1
|
Salihovic A, Ascham A, Taladriz-Sender A, Bryson S, Withers JM, McKean IJW, Hoskisson PA, Grogan G, Burley GA. Gram-scale enzymatic synthesis of 2'-deoxyribonucleoside analogues using nucleoside transglycosylase-2. Chem Sci 2024:d4sc04938a. [PMID: 39234214 PMCID: PMC11368039 DOI: 10.1039/d4sc04938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach involving structural analysis, screening and reaction optimization, is established to prepare 2'-deoxyribonucleoside analogues catalysed by the type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus leichmannii (LlNDT-2). Structural analysis in combination with substrate profiling, identified the constraints on pyrimidine and purine acceptor bases by LlNDT2. A solvent screen identifies pure water as a suitable solvent for the preparation of high value purine and pyrimidine 2'-deoxyribonucleoside analogues on a gram scale under optimized reaction conditions. This approach provides the basis to establish a convergent, step-efficient chemoenzymatic platform for the preparation of high value 2'-deoxyribonucleosides.
Collapse
Affiliation(s)
- Admir Salihovic
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Alex Ascham
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Andrea Taladriz-Sender
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Samantha Bryson
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Jamie M Withers
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Iain J W McKean
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| |
Collapse
|
2
|
Wong AAWL, Lozada J, Lepage ML, Zhang C, Merkens H, Zeisler J, Lin KS, Bénard F, Perrin DM. Synthesis and 18F-radiolabeling of thymidine AMBF 3 conjugates. RSC Med Chem 2020; 11:569-576. [PMID: 33479658 PMCID: PMC7578706 DOI: 10.1039/d0md00054j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
In pursuit of 18F-labeled nucleosides for positron emission tomography (PET) imaging, we report on the chemical and radiochemical synthesis of two thymidine (dT) analogs, dT-C5-AMBF3 and dT-N3-AMBF3, that are radiofluorinated by isotope exchange (IEX) and studied as PET imaging agents in mice with tumor xenografts. dT-C5-AMBF3 shows preferential, and tumor-specific, uptake over dT-N3-AMBF3. This work provides a new synthetic method in order to access new nucleoside tracers for PET imaging.
Collapse
Affiliation(s)
- Antonio A W L Wong
- Department of Chemistry , University of British Columbia (UBC) , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
| | - Jerome Lozada
- Department of Chemistry , University of British Columbia (UBC) , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
| | - Mathieu L Lepage
- Department of Chemistry , University of British Columbia (UBC) , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
| | - Chengcheng Zhang
- Department of Molecular Oncology , B.C. Cancer Research Centre (BCCRC) , 675 West 10th Avenue , Vancouver , BC , V5Z 1L3 Canada
| | - Helen Merkens
- Department of Molecular Oncology , B.C. Cancer Research Centre (BCCRC) , 675 West 10th Avenue , Vancouver , BC , V5Z 1L3 Canada
| | - Jutta Zeisler
- Department of Molecular Oncology , B.C. Cancer Research Centre (BCCRC) , 675 West 10th Avenue , Vancouver , BC , V5Z 1L3 Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , B.C. Cancer Research Centre (BCCRC) , 675 West 10th Avenue , Vancouver , BC , V5Z 1L3 Canada
| | - François Bénard
- Department of Molecular Oncology , B.C. Cancer Research Centre (BCCRC) , 675 West 10th Avenue , Vancouver , BC , V5Z 1L3 Canada
| | - David M Perrin
- Department of Chemistry , University of British Columbia (UBC) , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
| |
Collapse
|
3
|
Saady A, Böttner V, Meng M, Varon E, Shav-Tal Y, Ducho C, Fischer B. An oligonucleotide probe incorporating the chromophore of green fluorescent protein is useful for the detection of HER-2 mRNA breast cancer marker. Eur J Med Chem 2019; 173:99-106. [PMID: 30991278 DOI: 10.1016/j.ejmech.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 04/04/2019] [Indexed: 01/15/2023]
Abstract
Diagnosis and treatment of breast cancer can be greatly enhanced and personalized based on the quantitative detection of mRNA markers. Here, we targeted the development of a fluorescent oligonucleotide probe to detect specifically the HER-2 mRNA breast cancer marker. We have selected the chromophore of the Green Fluorescent Protein (GFP), 4-hydroxybenzylidene imidazolinone (HBI), as a fluorophore covalently bound to an oligonucleotide probe and potentially capable of intercalating within a probe-mRNA duplex. We first synthesized the two-ring scaffold of the HBI chromophore 5 and coupled it to 2'-deoxyuridine at C5-position via a 7-atom-spacer, to give 4. Indeed, in the highly viscous glycerol used to mimic the reduced conformational flexibility of the intercalated HBI, chromophore 4 displayed a quantum yield of 0.29 and brightness of 20600 M-1cm-1, while no fluorescent signal was observed in methanol. Next, we synthesized a 20-mer oligonucleotide probe incorporating 4 at position 6 (5'-CCCGTUTCAACAGGAGTTTC-3'), ONHBI, targeting nucleotides 1233-1253 of HER-2 mRNA. A 16-fold enhancement of ONHBI emission intensity upon hybridization with the complementary RNA vs that of the oligonucleotide probe alone indicated the presence of target oligonucleotide and proved the intercalation of the chromophore (quantum yield 0.52; brightness 23500 M-1cm-1). Even more, an 11-fold enhancement of ONHBI emission (quantum yield 0.50; brightness 23200 M-1cm-1) was observed when the probe was mixed with total RNA extract from a human cell line that has high levels of HER2 mRNA expression. Thus, we propose ONHBI as a promising probe potentially useful for the sensitive and specific detection of HER2 mRNA breast cancer marker.
Collapse
Affiliation(s)
- Abed Saady
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Verena Böttner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Eli Varon
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yaron Shav-Tal
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
4
|
Elayadi H, Lazrek HB. CuSO4/KI As Catalyst for the Synthesis of 1,4-Disubstituted-1,2,3-Triazolo-Nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:433-41. [PMID: 25965332 DOI: 10.1080/15257770.2015.1014047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple and inexpensive procedure has been developed for the selective formation of 1,4-disubstituted-1,2,3-triazolo-nucleosides starting from organic azides and terminal alkynes, mediated by in situ generated copper(I) catalyst from readily available CuSO4 and KI.
Collapse
Affiliation(s)
- Hanane Elayadi
- a Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia , Cadi Ayyad University , Marrakech , Morocco
| | | |
Collapse
|