1
|
Liu Q, Wang YX, Ge ZH, Zhu MZ, Ding J, Wang H, Liu SM, Liu RC, Li C, Yu MJ, Feng Y, Zhu XH, Liang JH. Discovery of glycosidated glycyrrhetinic acid derivatives: Natural product-based soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 280:116937. [PMID: 39413443 DOI: 10.1016/j.ejmech.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
There are few reports on soluble epoxide hydrolase (sEH) structure-activity relationship studies using natural product-based scaffolds. In this study, we discovered that C-30 urea derivatives of glycyrrhetinic acid such as 33, rather than C-20/C-3 urea derivatives, possess in vitro sEH inhibitory capabilities. Furthermore, we explored the impact of stereoconfigurations at C-3 and C-18 positions, and glycosidic bonds at the 3-OH on the compound's activity. Consequently, a glycoside of 33, specifically 49Cα containing alpha-oriented mannose, exhibited promising in vivo efficacy in alleviating carrageenan-induced paw edema and acetic acid-induced writhing. Meanwhile, 49Cα demonstrated potential in mitigating acute pancreatitis by modulating the ratios of anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory dihydroxyeicosatrienoic acids (DHETs). The co-crystal structure of sEH in complex with 49Cα revealed that the N-tetrahydropyranylmethylene urea hydrogen bonded with the residues within the sEH tunnel, contrasting with the mannose component that extended beyond the tunnel's confines. Our findings highlight 49Cα (coded LQ-38) as a promising candidate for anti-inflammatory and analgesic effects, and pave the way for the future rational design of triterpenoid-based sEH inhibitors.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yi-Xin Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Zi-Hao Ge
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
2
|
Peng A, Yin G, Zuo W, Zhang L, Du G, Chen J, Wang Y, Kang Z. Regulatory RNAs in Bacillus subtilis: A review on regulatory mechanism and applications in synthetic biology. Synth Syst Biotechnol 2024; 9:223-233. [PMID: 38385150 PMCID: PMC10877136 DOI: 10.1016/j.synbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria exhibit a rich repertoire of RNA molecules that intricately regulate gene expression at multiple hierarchical levels, including small RNAs (sRNAs), riboswitches, and antisense RNAs. Notably, the majority of these regulatory RNAs lack or have limited protein-coding capacity but play pivotal roles in orchestrating gene expression by modulating transcription, post-transcription or translation processes. Leveraging and redesigning these regulatory RNA elements have emerged as pivotal strategies in the domains of metabolic engineering and synthetic biology. While previous investigations predominantly focused on delineating the roles of regulatory RNA in Gram-negative bacterial models such as Escherichia coli and Salmonella enterica, this review aims to summarize the mechanisms and functionalities of endogenous regulatory RNAs inherent to typical Gram-positive bacteria, notably Bacillus subtilis. Furthermore, we explore the engineering and practical applications of these regulatory RNA elements in the arena of synthetic biology, employing B. subtilis as a foundational chassis.
Collapse
Affiliation(s)
- Anqi Peng
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Silkenath B, Kläge D, Altwein H, Schmidhäuser N, Mayer G, Hartig JS, Wittmann V. Phosphonate and Thiasugar Analogues of Glucosamine-6-phosphate: Activation of the glmS Riboswitch and Antibiotic Activity. ACS Chem Biol 2023; 18:2324-2334. [PMID: 37793187 PMCID: PMC10594590 DOI: 10.1021/acschembio.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
The glmS riboswitch is a motif found in 5'-untranslated regions of bacterial mRNA that controls the synthesis of glucosamine-6-phosphate (GlcN6P), an essential building block for the bacterial cell wall, by a feedback mechanism. Activation of the glmS riboswitch by GlcN6P mimics interferes with the ability of bacteria to synthesize its cell wall. Accordingly, GlcN6P mimics acting as glmS activators are promising candidates for future antibiotic drugs that may overcome emerging bacterial resistance against established antibiotics. We describe the synthesis of a series of phosphonate mimics of GlcN6P as well as the thiasugar analogue of GlcN6P. The phosphonate mimics differ in their pKa value to answer the question of whether derivatives with a pKa matching that of GlcN6P would be efficient glmS activators. We found that all derivatives activate the riboswitch, however, less efficiently than GlcN6P. This observation can be explained by the missing hydrogen bonds in the case of phosphonates and is valuable information for the design of future GlcN6P mimics. The thiasugar analogue of GlcN6P on the other hand turned out to be a glmS riboswitch activator with the same activity as the natural metabolite GlcN6P. The nonphosphorylated thiasugar displayed antimicrobial activity against certain bacilli. Therefore, the compound is a promising lead structure for the development of future antibiotics with a potentially novel mode of action.
Collapse
Affiliation(s)
- Bjarne Silkenath
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Kläge
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Hanna Altwein
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Nina Schmidhäuser
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Günter Mayer
- LIMES
Institute, Center for Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Jörg S. Hartig
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Stängle D, Silkenath B, Gehle P, Esser A, Mayer G, Wittmann V. Carba-Sugar Analogs of Glucosamine-6-Phosphate: New Activators for the glmS Riboswitch. Chemistry 2023; 29:e202202378. [PMID: 36326082 PMCID: PMC10099210 DOI: 10.1002/chem.202202378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/06/2022]
Abstract
Riboswitches are 5'-untranslated mRNA regions mostly found in bacteria. They are promising drug targets to overcome emerging bacterial resistance against commonly used antibiotics. The glmS riboswitch is unique among the family of riboswitches as it is a ribozyme that undergoes self-cleavage upon binding to glucosamine-6-phosphate (GlcN6P). Previously, we showed that carba glucosamine-6-phosphate (carba-GlcN6P) induces self-cleavage of the riboswitch with a potency similar to that of GlcN6P. Here, we report a synthetic approach to a new class of carba-GlcN6P derivatives with an alkoxy substituent in the carba position. Key features of the synthesis are a ring closing metathesis followed by a hydroboration. The strategy gives access to libraries of carba-GlcN6P derivatives. Ribozyme cleavage assays unraveled new activators for the glmS riboswitch from Listeria monocytogenes and Clostridium difficile.
Collapse
Affiliation(s)
- David Stängle
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| | - Bjarne Silkenath
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| | - Paul Gehle
- LIMES InstituteCenter for Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Anna Esser
- LIMES InstituteCenter for Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Günter Mayer
- LIMES InstituteCenter for Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Valentin Wittmann
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| |
Collapse
|
5
|
Rodríguez-Álvarez S, Palazón JM, Dorta RL. Iron Trichloride-Mediated Cascade Reaction of Aminosugar Derivatives for the Synthesis of Fused Tetrahydroisoquinoline-Tetrahydrofuran Systems. ACS OMEGA 2022; 7:39061-39070. [PMID: 36340113 PMCID: PMC9631894 DOI: 10.1021/acsomega.2c04804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A method to obtain tetrahydroisoquinolines (THIQs) fused to tetrahydrofuran rings from aminosugar derivatives has been developed. The procedure relies on a key deprotection of benzyl ethers followed by a double-cyclization sequence, using FeCl3 as the sole reagent. This tandem reaction affords the construction of novel fused polycyclic heterocycles with total stereochemical control.
Collapse
|
6
|
Preparation of Responsive Zwitterionic Diblock Copolymers Containing Phosphate and Phosphonate Groups. Macromol Res 2020. [DOI: 10.1007/s13233-020-8148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
8
|
Hernández-Guerra D, Kennedy AR, León EI, Martín Á, Pérez-Martín I, Rodríguez MS, Suárez E. Synthetic Approaches to Phosphasugars (2-oxo-1,2-oxaphosphacyclanes) Using the Anomeric Alkoxyl Radical β-Fragmentation Reaction as the Key Step. J Org Chem 2020; 85:4861-4880. [PMID: 32174121 DOI: 10.1021/acs.joc.0c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anomeric alkoxyl radical β-fragmentation (ARF) of carbohydrates possessing an electron-withdrawing group (EWG) at C2, promoted by PhI(OAc)2/I2, gives rise to an acyclic iodide through which a pentavalent atom of phosphorus can be introduced via the Arbuzov reaction. After selective hydrolysis and subsequent cyclization, the phosphonate or phosphinate intermediates can be converted into 2-deoxy-1-phosphahexopyranose and 2-deoxy-1-phosphapentopyranose sugars. The ARF of carbohydrates with an electron-donor group (EDG) at C2 proceeds by a radical-polar crossover mechanism, and the cyclization occurs by nucleophilic attack of a conveniently positioned phosphonate or phosphinate group to the transient oxocarbenium ion. This alternative methodology leads to 5-phosphasugars with a 4-deoxy-5-phosphapentopyranose framework. The structure and conformation of the 2-oxo-1,2-oxaphosphinane and 2-oxo-1,2-oxaphospholane ring systems in different carbohydrate models have been studied by NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Daniel Hernández-Guerra
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Alan R Kennedy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Elisa I León
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Ángeles Martín
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Inés Pérez-Martín
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - María S Rodríguez
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Ernesto Suárez
- Sı́ntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiologı́a del CSIC, Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Salinas JC, Yu J, Østergaard M, Seth PP, Hanessian S. Conception and Synthesis of Oxabicyclic Nucleoside Phosphonates as Internucleotidic Phosphate Surrogates in Antisense Oligonucleotide Constructs. Org Lett 2018; 20:5296-5299. [PMID: 30146887 DOI: 10.1021/acs.orglett.8b02233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stereocontrolled synthesis of a novel oxabicyclic nucleoside phosphonate comprising a perhydrofuropyran core unit was achieved. It was incorporated in an oligonucleotide sequence as a 5'-3' phosphonate-phosphate insert, and the stability properties of the resulting duplex were measured. The oxabicyclic nucleoside framework was designed so as to restrict rotation around angles γ, δ, and ε of a natural nucleoside.
Collapse
Affiliation(s)
- Juan C Salinas
- Department of Chemistry , Université de Montréal , P.O. Box 6128, Downtown Station , Montréal , QC H3C 3J7 , Canada
| | - Jeff Yu
- Department of Medicinal Chemistry , Ionis Pharmaceuticals , 2855 Gazelle Court , Carlsbad , California 92010 , United States
| | - Michael Østergaard
- Department of Medicinal Chemistry , Ionis Pharmaceuticals , 2855 Gazelle Court , Carlsbad , California 92010 , United States
| | - Punit P Seth
- Department of Medicinal Chemistry , Ionis Pharmaceuticals , 2855 Gazelle Court , Carlsbad , California 92010 , United States
| | - Stephen Hanessian
- Department of Chemistry , Université de Montréal , P.O. Box 6128, Downtown Station , Montréal , QC H3C 3J7 , Canada
| |
Collapse
|
10
|
Matzner D, Schüller A, Seitz T, Wittmann V, Mayer G. Fluoro-Carba-Sugars are Glycomimetic Activators of the glmS Ribozyme. Chemistry 2017; 23:12604-12612. [PMID: 28661578 DOI: 10.1002/chem.201702371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/05/2022]
Abstract
The glmS ribozyme is a bacterial gene-regulating riboswitch that controls cell wall synthesis, depending on glucosamine-6-phosphate as a cofactor. Due to the presence of this ribozyme in several human pathogen bacteria (e.g., MRSA, VRSA), the glmS ribozyme represents an attractive target for the development of artificial cofactors. The substitution of the ring oxygen in carbohydrates by functionalized methylene groups leads to a new generation of glycomimetics that exploits distinct interaction possibilities with their target structure in biological systems. Herein, we describe the synthesis of mono-fluoro-modified carba variants of α-d-glucosamine and β-l-idosamine. (5aR)-Fluoro-carba-α-d-glucosamine-6-phosphate is a synthetic mimic of the natural ligand of the glmS ribozyme and is capable of effectively addressing its unique self-cleavage mechanism. However, in contrast to what was expected, the activity is significantly decreased compared to its non-fluorinated analog. By combining self-cleavage assays with the Bacillus subtilis and Staphylococcus aureus glmS ribozyme and molecular docking studies, we provide a structure-activity relationship for fluorinated carba-sugars.
Collapse
Affiliation(s)
- Daniel Matzner
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Anna Schüller
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Torben Seitz
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.,Current address: Cilag AG, Schaffhausen, Switzerland
| | - Valentin Wittmann
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
11
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Dong X, Tian Z, Yang X, Xue Y. Theoretical study on the mechanism of self-cleavage reaction of the glmS ribozyme. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1667-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Fei X, Holmes T, Diddle J, Hintz L, Delaney D, Stock A, Renner D, McDevitt M, Berkowitz DB, Soukup JK. Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch. ACS Chem Biol 2014; 9:2875-82. [PMID: 25254431 PMCID: PMC4273988 DOI: 10.1021/cb500458f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The glmS riboswitch is unique among gene-regulating
riboswitches and catalytic RNAs. This is because its own metabolite,
glucosamine-6-phosphate (GlcN6P), binds to the riboswitch and catalytically
participates in the RNA self-cleavage reaction, thereby providing
a novel negative feedback mechanism. Given that a number of pathogens
harbor the glmS riboswitch, artificial actuators
of this potential RNA target are of great interest. Structural/kinetic
studies point to the 2-amino and 6-phosphate ester functionalities
in GlcN6P as being crucial for this actuation. As a first step toward
developing artificial actuators, we have synthesized a series of nine
GlcN6P analogs bearing phosphatase-inert surrogates in place of the
natural phosphate ester. Self-cleavage assays with the Bacillus cereusglmS riboswitch
give a broad SAR. Two analogs display significant activity, namely,
the 6-deoxy-6-phosphonomethyl analog (5) and the 6-O-malonyl ether (13). Kinetic profiles show
a 22-fold and a 27-fold higher catalytic efficiency, respectively,
for these analogs vs glucosamine (GlcN). Given their nonhydrolyzable
phosphate surrogate functionalities, these analogs are arguably the
most robust artificial glmS riboswitch actuators
yet reported. Interestingly, the malonyl ether (13, extra
O atom) is much more effective than the simple malonate (17), and the “sterically true” phosphonate (5) is far superior to the chain-truncated (7) or chain-extended
(11) analogs, suggesting that positioning via Mg coordination
is important for activity. Docking results are consistent with this
view. Indeed, the viability of the phosphonate and 6-O-malonyl ether
mimics of GlcN6P points to a potential new strategy for artificial
actuation of the glmS riboswitch in a biological
setting, wherein phosphatase-resistance is paramount.
Collapse
Affiliation(s)
- Xiang Fei
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Thomas Holmes
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Julianna Diddle
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Lauren Hintz
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Dan Delaney
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Alex Stock
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Danielle Renner
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Molly McDevitt
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - David B. Berkowitz
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Juliane K. Soukup
- Department
of Chemistry, Creighton University, Omaha, Nebraska 68178, United States
| |
Collapse
|
14
|
Zhao Y, Chen H, Du F, Yasmeen A, Dong J, Cui X, Tang Z. Signal amplification of glucosamine-6-phosphate based on ribozyme glmS. Biosens Bioelectron 2014; 62:337-42. [DOI: 10.1016/j.bios.2014.06.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/29/2023]
|
15
|
Ali SP, Jalsa NK. Order of Reactivity of OH/NH Groups of Glucosamine Hydrochloride and N-Acetyl Glucosamine Toward Benzylation Using NaH/BnBr in DMF. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.907907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Stacy P. Ali
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nigel Kevin Jalsa
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
16
|
Lünse CE, Schüller A, Mayer G. The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol 2013; 304:79-92. [PMID: 24140145 DOI: 10.1016/j.ijmm.2013.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Riboswitches represent promising novel RNA structures for developing compounds that artificially regulate gene expression and, thus, bacterial growth. The past years have seen increasing efforts to identify metabolite-analogues which act on riboswitches and which reveal antibacterial activity. Here, we summarize the current inventory of riboswitch-targeting compounds, their characteristics and antibacterial potential.
Collapse
Affiliation(s)
- Christina E Lünse
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Anna Schüller
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|