1
|
Outzen L, Münzmay M, Frangioni JV, Maison W. Synthesis of Modular Desferrioxamine Analogues and Evaluation of Zwitterionic Derivatives for Zirconium Complexation. ChemMedChem 2023; 18:e202300112. [PMID: 37057615 DOI: 10.1002/cmdc.202300112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
The natural siderophore desferrioxamine B (DFOB) has been used for targeted PET imaging with 89 Zr before. However, Zr-DFOB has a limited stability and a number of derivatives have been developed with improved chelation properties for zirconium. We describe the synthesis of pseudopeptidic analogues of DFOB with azido side chains. These are termed AZA-DFO (hexadentate) and AZA-DFO* (octadentate) and are assembled via a modular synthesis from Orn-β-Ala and Lys-β-Ala. Nine different chelators have been conjugated to zwitterionic moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The resulting water-soluble chelators form Zr complexes under mild conditions (room temperature for 90 min). Transchelation assays with 1000-fold excess of EDTA and 300-fold excess of DFOB revealed that a short spacing of hydroxamates in (Orn-β-Ala)3-4 leads to improved complex stability compared to a longer spacing in (Lys-β-Ala)3-4 . We found that the alignment of amide groups in the pseudopeptide backbone and the presence of zwitterionic sidechains did not compromise the stability of the Zr-complexes with our chelators. We believe that the octadentate derivative AZA-DFO* is particularly valuable for the preparation of new Zr-chelators for targeted imaging which combine tunable pharmacokinetic properties with high complex stability and fast Zr-complexation kinetics.
Collapse
Affiliation(s)
- Lasse Outzen
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Moritz Münzmay
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | | | - Wolfgang Maison
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
2
|
He Q, Liu Z, Wang J. Targeting KRAS in PDAC: A New Way to Cure It? Cancers (Basel) 2022; 14:cancers14204982. [PMID: 36291766 PMCID: PMC9599866 DOI: 10.3390/cancers14204982] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is one of the most intractable malignant tumors worldwide, and is known for its refractory nature and poor prognosis. The fatality rate of pancreatic cancer can reach over 90%. In pancreatic ductal carcinoma (PDAC), the most common subtype of pancreatic cancer, KRAS is the most predominant mutated gene (more than 80%). In recent decades, KRAS proteins have maintained the reputation of being “undruggable” due to their special molecular structures and biological characteristics, making therapy targeting downstream genes challenging. Fortunately, the heavy rampart formed by KRAS has been broken down in recent years by the advent of KRASG12C inhibitors; the covalent inhibitors bond to the switch-II pocket of the KRASG12C protein. The KRASG12C inhibitor sotorasib has been received by the FDA for the treatment of patients suffering from KRASG12C-driven cancers. Meanwhile, researchers have paid close attention to the development of inhibitors for other KRAS mutations. Due to the high incidence of PDAC, developing KRASG12D/V inhibitors has become the focus of attention. Here, we review the clinical status of PDAC and recent research progress in targeting KRASG12D/V and discuss the potential applications.
Collapse
Affiliation(s)
- Qianyu He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|
3
|
Shai A, Galouk E, Miari R, Tareef H, Sammar M, Zeidan M, Rayan A, Falah M. Inhibiting mutant KRAS G12D gene expression using novel peptide nucleic acid‑based antisense: A potential new drug candidate for pancreatic cancer. Oncol Lett 2022; 23:130. [PMID: 35251350 PMCID: PMC8895471 DOI: 10.3892/ol.2022.13250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
KRAS mutations, which are the main cause of the pathogenesis of lethal pancreatic adenocarcinomas, impair the functioning of the GTPase subunit, thus rendering it constitutively active and signaling intracellular pathways that end with cell transformation. In the present study, the AsPC-1 cell line, which has a G12D-mutated KRAS gene sequence, was utilized as a cellular model to test peptide nucleic acid-based antisense technology. The use of peptide nucleic acids (PNAs) that are built to exhibit improved hybridization specificity and have an affinity for complementary RNA and DNA sequences, as well as a simple chemical structure and high biological stability that affords resistance to nucleases and proteases, enabled targeting of the KRAS-mutated gene to inhibit its expression at the translation level. Because PNA-based antisense molecules should be capable of binding to KRAS mRNA sequences, PNAs were utilized to target the mRNA of the mutated KRAS gene, a strategy that could lead to the development of a novel drug for pancreatic cancer. Moreover, it was demonstrated that introducing new PNA to cells inhibited the growth of cancer cells and induced apoptotic death and, notably, that it can inhibit G12D-mutated KRAS gene expression, as demonstrated by RT-PCR and western blotting. Altogether, these data strongly suggest that the use of PNA-based antisense agents is an attractive therapeutic approach to treating KRAS-driven cancers and may lead to the development of novel drugs that target the expression of other mutated genes.
Collapse
Affiliation(s)
- Ayelet Shai
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Evleen Galouk
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Reem Miari
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Hala Tareef
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Mouhammad Zeidan
- Molecular Genetics and Virology Laboratory, Al‑Qasemi Center of Research Excellence, Baka EL‑Garbiah 30100, Israel
| | - Anwar Rayan
- Faculty of Science, Al‑Qasemi Academic College, Baka EL‑Garbiah 30100, Israel
| | - Mizied Falah
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| |
Collapse
|
4
|
Elskens J, Manicardi A, Costi V, Madder A, Corradini R. Synthesis and Improved Cross-Linking Properties of C5-Modified Furan Bearing PNAs. Molecules 2017; 22:molecules22112010. [PMID: 29156637 PMCID: PMC6150320 DOI: 10.3390/molecules22112010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, peptide nucleic acid/DNA (PNA:DNA) duplex stability has been improved via backbone modification, often achieved via introducing an amino acid side chain at the α- or γ-position in the PNA sequence. It was previously shown that interstrand cross-linking can further enhance the binding event. In this work, we combined both strategies to fine-tune PNA crosslinking towards single stranded DNA sequences using a furan oxidation-based crosslinking method; for this purpose, γ-l-lysine and γ-l-arginine furan-PNA monomers were synthesized and incorporated in PNA sequences via solid phase synthesis. It was shown that the l-lysine γ-modification had a beneficial effect on crosslink efficiency due to pre-organization of the PNA helix and a favorable electrostatic interaction between the positively-charged lysine and the negatively-charged DNA backbone. Moreover, the crosslink yield could be optimized by carefully choosing the type of furan PNA monomer. This work is the first to describe a selective and biocompatible furan crosslinking strategy for crosslinking of γ-modified PNA sequences towards single-stranded DNA.
Collapse
Affiliation(s)
- Joke Elskens
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Valentina Costi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
5
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Głowacka IE, Piotrowska DG, Andrei G, Schols D, Snoeck R, Wróblewski AE. Acyclic nucleoside phosphonates containing the amide bond. MONATSHEFTE FUR CHEMIE 2016; 147:2163-2177. [PMID: 27881885 PMCID: PMC5101293 DOI: 10.1007/s00706-016-1848-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/04/2016] [Indexed: 12/11/2022]
Abstract
Abstract To study the influence of a linker rigidity and donor–acceptor properties, the P–CH2–O–CHR– fragment in acyclic nucleoside phosphonates (e.g., acyclovir, tenofovir) was replaced by the P–CH2–HN–C(O)– residue. The respective phosphonates were synthesized in good yields by coupling the straight chain of ω-aminophosphonates and nucleobase-derived acetic acids with EDC. Based on the 1H and 13C NMR data, the unrestricted rotation within the methylene and 1,2-ethylidene linkers in phosphonates from series a and b was confirmed. For phosphonates containing 1,3-propylidene (series c) fragments, antiperiplanar disposition of the bulky O,O-diethylphosphonate and substituted amidomethyl groups was established. The synthesized ANPs P–X–HNC(O)–CH2B (X = CH2, CH2CH2, CH2CH2CH2, CH2OCH2CH2) appeared inactive in antiviral assays against a wide variety of DNA and RNA viruses at concentrations up to 100 μM while marginal antiproliferative activity (L1210 cells, IC50 = 89 ± 16 μM and HeLa cells, IC50 = 194 ± 19 μM) was noticed for the analog derived from (5-fluorouracyl-1-yl)acetic acid and O,O-diethyl (2-aminoethoxy)methylphosphonate. Graphical abstract ![]()
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Andrzej E Wróblewski
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Zhang G, Huang R. Facile synthesis of SAM-peptide conjugates through alkyl linkers targeting protein N-terminal methyltransferase 1. RSC Adv 2016; 6:6768-6771. [PMID: 27588169 DOI: 10.1039/c5ra20625a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the first chemical synthesis of SAM-peptide conjugates through alkyl linkers to prepare bisubstrate analogs for protein methyltransferases. We demonstrate its application by developing a series of bisubstrate inhibitors for protein N-terminal methyltransferase 1 and the most potent one exhibits a Ki value of 310 ± 55 nM.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery & Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery & Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
8
|
Kirillova Y, Boyarskaya N, Dezhenkov A, Tankevich M, Prokhorov I, Varizhuk A, Eremin S, Esipov D, Smirnov I, Pozmogova G. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding. PLoS One 2015; 10:e0140468. [PMID: 26469337 PMCID: PMC4607454 DOI: 10.1371/journal.pone.0140468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA.
Collapse
Affiliation(s)
- Yuliya Kirillova
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- * E-mail:
| | - Nataliya Boyarskaya
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Andrey Dezhenkov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Mariya Tankevich
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan Prokhorov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Anna Varizhuk
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sergei Eremin
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Dmitry Esipov
- Department of Bioorganic Chemistry, Biology Faculty, Moscow State University, Moscow, Russia
| | - Igor Smirnov
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Galina Pozmogova
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
9
|
Park S, Kwon YU. Facile solid-phase parallel synthesis of linear and cyclic peptoids for comparative studies of biological activity. ACS COMBINATORIAL SCIENCE 2015; 17:196-201. [PMID: 25602927 DOI: 10.1021/co5001647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of linear and cyclic peptoids, which were expected to possess better pharmacokinetic properties and biological activities for blocking the interaction between apolipoprotein E and amyloid-β, were designed and synthesized as possible therapeutic agents. Peptoids were easily synthesized on solid-phase by the submonomer strategy and polar side chain-containing amines were effectively introduced under the modified reaction conditions. For the synthesis of cyclic peptoids, β-alanine protected with the 2-phenylisopropyl group, which could be selectively removed by 2% TFA, was used as a primary amine to afford a complete peptoid unit. The macrolactamization between the carboxylic acid of β-alanine moiety and terminal amine of peptoids was successfully performed in the presence of the PyAOP coupling agent on solid-phase in all the cases, providing various sizes of cyclic peptoids. In particular, some cyclic peptoids prepared in this study are the largest in size among cyclic peptoids reported to date. The synthetic strategy which was adopted in this study can also provide a robust platform for solid-phase construction of cyclic peptoid libraries. Currently, synthetic peptoids have been used to test interesting biological activities including the ApoE/Aβ interaction inhibition, nontoxicity, the blood-brain barrier permeability, etc.
Collapse
Affiliation(s)
- Shinae Park
- Department
of Chemistry and
Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yong-Uk Kwon
- Department
of Chemistry and
Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
10
|
Bartolucci S, Mari M, Bedini A, Piersanti G, Spadoni G. Iridium-catalyzed direct synthesis of tryptamine derivatives from indoles: exploiting n-protected β-amino alcohols as alkylating agents. J Org Chem 2015; 80:3217-22. [PMID: 25699684 DOI: 10.1021/acs.joc.5b00195] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective C3-alkylation of indoles with N-protected ethanolamines involving the "borrowing hydrogen" strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.
Collapse
Affiliation(s)
- Silvia Bartolucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| |
Collapse
|
11
|
Dezhenkov AV, Tankevich MV, Nikolskaya ED, Smirnov IP, Pozmogova GE, Shvets VI, Kirillova YG. Synthesis of anionic peptide nucleic acid oligomers including γ-carboxyethyl thymine monomers. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
Peptoids (N-substituted glycines) are mimics of α-peptides in which the side chains are attached to the backbone N (α) -amide nitrogen instead of the C (α) -atom. Peptoids hold promise as therapeutics since they often retain the biological activity of the parent peptide and are stable to proteases. In recent years, peptoids have attracted attention as new potential antibiotics against multiresistant bacteria. Here we describe the submonomer solid-phase synthesis of an antimicrobial peptoid, H-Nmbn-Nlys-Nlys-Nnap-Nbut-Nmbn-Nlys-NH2.
Collapse
Affiliation(s)
- Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|