1
|
Martínez-Pascual R, Valera-Zaragoza M, Fernández-Bolaños JG, López Ó. Exploring the Chemistry and Applications of Thio-, Seleno-, and Tellurosugars. Molecules 2025; 30:2053. [PMID: 40363858 PMCID: PMC12073459 DOI: 10.3390/molecules30092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Given the crucial roles of carbohydrates in energy supply, biochemical processes, signaling events and the pathogenesis of several diseases, the development of carbohydrate analogues, called glycomimetics, is a key research area in Glycobiology, Pharmacology, and Medicinal Chemistry. Among the many structural transformations explored, the replacement of endo- and exocyclic oxygen atoms by carbon (carbasugars) or heteroatoms, such as nitrogen (aza- and iminosugars), phosphorous (phosphasugars), sulfur (thiosugars), selenium (selenosugars) or tellurium (tellurosugars) have garnered significant attention. These isosteric substitutions can modulate the carbohydrate bioavailability, stability, and bioactivity, while introducing new properties, such as redox activity, interactions with pathological lectins and enzymes, or cytotoxic effects. In this manuscript we have focused on three major families of glycomimetics: thio-, seleno-, and tellurosugars. We provide a comprehensive review of the most relevant synthetic pathways leading to substitutions primarily at the endocyclic and glycosidic positions. The scope includes metal-catalyzed reactions, organocatalysis, electro- and photochemical transformations, free-radical processes, and automated syntheses. Additionally, mechanistic insights, stereoselectivity, and biological properties are also discussed. The structural diversity and promising bioactivities of these glycomimetics underscore their significance in this research area.
Collapse
Affiliation(s)
- Roxana Martínez-Pascual
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec 68301, Oaxaca, Mexico; (R.M.-P.); (M.V.-Z.)
| | - Mario Valera-Zaragoza
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec 68301, Oaxaca, Mexico; (R.M.-P.); (M.V.-Z.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain;
| |
Collapse
|
2
|
Mamgain R, Mishra G, Kriti S, Singh FV. Organoselenium compounds beyond antioxidants. Future Med Chem 2024; 16:2663-2685. [PMID: 39711134 PMCID: PMC11734649 DOI: 10.1080/17568919.2024.2435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Garima Mishra
- Department of Chemistry, Western Illinois University-Quad Cities, Moline, IL, USA
| | - Saumya Kriti
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| |
Collapse
|
3
|
Ibáñez-Escribano A, Fonseca-Berzal C, Martínez-Montiel M, Álvarez-Márquez M, Gómez-Núñez M, Lacueva-Arnedo M, Espinosa-Buitrago T, Martín-Pérez T, Escario JA, Merino-Montiel P, Montiel-Smith S, Gómez-Barrio A, López Ó, Fernández-Bolaños JG. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J Enzyme Inhib Med Chem 2022; 37:781-791. [PMID: 35193444 PMCID: PMC8881069 DOI: 10.1080/14756366.2022.2041629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.
Collapse
Affiliation(s)
- Alexandra Ibáñez-Escribano
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Cristina Fonseca-Berzal
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Manuel Álvarez-Márquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Gómez-Núñez
- Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Lacueva-Arnedo
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Teresa Espinosa-Buitrago
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - José Antonio Escario
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alicia Gómez-Barrio
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
4
|
Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids-A Biological Assessment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041315. [PMID: 35209105 PMCID: PMC8875169 DOI: 10.3390/molecules27041315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/02/2022]
Abstract
Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharmacophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure–activity relationships for the biological assays accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocarbamates 24–27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).
Collapse
|
5
|
Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins. MEMBRANES 2021; 11:membranes11110823. [PMID: 34832053 PMCID: PMC8625833 DOI: 10.3390/membranes11110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
Membrane proteins reside in the lipid bilayer of biomembranes and the structure and function of these proteins are closely related to their interactions with lipid molecules. Structural analyses of interactions between membrane proteins and lipids or detergents that constitute biological or artificial model membranes are important for understanding the functions and physicochemical properties of membrane proteins and biomembranes. Determination of membrane protein structures is much more difficult when compared with that of soluble proteins, but the development of various new technologies has accelerated the elucidation of the structure-function relationship of membrane proteins. This review summarizes the development of heavy atom derivative detergents and lipids that can be used for structural analysis of membrane proteins and their interactions with detergents/lipids, including their application with X-ray free-electron laser crystallography.
Collapse
|
6
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
7
|
Lima YR, Peglow TJ, Nobre PC, Campos PT, Perin G, Lenardão EJ, Silva MS. Chalcogen‐Containing Diols: A Novel Chiral Derivatizing Agent for
77
Se and
125
Te NMR Chiral Recognition of Primary Amines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yanka Rocha Lima
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Thiago Jacobsen Peglow
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Patrick Carvalho Nobre
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | | | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| |
Collapse
|
8
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Elsherbini M, Hamama WS, Zoorob HH. Recent advances in the chemistry of selenium-containing heterocycles: Six-membered ring systems. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Wang Z, Li W, Wang Y, Li X, Huang L, Li X. Design, synthesis and evaluation of clioquinol–ebselen hybrids as multi-target-directed ligands against Alzheimer's disease. RSC Adv 2016. [DOI: 10.1039/c5ra26797h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A novel series of compounds obtained by fusing the metal-chelating agent clioquinol and the antioxidant ebselen were designed, synthesized and evaluated as multi-target-directed ligands against Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Zhiren Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Wenrui Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yali Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xiruo Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Ling Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xingshu Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
11
|
Borges EL, Peglow TJ, Silva MS, Jacoby CG, Schneider PH, Lenardão EJ, Jacob RG, Perin G. Synthesis of enantiomerically pure bis(2,2-dimethyl-1,3-dioxolanylmethyl)chalcogenides and dichalcogenides. NEW J CHEM 2016. [DOI: 10.1039/c5nj02945g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enantiomerically pure bis-1,3-dioxolanylmethyl chalcogenides and dichalcogenides (S, Se and Te) were prepared from chalcogenides and chiral solketal tosylates.
Collapse
Affiliation(s)
- Elton L. Borges
- Laboratório de Síntese Orgânica Limpa – LASOL
- Universidade Federal de Pelotas, UFPel
- Pelotas
- Brazil
| | - Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa – LASOL
- Universidade Federal de Pelotas, UFPel
- Pelotas
- Brazil
| | - Márcio S. Silva
- Centro de Ciências Naturais e Humanas (CCNH)
- Universidade Federal do ABC
- Santo André
- Brazil
| | - Caroline G. Jacoby
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- UFRGS
- 91501-970, Porto Alegre
- Brazil
| | - Paulo H. Schneider
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- UFRGS
- 91501-970, Porto Alegre
- Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL
- Universidade Federal de Pelotas, UFPel
- Pelotas
- Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa – LASOL
- Universidade Federal de Pelotas, UFPel
- Pelotas
- Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL
- Universidade Federal de Pelotas, UFPel
- Pelotas
- Brazil
| |
Collapse
|
12
|
Wang Z, Wang Y, Li W, Mao F, Sun Y, Huang L, Li X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer's disease. ACS Chem Neurosci 2014; 5:952-62. [PMID: 25121395 DOI: 10.1021/cn500119g] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A series of selenium-containing clioquinol derivatives were designed, synthesized, and evaluated as multifunctional anti-Alzheimer's disease (AD) agents. In vitro examination showed that several target compounds exhibited activities such as inhibition of metal-induced Aβ aggregation, antioxidative properties, hydrogen peroxide scavenging, and the prevention of copper redox cycling. A parallel artificial membrane permeation assay indicated that selenium-containing clioquinol derivatives possessed significant blood-brain barrier (BBB) permeability. Compound 8a, with a propynylselanyl group linked to the oxine, demonstrated higher hydrogen peroxide scavenging and intracellular antioxidant activity than clioquinol. Furthermore, 8a exhibited significant inhibition of Cu(II)-induced Aβ1-42 aggregation and was capable of disassembling the preformed Cu(II)-induced Aβ aggregates. Therefore, 8a is an excellent multifunctional promising compound for development of novel drugs for AD.
Collapse
Affiliation(s)
- Zhiren Wang
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yali Wang
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenrui Li
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Mao
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Sun
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Huang
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingshu Li
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett 2013; 23:6737-42. [DOI: 10.1016/j.bmcl.2013.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/05/2013] [Accepted: 10/18/2013] [Indexed: 01/14/2023]
|
14
|
Synthesis and biological evaluation of berberine–thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg Med Chem 2013; 21:5830-40. [DOI: 10.1016/j.bmc.2013.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 01/15/2023]
|
15
|
Merino-Montiel P, Maza S, Martos S, López Ó, Maya I, Fernández-Bolaños JG. Synthesis and antioxidant activity of O-alkyl selenocarbamates, selenoureas and selenohydantoins. Eur J Pharm Sci 2012; 48:582-92. [PMID: 23287366 DOI: 10.1016/j.ejps.2012.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/24/2022]
Abstract
The preparation of three different families of lipophilic organoselenium compounds (aryl- and sugar-derived selenoureas, O-alkyl selenocarbamates and selenohydantoins) has been carried out in order to evaluate their in vitro antioxidant profile, analyzing the influence of the selenium-containing functional group, and the substituents on the activity. Title compounds have therefore been studied for the first time as free radical, hydrogen peroxide, alkyl peroxides and nitric oxide scavengers using colorimetric methods; furthermore, their glutathione peroxidase-like activity has also been analyzed by NMR spectroscopy. Free radical scavenging activity has been evaluated using the DPPH method; the strongest free radical scavengers were found to be both, aryl- and sugar-derived selenoureas, with EC₅₀ values ranging 19-46 μM. Concerning anti-H₂O₂ activity, measured by the horseradish peroxidase-mediated oxidation of phenol red, the best results were achieved for aryl selenohydantoins, showing a 61-76% inhibition at 0.5 mM concentration. Organoselenium compounds were also found to be capable of inhibiting the chain reaction involving lipid peroxidation (ferric thiocyanate method); thus, when tested at 0.74 mM, sugar selenocarbamates exhibited 49-71% inhibition of alkyl peroxides-mediated degradation of linoleic acid. Nitric oxide scavenging was studied by transforming sodium nitroprusside into nitrite ion, which in turn was transformed into an easily UV-detectable azocompound; aryl selenocarbamates exhibited 64-80% inhibition at 0.71 mM concentration. It has also been demonstrated that selenoxo compounds can behave as excellent glutathione peroxidase mimics; thus a 0.05 molar equiv. of the title compounds catalyzed efficiently the H₂O₂-mediated oxidation of dithiothreitol into the corresponding cyclic disulfide, mimicking removal of H₂O₂ exerted by glutathione peroxidase; t(1/2) values were found to be quite low for aryl- and sugar-derived selenoureas (2.0-12.7 min).
Collapse
Affiliation(s)
- Penélope Merino-Montiel
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Susana Maza
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Sergio Martos
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| | - Inés Maya
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| |
Collapse
|
16
|
Affeldt RF, Braga HC, Baldassari LL, Lüdtke DS. Synthesis of selenium-linked neoglycoconjugates and pseudodisaccharides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|