer a direct, efficient, and adaptable method for obtaining both pure enantiomers and pure diastereomers. It revolves around utilizing chiral building blocks like syn,syn-, syn,syn,anti-, syn,anti-, syn,anti,syn-, anti,syn-, anti,syn,syn-, and anti,syn,anti-oxazines. By integrating oxazine chemistry with established and innovative transformations, this approach enabled the synthesis of 30 polyhydroxylated amines across various studies conducted between 2007 and 2022.
Collapse
Affiliation(s)
- Seokhwi Park
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
| | - In-Soo Myeong
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Won-Hun Ham
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
2
|
Ferjancic Z, Saicic RN. Combining Organocatalyzed Aldolization and Reductive Amination: An Efficient Reaction Sequence for the Synthesis of Iminosugars. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zorana Ferjancic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Radomir N. Saicic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
- Serbian Academy of Sciences and Arts Kneza Mihaila 35 11 000 Belgrade Serbia
| |
Collapse
|
3
|
Myeong IS, Ham WH. Stereoselective allylation reactions of acyclic and chiral α-amino-β-hydroxy aldehydes 3: Total synthesis of (+)-1-epi-castanospermine. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
El-Nezhawy AOH, Alrobaian M, Khames A, El-Badawy MF, Abdelwahab SF. Design and total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues by O-(2-oxopyrrolidin-5-yl)trichloroacetimidate as amidoalkylating agent with improved antimicrobial activity via solid lipid nanoparticle formulations. Bioorg Med Chem 2019; 27:1263-1273. [PMID: 30777662 DOI: 10.1016/j.bmc.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
A general strategy towards total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues has been developed from (D)-tartaric acid via the intermediate (3S,4R)-1-methyl-2-oxo-5-(2,2,2-trichloroacetamido)pyrrolidinediacetate (7). α-amidoalkylation studies of 7 with electron rich benzene derivative 8a-g as C-nucleophiles afforded (aryl derivatives) 9a-g. The target compounds 1, 2 and 13c-g were readily obtained from 10a-gvia Grignard addition to the homochiral lactam which was produced by deoxygenation using Lewis-acid followed by deacetylation. The synthesized compounds were loaded onto solid lipid nanoparticle formulations (SLNs) prepared by hot emulsification-ultrasonication technique using Compritol as solid lipid and Pluronic f68 as surfactant. SLNs were fully evaluated and the permeation of synthesized compound from SLNs was assayed against non-formulated compounds through dialysis membranes using Franz cell. The data indicated good physical characteristics of the prepared SLNs, sustaining of release profiles and significant improvement of permeation ability when compared to the non-formulated compounds. The antibacterial and antifungal activities of 1, 2 and 13c-g were determined by disc diffusion and microbroth dilution method to determine the minimum inhibitory concentrations (MIC) against seven microorganisms (Staphyloccus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans). The most active compounds against the Gram positive S. aureus were 1, 13C, 13d, and 13g. Also, 13c, 13d, and 13e had antibacterial activity but not 13f against some Gram negative organisms (E. coli, and P. mirabilis). MIC concentrations against P. aeruginosa, and K. pneumoniae were ≥512 μg/ml, while that against A. baumannii was ≥128 μg/ml except for nanoformulae of 13e and 13f that were 16 and 64 μg/ml, respectively. No antifungal activity against Candida albicans was recorded for all compounds and their nanoformulae (MIC > 1024 μg/ml). SLNs were found to decrease the MIC values for some of the compounds with no effect on the antifungal activity. In conclusion, we demonstrated a novel, straight-forward and economical procedure for the total synthesis of (-)-codonopsinine 1, (-)-codonopsine 2 and codonopsinine analogues 13c-g from simple and commercially available starting materials; d-tartaric acid; with antimicrobial activities against Gram positive and Gram-negative organisms that were improved by SLNs formulations.
Collapse
Affiliation(s)
- Ahmed O H El-Nezhawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed F El-Badawy
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, P.O. Box 77, 6th of October City 12568, Egypt
| | - Sayed F Abdelwahab
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| |
Collapse
|
5
|
Myeong IS, Lee YT, Kang J, Ham WH. Stereoselective Total Syntheses of (+)-Castanospermine and Neu5Ac Methyl Ester. J Org Chem 2019; 84:4211-4220. [DOI: 10.1021/acs.joc.9b00216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- In-Soo Myeong
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Yong-Taek Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jihun Kang
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Won-Hun Ham
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Yonsung Fine Chemicals Co., Ltd., Sujeong-ro 207, Jangan-myeon, Hwaseong-si, Gyeonggi-do 18581, Republic of Korea
| |
Collapse
|
6
|
Liu B, Li X, Du L, Li Z, Zeng R. Synthesis of Novel Dispiro[Acenaphthylene-Pyrrolidine-Pyrrolisine] Derivatives via a 1,3-Dipolar Cycloaddition of Azomethine Ylide. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751913x13847014266749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Bin Liu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Xiaofang Li
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Liyun Du
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Zhikui Li
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| |
Collapse
|
7
|
Carroll AW, Willis AC, Hoshino M, Kato A, Pyne SG. Corrected Structure of Natural Hyacinthacine C 1 via Total Synthesis. JOURNAL OF NATURAL PRODUCTS 2019; 82:358-367. [PMID: 30714734 DOI: 10.1021/acs.jnatprod.8b00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyacinthacines C1 and C4 are natural products that were isolated from Hyacinthoides non-scripta and Scilla socialis in 1999 and 2007, respectively. Despite their different 1H NMR and 13C NMR spectroscopic data, these compounds have been assigned the same structures, including absolute configurations. This work details the total synthesis of natural (+)-hyacinthacine C1, whose structure is confirmed as being the C-6 epimer of that reported. The synthetic strategy focused on inverting the configuration at C-1 of the final hyacinthacines via operating the inversion at the corresponding carbon atom in three previously synthesized intermediates. To do this, the advanced intermediates were subjected to Swern oxidation, followed by a stereoselective reduction with L-Selectride. This approach led to the synthesis of (+)-5 -epi-hyacinthacine C1 (15), the corrected structure for (+)-hyacinthacine C1 (19), (+)-6,7-di- epi-hyacinthacine C1 (23), and (+)-7- epi-hyacinthacine C1 (29). Glycosidase inhibition assays revealed that (+)-hyacinthacine C1 (19) proved the most active, with IC50 values of 33.7, 55.5, and 78.2 μM, against the α-glucosidase of rice, human lysosome, and rat intestinal maltase, respectively.
Collapse
Affiliation(s)
- Anthony W Carroll
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Anthony C Willis
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Masako Hoshino
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Stephen G Pyne
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
8
|
Martinez ST, Belouezzane C, Pinto AC, Glasnov T. Synthetic Strategies towards the Azabicyclo[3.3.0]-Octane Core of Natural Pyrrolizidine Alkaloids. An Overview. ORG PREP PROCED INT 2016. [DOI: 10.1080/00304948.2016.1165058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Abstract
This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis(quinolizidine) alkaloids.
Collapse
|
10
|
Li YX, Shimada Y, Sato K, Kato A, Zhang W, Jia YM, Fleet GWJ, Xiao M, Yu CY. Synthesis and Glycosidase Inhibition of Australine and Its Fluorinated Derivatives. Org Lett 2015; 17:716-9. [DOI: 10.1021/ol503728e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Xian Li
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yousuke Shimada
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kasumi Sato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Wei Zhang
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Mei Jia
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Min Xiao
- State
Key Laboratory of Microbial Technology and National Glycoengineering
Research Center, Shandong University, Jinan 250100, P. R. China
| | - Chu-Yi Yu
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
11
|
Ecer K, Salamci E. Efficient and shortcut syntheses of some novel eight-membered ring cyclitols starting from cycloocta-1,3-diene. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Abstract
This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
13
|
Malik M, Witkowski G, Jarosz S. Carboxybenzyl Group as an O-Nucleophile in the C–H Allylic Oxidation: Total Synthesis of (−)-Castanospermine. Org Lett 2014; 16:3816-9. [DOI: 10.1021/ol501730p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Michał Malik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Witkowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Concia AL, Gómez L, Parella T, Joglar J, Clapés P. Casuarine Stereoisomers from Achiral Substrates: Chemoenzymatic Synthesis and Inhibitory Properties. J Org Chem 2014; 79:5386-9. [DOI: 10.1021/jo500991p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alda Lisa Concia
- Biotransformation
and Bioactive Molecules Group, Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada de Cataluña, IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Livia Gómez
- Biotransformation
and Bioactive Molecules Group, Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada de Cataluña, IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teodor Parella
- Servei
de Ressonància Magnètica Nuclear, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biotransformation
and Bioactive Molecules Group, Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada de Cataluña, IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biotransformation
and Bioactive Molecules Group, Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada de Cataluña, IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
15
|
Luna-Freire KR, Scaramal JPS, Resende JA, Tormena CF, Oliveira FL, Aparicio R, Coelho F. An asymmetric substrate-controlled Morita–Baylis–Hillman reaction as approach for the synthesis of pyrrolizidinones and pyrrolizidines. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Dharuman S, Palanivel AK, Vankar YD. An easy route to synthetic analogues of radicamine B, codonopsine and codonopsinine from d-mannitol. Org Biomol Chem 2014; 12:4983-98. [DOI: 10.1039/c4ob00503a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Mironiuk-Puchalska E, Rowicki T, Sas W, Koszytkowska-Stawińska M. Convenient synthesis of epimeric indolizidines by the intramolecular 1,3-dipolar cycloaddition of a sugar derived N-(3-alkenyl)nitrone. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Stereocomplementary Routes to Hydroxylated Nitrogen Heterocycles: Total Syntheses of Casuarine, Australine, and 7-epi-Australine. Chemistry 2013; 19:10595-604. [DOI: 10.1002/chem.201301320] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/07/2022]
|
19
|
Rajender A, Rao JP, Rao BV. A Divergent and Stereoselective Approach for the Syntheses of Some Polyhydroxylated Indolizidine and Pyrrolizidine Iminosugars. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Shao J, Yang JS. A Diastereoselective Cyclic Imine Cycloaddition Strategy To Access Polyhydroxylated Indolizidine Skeleton: Concise Syntheses of (+)-/(−)-Lentiginosines and (−)-2-epi-Steviamine. J Org Chem 2012; 77:7891-900. [PMID: 22946565 DOI: 10.1021/jo3010777] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia Shao
- Key Laboratory of Drug Targeting, Ministry of Education,
and Department of Chemistry of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University,
Chengdu 610041, P. R. China
| | - Jin-Song Yang
- Key Laboratory of Drug Targeting, Ministry of Education,
and Department of Chemistry of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University,
Chengdu 610041, P. R. China
| |
Collapse
|
21
|
Kondakal VV, Ilyas Qamar M, Hemming K. The synthesis of hydroxy-pyrrolizidines and indolizidines from cyclopropenones: towards hyacinthacines, australines and jenamidines. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kelebekli L, Balcı N, Şahin E. Oxazolidinone polycyclitols. Stereospecific synthesis of novel aminocarbasugars with oxazolidinone ring. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|